On Banach spaces C(K) isomorphic to $c_0(\Gamma)$

by

WITOLD MARCISZEWSKI (Warszawa)

Abstract. We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space $c_0(\Gamma)$ for some set Γ . As an application we show that there exists an Eberlein compact space K of weight ω_{ω} and with the third derived set $K^{(3)}$ empty such that the space C(K) is not isomorphic to any $c_0(\Gamma)$. For this compactum K, the spaces C(K) and $c_0(\omega_{\omega})$ are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.

1. Introduction. In this paper we characterize compact spaces K such that the Banach space C(K) of real-valued continuous functions on K is isomorphic to the space $c_0(\Gamma)$ for some set Γ .

We will first establish the notation and terminology we need for our characterization.

Given a set X and an $n \in \omega$, by $\sigma_n(2^X)$ we denote the subspace of the product 2^X consisting of all characteristic functions of sets of cardinality $\leq n$.

We say that a family \mathcal{U} of sets has *finite order* if there is an $n \in \omega$ such that every subfamily $\mathcal{V} \subset \mathcal{U}$ of cardinality n has an empty intersection (in other terminology, the family \mathcal{U} is point-(n-1)). The family \mathcal{U} of subsets of a space X is T_0 -separating if, for every pair of distinct points x, y of X, there is $U \in \mathcal{U}$ containing exactly one of the points x, y.

The space $C_p(K)$ is the space of all continuous real-valued functions on a space K, equipped with the pointwise convergence topology. $A(\lambda)$ denotes the Aleksandrov compactification of a discrete space of cardinality λ . If the Cantor-Bendixson derivative $K^{(\omega)}$ of the space K is empty, we say that Khas *finite height*. Finally, let us recall that a space K is an *Eberlein compact* space if K is homeomorphic to a weakly compact subset of a Banach space.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B03, 46E15.

Key words and phrases: C(K) spaces, $c_0(\Gamma)$ spaces, Eberlein compact, weakly compactly generated.

The author was supported in part by KBN grant 2 P03A 011 15. Part of this research was done while the author held a temporary position at the Institute of Mathematics of the Polish Academy of Sciences in 2001/02.

THEOREM 1.1. For a compact space K the following conditions are equivalent:

- (i) K has a T_0 -separating family of clopen subsets of finite order,
- (ii) K can be embedded in the space $\sigma_n(2^X)$ for some set X and $n \in \omega$,
- (iii) $C_{\rm p}(K)$ is linearly homeomorphic to the space $C_{\rm p}(A(\kappa))$ for some cardinal κ ,
- (iv) C(K) is isomorphic to $c_0(\Gamma)$ for some set Γ ,
- (v) C(K) is isomorphic to a subspace of $c_0(\Gamma)$ for some set Γ .

Our characterization was motivated by the following theorem [5, Thm. 4.8]:

RESULT 1.2 (Godefroy, Kalton and Lancien). For a compact space K of weight $\langle \omega_{\omega}, \text{ the space } C(K) \text{ is isomorphic to some } c_0(\Gamma) \text{ if and only if } K$ is an Eberlein compactum of finite height.

Godefroy, Kalton and Lancien conjectured in [5] that the above result may hold true without the assumption on the weight of K. Theorem 1.1, together with an example from [2], shows however that the cardinal restriction in 1.2 is necessary and cannot be improved.

It is easy to observe that if K embeds in some $\sigma_n(2^X)$ then K is an Eberlein compact space of finite height. Argyros and Godefroy have proved that this implication can be reversed under some restrictions on the weight of K. Namely, if K is an Eberlein compactum of weight $\langle \omega_{\omega} \rangle$ and of finite height, then K can be embedded in $\sigma_n(2^X)$ for some set X and $n \in \omega$. This (unpublished) result can also be derived from the above theorem of Godefroy, Kalton and Lancien and Theorem 1.1. However, we have the following example:

RESULT 1.3 (Bell and Marciszewski [2]). There exists an Eberlein compactum K of weight ω_{ω} and finite height $(K^{(3)} = \emptyset)$ which cannot be embedded into any $\sigma_n(2^X)$.

Combining this example with Theorem 1.1 and a result from [3] (see also [4, Thm. 8.9]) we obtain

COROLLARY 1.4. There exists an Eberlein compactum K of weight ω_{ω} and finite height such that the space C(K) is not isomorphic to any $c_0(\Gamma)$. The spaces C(K) and $c_0(\omega_{\omega})$ are Lipschitz isomorphic WCG spaces which are not isomorphic.

We prove Theorem 1.1 in Section 3. Section 2 contains some auxiliary results. Some additional remarks are included in Section 4.

Acknowledgments. The author is grateful to Gilles Godefroy for valuable suggestions and comments.

2. Auxiliary results

LEMMA 2.1. Let $\{C_t : t \in T\}$ be a point-finite family of countable subsets of a set X. Then, for every $t \in T$, there exists a finite set $F_t \subset (T \setminus \{t\})$ such that all sets $C_t \setminus \bigcup \{C_s : s \in F_t\}$ are pairwise disjoint.

Proof. We may assume that all sets C_t are nonempty. For $s, u \in T$ write $s \sim u$ if there exist $t_1, \ldots, t_n \in T$ such that $t_1 = s, t_n = u$ and $C_{t_i} \cap C_{t_{i+1}} \neq \emptyset$ for $i = 1, \ldots, n-1$. The relation \sim is an equivalence relation. Since the family $\{C_t : t \in T\}$ is point-finite, every C_t intersects only countably many C_s . Therefore the equivalence classes of \sim are countable. Let $\{T_a : a \in A\}$ be the partition of T into equivalence classes. It is clear that $C_s \cap C_u = \emptyset$ for every $s \in T_a$ and $u \in T_b, a \neq b$. Enumerate each T_a as $\{t_i^a : i < n\}$, where $n \leq \omega$. For $t = t_i^a$, define $F_t = \{t_j^a : j < i\}$. One can easily verify that the sets F_t have the required properties.

LEMMA 2.2. Let K be an Eberlein compactum of finite height. Then there exists a family $\{U_a : a \in K\}$ such that

- (a) for every $a \in K$, U_a is a clopen neighborhood of a,
- (b) for every $n \in \omega$ and $a \in K^{(n)} \setminus K^{(n+1)}$, $U_a \cap K^{(n)} = \{a\}$,
- (c) for every $a, b \in K$, if $a \in U_b$ then $U_a \subset U_b$,
- (d) $\{U_a : a \in K\}$ is point-finite.

Proof. Since K is a scattered Eberlein compactum, we can assume that K is a subspace of $\{\chi_A \in 2^X : |A| < \omega\}$ for some set X (see [1]). For every $a = \chi_A \in K$ we put $V_a = \{\chi_B \in K : A \subset B\}$. It is clear that the family $\{V_a : a \in K\}$ of clopen neighborhoods is point-finite. Every point $a \in K^{(n)} \setminus K^{(n+1)}$ is isolated in $K^{(n)}$, therefore we can find a clopen neighborhood W_a of a such that $W_a \cap K^{(n)} = \{a\}$. Obviously, we can require that $W_a \subset V_a$, hence the family $\{W_a : a \in K\}$ is point-finite. Take a minimal m such that $K^{(m)} = \emptyset$. Put $U_a = W_a$ for $a \in K^{(m-1)}$. Then define inductively, for $n = m - 2, m - 3, \ldots, 0$ and $a \in K^{(n)} \setminus K^{(n+1)}$, $U_a = W_a \cap \bigcap \{U_b : a \in U_b, b \in K^{(n+1)}\}$. It can be easily verified that the sets U_a have the required properties (a)–(d). ■

For a subset $A \subset \Gamma$ the map $p_A : c_0(\Gamma) \to c_0(\Gamma)$ is defined by

$$p_A(x)(\gamma) = \begin{cases} x(\gamma) & \text{if } \gamma \in A, \\ 0 & \text{if } \gamma \notin A, \end{cases}$$

for $x \in c_0(\Gamma)$ and $\gamma \in \Gamma$.

We will need the following standard fact.

PROPOSITION 2.3. Let X be a closed linear subspace of $c_0(\Gamma)$. For every countable subset $A \subset \Gamma$ there exists a countable $B \subset \Gamma$ such that $A \subset B$ and $p_B(X) \subset X$.

Proof. The space X, being WCG, is the closure of span K for some weakly compact set $K \subset X$. Clearly, K is compact in the pointwise topology in $c_0(\Gamma)$, therefore there exists a countable set $B \subset \Gamma$ such that $A \subset B$ and $p_B(K) \subset K$ (see [6, Lemma 1] or [4, p. 254]). A routine verification shows that also $p_B(X) \subset X$.

3. Proof of Theorem 1.1

PROPOSITION 3.1. Let K and L be nonempty closed subsets of $\sigma_n(2^X)$ with $K \subset L$. Then there exists a continuous linear extension operator $e : C_p(K) \to C_p(L)$, i.e., $e(f)|_K = f$ for every $f \in C_p(K)$.

Proof. It is enough to prove the statement for $L = \sigma_n(2^X)$ (for other L we can use the restriction operator $g \mapsto g|L$). We will prove this by induction on n. For n = 0 this is trivial. Suppose that our assertion holds true for $n \ge 0$. Let K be a nonempty closed subset of $\sigma_{n+1}(2^X)$. Put $M = K \cap \sigma_n(2^X)$ and let $e': C_p(M) \to C_p(\sigma_n(2^X))$ be a continuous linear extension operator. Then we can define the operator $e: C_p(K) \to C_p(\sigma_{n+1}(2^X))$ by the formula (recall that elements of $\sigma_{n+1}(2^X)$ are the characteristic functions χ_A of sets A of cardinality $\leq n + 1$)

$$e(f)(\chi_a) = \begin{cases} f(\chi_A) & \text{for } \chi_A \in K, \\ e'(f|M)(\chi_A) & \text{for } \chi_A \in \sigma_n(2^X), \\ \sum_{B \subsetneq A} (-1)^{n-|B|} e'(f|M)(\chi_B) \\ & \text{for } \chi_A \in \sigma_{n+1}(2^X) \setminus (K \cup \sigma_n(2^X)). \end{cases}$$

It is clear that the operator e is linear and pointwise continuous. It remains to verify that, for every $f \in C_p(K)$, the function e(f) is continuous on $\sigma_{n+1}(2^X)$. From the definition of e(f), it easily follows that $e(f)|K \cup \sigma_n(2^X)$ is continuous. Observe that all points in $\sigma_{n+1}(2^X) \setminus \sigma_n(2^X)$ are the characteristic functions of sets of cardinality n + 1 and are isolated in $\sigma_{n+1}(2^X)$. The space $\sigma_{n+1}(2^X)$, being Eberlein compact, is a Fréchet topological space. Therefore, it is enough to show that, for every sequence (χ_{A_k}) of points of $\sigma_{n+1}(2^X) \setminus (K \cup \sigma_n(2^X))$ converging to a point $\chi_B \in \sigma_n(2^X)$, we have $e(f)(\chi_{A_k}) \to e(f)(\chi_B)$. Without loss of generality we may assume that $B \subset$ A_k for all k. One can easily verify that, for every $D \subset B$ and $C_k \subset A_k \setminus B$, we have $\chi_{C_k \cup D} \to \chi_D$. Hence, we obtain

$$e(f)(\chi_{A_{k}}) = \sum_{B_{k} \subsetneq A_{k}} (-1)^{n-|B_{k}|} e'(f|M)(\chi_{B_{k}})$$

=
$$\sum_{C_{k} \subsetneq A_{k} \setminus B} (-1)^{n-|C_{k}|-|B|} e'(f|M)(\chi_{C_{k} \cup B})$$

+
$$\sum_{D \subsetneq B} \sum_{E_{k} \subset A_{k} \setminus B} (-1)^{n-|E_{k}|-|D|} e'(f|M)(\chi_{E_{k} \cup D})$$

$$\stackrel{k \to \infty}{\longrightarrow} e'(f|M)(\chi_B) \sum_{i=0}^{n-|B|} (-1)^{n-i-|B|} \binom{n+1-|B|}{i}$$

$$+ \sum_{D \subsetneq B} e'(f|M)(\chi_D) \sum_{i=0}^{n+1-|B|} (-1)^{n-i-|D|} \binom{n+1-|B|}{i}$$

$$= e'(f|M)(\chi_B) \left(1 + (-1)^{n-|B|} \sum_{i=0}^{n+1-|B|} (-1)^i \binom{n+1-|B|}{i} \right)$$

$$+ \sum_{D \subsetneq B} e'(f|M)(\chi_D)(-1)^{n-|D|} \sum_{i=0}^{n+1-|B|} (-1)^i \binom{n+1-|B|}{i}$$

$$= e'(f|M)(\chi_B)(1 + (-1)^{n-|B|}(1-1)^{n+1-|B|})$$

$$+ \sum_{D \subsetneq B} e'(f|M)(\chi_D)(-1)^{n-|D|}(1-1)^{n+1-|B|}$$

$$= e'(f|M)(\chi_B) = e(f)(\chi_B). \bullet$$

LEMMA 3.2. Let K be an Eberlein compact space of finite height and without a T_0 -separating family of clopen subsets of finite order. Then every family $\{G_a : a \in K\}$ of G_{δ} -subsets of K with $a \in G_a$ for all $a \in K$ has infinite order.

Proof. Suppose on the contrary that there exists a family $\{G_a : a \in K\}$ of G_{δ} -subsets of K with $a \in G_a$ for every $a \in K$, which has finite order. Let $\{U_a : a \in K\}$ be the family of clopen neighborhoods from Lemma 2.2. For every point $a \in K$, we will choose a clopen neighborhood $V_a \subset U_a$ of a such that the family $\{V_a : a \in K\}$ will have finite order. This will give the desired contradiction since condition (b) of Lemma 2.2 implies that the family $\{V_a : a \in K\}$ is T_0 -separating. Let $m \in \omega$ be such that $K^{(m)} = \emptyset$. We will choose sets V_a , for $a \in K^{(n)} \setminus K^{(n+1)}$ and $n = 0, 1, \ldots, m - 1$, by induction on n.

For n = 0, all points $a \in K \setminus K^{(1)}$ are isolated, so we can simply take $V_a = \{a\}$. Let n > 0 and suppose that we have defined the family of neighborhoods $\{V_a : a \in K \setminus K^{(n)}\}$ of finite order. Fix a point $a \in K^{(n)} \setminus K^{(n+1)}$. Observe that from Lemma 2.2(b) it follows that $\bigcap \{U_a \setminus V_b :$ $b \in U_a \cap (K \setminus K^{(n)})\} = \{a\}$. Therefore, every neighborhood of a contains a set of the form $U_a \setminus \bigcup \{V_b : b \in F\}$ for some finite set $F \subset U_a \cap (K \setminus K^{(n)})$. Hence, we can assume that there exists a countable set $C_a \subset U_a \cap (K \setminus K^{(n)})$ such that $G_a = U_a \setminus \bigcup \{V_b : b \in C_a\}$. Condition (d) of Lemma 2.2 guarantees that the family $\{C_a : a \in K^{(n)} \setminus K^{(n+1)}\}$ is point-finite. By Lemma 2.1 we can find finite sets $F_a \subset K^{(n)} \setminus (K^{(n+1)} \cup \{a\})$, for every $a \in K^{(n)} \setminus K^{(n+1)}$, such that the sets $D_a = C_a \setminus \bigcup \{C_c : c \in F_a\}$ are pairwise disjoint. We put $V_a = U_a \setminus \bigcup \{ U_c : c \in F_a \}$. Because $a \notin F_a$, we have $a \in V_a$ by Lemma 2.2(b).

Let $W_a = \bigcup \{V_b : b \in D_a\}$ for $a \in K^{(n)} \setminus K^{(n+1)}$. Since the sets D_a are pairwise disjoint, our inductive assumption on the sets V_b implies that the family $\{W_a : a \in K^{(n)} \setminus K^{(n+1)}\}$ has finite order. By condition (c) of Lemma 2.2 we have $V_b \subset U_c$ for all $b \in C_c \subset U_c$, therefore $V_a \subset G_a \cup W_a$ for every $a \in K^{(n)} \setminus K^{(n+1)}$. It follows that the family $\{V_a : a \in K^{(n)} \setminus K^{(n+1)}\}$ also has finite order. Clearly, the family $\{V_a : a \in K \setminus K^{(n+1)}\}$, being a finite union of families of finite order, has finite order.

LEMMA 3.3. Let K be a compact space such that each family $\{G_a : a \in K\}$ of G_{δ} -subsets of K with $a \in G_a$ for every $a \in K$ has infinite order. Then C(K) is not isomorphic to any subspace of $c_0(\Gamma)$.

Proof. Assume towards a contradiction that $T : C(K) \to X$ is an isomorphism of C(K) onto a subspace X of some $c_0(\Gamma)$. We may assume that ||T|| = 1 and put $M = ||T^{-1}||$. Let n > M be a natural number. For every $a \in K$ we denote by δ_a the Dirac measure supported at a.

For every $a \in K$ we take $z_a \in \ell_1(\Gamma)$ such that $z_a|X = (T^{-1})^*(\delta_a)$ (we treat z_a as an element of the dual $(c_0(\Gamma))^*$). Let A_a be the support of z_a , i.e., $A_a = \{\gamma \in \Gamma : z_a(\gamma) \neq 0\}$. By Proposition 2.3 we can find a countable set $B_a \subset \Gamma$ containing A_a and such that $p_{B_a}(X) \subset X$.

Observe that for each $x \in X$ the set $G(a, x) = \{b \in K : (T^{-1})^*(\delta_b)(x) = (T^{-1})^*(\delta_a)(x)\} = \{b \in K : T^{-1}(x)(b) = T^{-1}(x)(a)\}$ is a G_{δ} -set in K. Let $\{x_k^a : k \in \omega\}$ be a dense subset of $p_{B_a}(X)$. Then $G_a = \bigcap\{G(a, x_k^a) : k \in \omega\}$ is a G_{δ} -set containing a and by density of $\{x_k^a : k \in \omega\}$ we have $(T^{-1})^*(\delta_b)(x) = (T^{-1})^*(\delta_a)(x)$ for every $b \in G_a$ and $x \in p_{B_a}(X)$. The family $\{G_a : a \in K\}$ has infinite order, hence we can find distinct $a_1, \ldots, a_n \in K$ such that $G_{a_1} \cap \ldots \cap G_{a_n} \neq \emptyset$. Take a point $b \in G_{a_1} \cap \ldots \cap G_{a_n}$. We can find continuous functions $f_i : K \to [0, 1]$, for $i = 1, \ldots, n$, such that $f_i(a_i) = 1$ for every i and the sets $f_i^{-1}((0, 1])$ are pairwise disjoint. For every sequence $(\varepsilon_i)_{i=1}^n$ with $|\varepsilon_i| = 1$ we have $\|\sum_{i=1}^n \varepsilon_i f_i\| = 1$, therefore $\|T(\sum_{i=1}^n \varepsilon_i f_i)\| \le 1$. It follows that, for every $\gamma \in \Gamma$, we have $\sum_{i=1}^n |T(f_i)(\gamma)| \le 1$.

Let $x_i = p_{B_{a_i}}(T(f_i)) \in X$ for i = 1, ..., n. By the above inequality we have $\|\sum_{i=1}^n x_i\| \leq 1$. For every i, we have $1 = \delta_{a_i}(f_i) = (T^{-1})^*(\delta_{a_i})(T(f_i)) = z_{a_i}(T(f_i))$. The fact that B_{a_i} contains the support of z_{a_i} and the equality $x_i|B_{a_i} = T(f_i)|B_{a_i}$ imply that also $1 = z_{a_i}(x_i) = (T^{-1})^*(\delta_{a_i})(x_i)$. Furthermore, since $b \in G_{a_i}$ we find that $(T^{-1})^*(\delta_b)(x_i) = 1$ for all i. Then $(T^{-1})^*(\delta_b)(\sum_{i=1}^n x_i) = n$, which shows that $\|(T^{-1})^*\| = \|T^{-1}\| \geq n > M$, a contradiction.

Proof of Theorem 1.1. (i) \Rightarrow (ii). Suppose that $\{U_x : x \in X\}$ is a T_0 -separating family of finite order consisting of clopen subsets of K. Let $g_x =$

 $\chi_{U_x}: K \to 2$ for $x \in X$. Then the diagonal map $h = \triangle_{x \in X} g_x: K \to 2^X$ is an embedding with $h(K) \subset \sigma_n(2^X)$ for some $n \in \omega$.

(ii) \Rightarrow (iii). We will prove this implication by induction on n. The case n = 1 is obvious since every closed subset of $\sigma_1(2^X)$ is homeomorphic to some $A(\kappa)$. Suppose that the implication considered holds true for n, and K is a closed subset of $\sigma_{n+1}(2^X)$. Take $M = K \cap \sigma_n(2^X)$. Then $C_p(M)$ is linearly homeomorphic to $C_p(A(\kappa))$ for some κ . By Proposition 3.1 there exists a continuous linear extension operator $e: C_p(M) \to C_p(K)$. It is well known that this implies that the space $C_p(K)$ is linearly homeomorphic to the product $C_p(M) \times \{f \in C_p(K) : f | M \equiv 0\}$ (see [8, Proposition 6.6.6]). Since all points of $K \setminus M$ are isolated, the second factor can be identified with $c_0(K \setminus M)$ equipped with the pointwise convergence topology. Standard verification shows that the product $C_p(A(\kappa)) \times c_0(\Gamma)$ (the second factor with the pointwise topology) is linearly homeomorphic to $C_p(A(\eta))$ for some η .

(iii) \Rightarrow (iv). This follows easily from the Closed Graph Theorem and the facts that $C_{\rm p}(A(\kappa))$ is linearly homeomorphic to $c_0(\kappa)$ (with the pointwise topology) and the pointwise topology is weaker than the norm topology.

 $(iv) \Rightarrow (v)$. Trivial.

 $(\mathbf{v}) \Rightarrow (\mathbf{i})$. Let K be a compact space with C(K) isomorphic to a subspace of $c_0(\Gamma)$. It follows that C(K) is a WCG space, hence K is an Eberlein compactum. We also have $K^{(\omega)} = \emptyset$ by [7, Thm. 3.8]. Then condition (i) follows immediately from Lemmas 3.2 and 3.3.

4. Remarks

REMARK 1. Note that the proof of the implication $(v) \Rightarrow (i)$ of Theorem 1.1 can be simplified if we only want to prove the (weaker) implication $(iv) \Rightarrow (i)$. The implication $(v) \Rightarrow (iv)$ can be derived from Remark 5.4 in [5] stating that an \mathcal{L}^{∞} subspace of $c_0(\Gamma)$ is isomorphic to $c_0(\Gamma)$. Since the proof of that fact is not included in [5], we decided to give an independent proof of the implication $(v) \Rightarrow (i)$.

REMARK 2. Godefroy, Kalton and Lancien have proved that, for a WCG Banach space X of weight less than ω_{ω} , every subspace Y of X which is isomorphic to $c_0(\Gamma)$ is complemented in X (see [5, proof of Thm. 4.8]). Again, the restriction on the weight of X cannot be omitted in this result. Let K be an Eberlein compactum (with $K^{(3)} = \emptyset$) described in Result 1.3. Take $Y = \{f \in C(K) : f | K' \equiv 0\}$. Then Y is isometric to $c_0(K \setminus K')$ and C(K)/Y is isometric to C(K'), which, in turn, is isomorphic to $c_0(\Gamma)$ since $K^{(3)} = \emptyset$. Hence Y cannot be complemented in C(K) because C(K) is not isomorphic to $c_0(\Gamma)$ (cf. [5, proof of Thm. 4.8]).

REMARK 3. Corollary 1.4 also shows that the cardinality restriction in the following result of Godefroy, Kalton and Lancien cannot be removed. They proved [5, Corollary 5.2] that every WCG Banach space X of weight less than ω_{ω} which is Lipschitz isomorphic to $c_0(\Gamma)$ is isomorphic to $c_0(\Gamma)$.

REMARK 4. In this paper we restricted ourselves to the spaces of realvalued functions. One can easily verify that this restriction is inessential; the proofs of our results work in the complex case as well.

References

- [1] K. Alster, Some remarks on Eberlein compacts, Fund. Math. 104 (1979), 43-46.
- [2] M. Bell and W. Marciszewski, On scattered Eberlein compact spaces, preprint.
- [3] R. Deville, G. Godefroy and V. Zizler, The three space problem for smooth partitions of unity and C(K) spaces, Math. Ann. 288 (1990), 613–625.
- [4] —, —, —, Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math. 64, Longman Sci. & Tech., 1993.
- [5] G. Godefroy, N. Kalton and G. Lancien, Subspaces of c₀(N) and Lipschitz isomorphisms, Geom. Funct. Anal. 10 (2000), 798–820.
- [6] S. P. Gul'ko, On properties of subsets of Σ-products, Dokl. Akad. Nauk SSSR 237 (1977), 505–508 (in Russian); English transl.: Soviet Math. Dokl. 18 (1977), 1438– 1442.
- [7] G. Lancien, On uniformly convex and uniformly Kadec-Klee renormings, Serdica Math. J. 21 (1995), 1–18.
- [8] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Math. Library 64, North-Holland, Amsterdam, 2001.

Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland E-mail: wmarcisz@mimuw.edu.pl

Received September 25, 2002

(5041)

302