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On Banach spaces C(K) isomorphic to c0(Γ )

by

Witold Marciszewski (Warszawa)

Abstract. We give a characterization of compact spaces K such that the Banach
space C(K) is isomorphic to the space c0(Γ ) for some set Γ . As an application we show that
there exists an Eberlein compact space K of weight ωω and with the third derived set K(3)

empty such that the space C(K) is not isomorphic to any c0(Γ ). For this compactum K,
the spaces C(K) and c0(ωω) are examples of weakly compactly generated (WCG) Banach
spaces which are Lipschitz isomorphic but not isomorphic.

1. Introduction. In this paper we characterize compact spaces K such
that the Banach space C(K) of real-valued continuous functions on K is
isomorphic to the space c0(Γ ) for some set Γ .

We will first establish the notation and terminology we need for our
characterization.

Given a set X and an n ∈ ω, by σn(2X) we denote the subspace of the
product 2X consisting of all characteristic functions of sets of cardinality
≤ n.

We say that a family U of sets has finite order if there is an n ∈ ω such
that every subfamily V ⊂ U of cardinality n has an empty intersection (in
other terminology, the family U is point-(n − 1)). The family U of subsets
of a space X is T0-separating if, for every pair of distinct points x, y of X,
there is U ∈ U containing exactly one of the points x, y.

The space Cp(K) is the space of all continuous real-valued functions on
a space K, equipped with the pointwise convergence topology. A(λ) denotes
the Aleksandrov compactification of a discrete space of cardinality λ. If the
Cantor–Bendixson derivative K(ω) of the space K is empty, we say that K
has finite height. Finally, let us recall that a space K is an Eberlein compact
space if K is homeomorphic to a weakly compact subset of a Banach space.
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Theorem 1.1. For a compact space K the following conditions are
equivalent :

(i) K has a T0-separating family of clopen subsets of finite order ,
(ii) K can be embedded in the space σn(2X) for some set X and n ∈ ω,
(iii) Cp(K) is linearly homeomorphic to the space Cp(A(κ)) for some

cardinal κ,
(iv) C(K) is isomorphic to c0(Γ ) for some set Γ ,
(v) C(K) is isomorphic to a subspace of c0(Γ ) for some set Γ .

Our characterization was motivated by the following theorem [5, Thm.
4.8]:

Result 1.2 (Godefroy, Kalton and Lancien). For a compact space K of
weight < ωω, the space C(K) is isomorphic to some c0(Γ ) if and only if K
is an Eberlein compactum of finite height.

Godefroy, Kalton and Lancien conjectured in [5] that the above result
may hold true without the assumption on the weight of K. Theorem 1.1, to-
gether with an example from [2], shows however that the cardinal restriction
in 1.2 is necessary and cannot be improved.

It is easy to observe that if K embeds in some σn(2X) then K is an
Eberlein compact space of finite height. Argyros and Godefroy have proved
that this implication can be reversed under some restrictions on the weight
of K. Namely, if K is an Eberlein compactum of weight < ωω and of finite
height, then K can be embedded in σn(2X) for some set X and n ∈ ω. This
(unpublished) result can also be derived from the above theorem of Gode-
froy, Kalton and Lancien and Theorem 1.1. However, we have the following
example:

Result 1.3 (Bell and Marciszewski [2]). There exists an Eberlein com-
pactum K of weight ωω and finite height (K(3) = ∅) which cannot be embed-
ded into any σn(2X).

Combining this example with Theorem 1.1 and a result from [3] (see also
[4, Thm. 8.9]) we obtain

Corollary 1.4. There exists an Eberlein compactum K of weight ωω
and finite height such that the space C(K) is not isomorphic to any c0(Γ ).
The spaces C(K) and c0(ωω) are Lipschitz isomorphic WCG spaces which
are not isomorphic.

We prove Theorem 1.1 in Section 3. Section 2 contains some auxiliary
results. Some additional remarks are included in Section 4.
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2. Auxiliary results

Lemma 2.1. Let {Ct : t ∈ T} be a point-finite family of countable subsets
of a set X. Then, for every t ∈ T , there exists a finite set Ft ⊂ (T \ {t})
such that all sets Ct \

⋃{Cs : s ∈ Ft} are pairwise disjoint.

Proof. We may assume that all sets Ct are nonempty. For s, u ∈ T write
s ∼ u if there exist t1, . . . , tn ∈ T such that t1 = s, tn = u and Cti∩Cti+1 6= ∅
for i = 1, . . . , n − 1. The relation ∼ is an equivalence relation. Since the
family {Ct : t ∈ T} is point-finite, every Ct intersects only countably many
Cs. Therefore the equivalence classes of ∼ are countable. Let {Ta : a ∈ A}
be the partition of T into equivalence classes. It is clear that Cs∩Cu = ∅ for
every s ∈ Ta and u ∈ Tb, a 6= b. Enumerate each Ta as {tai : i < n}, where
n ≤ ω. For t = tai , define Ft = {taj : j < i}. One can easily verify that the
sets Ft have the required properties.

Lemma 2.2. Let K be an Eberlein compactum of finite height. Then there
exists a family {Ua : a ∈ K} such that

(a) for every a ∈ K, Ua is a clopen neighborhood of a,
(b) for every n ∈ ω and a ∈ K(n) \K(n+1), Ua ∩K(n) = {a},
(c) for every a, b ∈ K, if a ∈ Ub then Ua ⊂ Ub,
(d) {Ua : a ∈ K} is point-finite.

Proof. Since K is a scattered Eberlein compactum, we can assume that
K is a subspace of {χA ∈ 2X : |A| < ω} for some set X (see [1]). For
every a = χA ∈ K we put Va = {χB ∈ K : A ⊂ B}. It is clear that
the family {Va : a ∈ K} of clopen neighborhoods is point-finite. Every
point a ∈ K(n) \K(n+1) is isolated in K(n), therefore we can find a clopen
neighborhood Wa of a such that Wa∩K(n) = {a}. Obviously, we can require
that Wa ⊂ Va, hence the family {Wa : a ∈ K} is point-finite. Take a
minimal m such that K(m) = ∅. Put Ua = Wa for a ∈ K(m−1). Then
define inductively, for n = m − 2,m − 3, . . . , 0 and a ∈ K(n) \ K(n+1),
Ua = Wa ∩

⋂{Ub : a ∈ Ub, b ∈ K(n+1)}. It can be easily verified that the
sets Ua have the required properties (a)–(d).

For a subset A ⊂ Γ the map pA : c0(Γ )→ c0(Γ ) is defined by

pA(x)(γ) =
{
x(γ) if γ ∈ A,

0 if γ 6∈ A,

for x ∈ c0(Γ ) and γ ∈ Γ .
We will need the following standard fact.

Proposition 2.3. Let X be a closed linear subspace of c0(Γ ). For every
countable subset A ⊂ Γ there exists a countable B ⊂ Γ such that A ⊂ B
and pB(X) ⊂ X.
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Proof. The space X, being WCG, is the closure of spanK for some
weakly compact set K ⊂ X. Clearly, K is compact in the pointwise topology
in c0(Γ ), therefore there exists a countable set B ⊂ Γ such that A ⊂ B and
pB(K) ⊂ K (see [6, Lemma 1] or [4, p. 254]). A routine verification shows
that also pB(X) ⊂ X.

3. Proof of Theorem 1.1

Proposition 3.1. Let K and L be nonempty closed subsets of σn(2X)
with K ⊂ L. Then there exists a continuous linear extension operator e :
Cp(K)→ Cp(L), i.e., e(f)|K = f for every f ∈ Cp(K).

Proof. It is enough to prove the statement for L = σn(2X) (for other L
we can use the restriction operator g 7→ g|L). We will prove this by induction
on n. For n = 0 this is trivial. Suppose that our assertion holds true for
n ≥ 0. Let K be a nonempty closed subset of σn+1(2X). Put M = K ∩
σn(2X) and let e′ : Cp(M) → Cp(σn(2X)) be a continuous linear extension
operator. Then we can define the operator e : Cp(K) → Cp(σn+1(2X)) by
the formula (recall that elements of σn+1(2X) are the characteristic functions
χA of sets A of cardinality ≤ n+ 1)

e(f)(χa) =





f(χA) for χA ∈ K,

e′(f |M)(χA) for χA ∈ σn(2X),∑
B(A(−1)n−|B|e′(f |M)(χB)

for χA ∈ σn+1(2X) \ (K ∪ σn(2X)).
It is clear that the operator e is linear and pointwise continuous. It remains
to verify that, for every f ∈ Cp(K), the function e(f) is continuous on
σn+1(2X). From the definition of e(f), it easily follows that e(f)|K∪σn(2X)
is continuous. Observe that all points in σn+1(2X) \ σn(2X) are the charac-
teristic functions of sets of cardinality n + 1 and are isolated in σn+1(2X).
The space σn+1(2X), being Eberlein compact, is a Fréchet topological space.
Therefore, it is enough to show that, for every sequence (χAk) of points
of σn+1(2X) \ (K ∪ σn(2X)) converging to a point χB ∈ σn(2X), we have
e(f)(χAk)→ e(f)(χB). Without loss of generality we may assume that B ⊂
Ak for all k. One can easily verify that, for every D ⊂ B and Ck ⊂ Ak \B,
we have χCk∪D → χD. Hence, we obtain

e(f)(χAk) =
∑

Bk(Ak

(−1)n−|Bk|e′(f |M)(χBk)

=
∑

Ck(Ak\B
(−1)n−|Ck|−|B|e′(f |M)(χCk∪B)

+
∑

D(B

∑

Ek⊂Ak\B
(−1)n−|Ek|−|D|e′(f |M)(χEk∪D)
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k→∞−−→ e′(f |M)(χB)
n−|B|∑

i=0

(−1)n−i−|B|
(
n+ 1− |B|

i

)

+
∑

D(B
e′(f |M)(χD)

n+1−|B|∑

i=0

(−1)n−i−|D|
(
n+ 1− |B|

i

)

= e′(f |M)(χB)
(

1 + (−1)n−|B|
n+1−|B|∑

i=0

(−1)i
(
n+ 1− |B|

i

))

+
∑

D(B
e′(f |M)(χD)(−1)n−|D|

n+1−|B|∑

i=0

(−1)i
(
n+ 1− |B|

i

)

= e′(f |M)(χB)(1 + (−1)n−|B|(1− 1)n+1−|B|)

+
∑

D(B
e′(f |M)(χD)(−1)n−|D|(1− 1)n+1−|B|

= e′(f |M)(χB) = e(f)(χB).

Lemma 3.2. Let K be an Eberlein compact space of finite height and
without a T0-separating family of clopen subsets of finite order. Then every
family {Ga : a ∈ K} of Gδ-subsets of K with a ∈ Ga for all a ∈ K has
infinite order.

Proof. Suppose on the contrary that there exists a family {Ga : a ∈ K}
of Gδ-subsets of K with a ∈ Ga for every a ∈ K, which has finite order.
Let {Ua : a ∈ K} be the family of clopen neighborhoods from Lemma 2.2.
For every point a ∈ K, we will choose a clopen neighborhood Va ⊂ Ua of
a such that the family {Va : a ∈ K} will have finite order. This will give
the desired contradiction since condition (b) of Lemma 2.2 implies that the
family {Va : a ∈ K} is T0-separating. Let m ∈ ω be such that K(m) = ∅.
We will choose sets Va, for a ∈ K(n) \ K(n+1) and n = 0, 1, . . . ,m − 1, by
induction on n.

For n = 0, all points a ∈ K \ K(1) are isolated, so we can simply
take Va = {a}. Let n > 0 and suppose that we have defined the fam-
ily of neighborhoods {Va : a ∈ K \ K(n)} of finite order. Fix a point
a ∈ K(n)\K(n+1). Observe that from Lemma 2.2(b) it follows that

⋂{Ua\Vb :
b ∈ Ua ∩ (K \K(n))} = {a}. Therefore, every neighborhood of a contains a
set of the form Ua \

⋃{Vb : b ∈ F} for some finite set F ⊂ Ua ∩ (K \K(n)).
Hence, we can assume that there exists a countable set Ca ⊂ Ua∩(K \K(n))
such that Ga = Ua \

⋃{Vb : b ∈ Ca}. Condition (d) of Lemma 2.2 guarantees
that the family {Ca : a ∈ K(n) \K(n+1)} is point-finite. By Lemma 2.1 we
can find finite sets Fa ⊂ K(n) \ (K(n+1) ∪ {a}), for every a ∈ K(n) \K(n+1),
such that the sets Da = Ca \

⋃{Cc : c ∈ Fa} are pairwise disjoint. We put
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Va = Ua \
⋃{Uc : c ∈ Fa}. Because a 6∈ Fa, we have a ∈ Va by Lemma

2.2(b).
Let Wa =

⋃{Vb : b ∈ Da} for a ∈ K(n) \K(n+1). Since the sets Da are
pairwise disjoint, our inductive assumption on the sets Vb implies that the
family {Wa : a ∈ K(n) \K(n+1)} has finite order. By condition (c) of Lemma
2.2 we have Vb ⊂ Uc for all b ∈ Cc ⊂ Uc, therefore Va ⊂ Ga ∪Wa for every
a ∈ K(n) \K(n+1). It follows that the family {Va : a ∈ K(n) \K(n+1)} also
has finite order. Clearly, the family {Va : a ∈ K \ K(n+1)}, being a finite
union of families of finite order, has finite order.

Lemma 3.3. Let K be a compact space such that each family {Ga :
a ∈ K} of Gδ-subsets of K with a ∈ Ga for every a ∈ K has infinite
order. Then C(K) is not isomorphic to any subspace of c0(Γ ).

Proof. Assume towards a contradiction that T : C(K) → X is an iso-
morphism of C(K) onto a subspace X of some c0(Γ ). We may assume that
‖T‖ = 1 and put M = ‖T−1‖. Let n > M be a natural number. For every
a ∈ K we denote by δa the Dirac measure supported at a.

For every a ∈ K we take za ∈ `1(Γ ) such that za|X = (T−1)∗(δa) (we
treat za as an element of the dual (c0(Γ ))∗). Let Aa be the support of za,
i.e., Aa = {γ ∈ Γ : za(γ) 6= 0}. By Proposition 2.3 we can find a countable
set Ba ⊂ Γ containing Aa and such that pBa(X) ⊂ X.

Observe that for each x ∈ X the set G(a, x) = {b ∈ K : (T−1)∗(δb)(x) =
(T−1)∗(δa)(x)} = {b ∈ K : T−1(x)(b) = T−1(x)(a)} is a Gδ-set in K.
Let {xak : k ∈ ω} be a dense subset of pBa(X). Then Ga =

⋂{G(a, xak) :
k ∈ ω} is a Gδ-set containing a and by density of {xak : k ∈ ω} we have
(T−1)∗(δb)(x) = (T−1)∗(δa)(x) for every b ∈ Ga and x ∈ pBa(X). The family
{Ga : a ∈ K} has infinite order, hence we can find distinct a1, . . . , an ∈ K
such that Ga1 ∩ . . .∩Gan 6= ∅. Take a point b ∈ Ga1 ∩ . . .∩Gan . We can find
continuous functions fi : K → [0, 1], for i = 1, . . . , n, such that fi(ai) = 1
for every i and the sets f−1

i ((0, 1]) are pairwise disjoint. For every sequence
(εi)ni=1 with |εi| = 1 we have ‖∑n

i=1 εifi‖ = 1, therefore ‖T (
∑n

i=1 εifi)‖ ≤ 1.
It follows that, for every γ ∈ Γ , we have

∑n
i=1 |T (fi)(γ)| ≤ 1.

Let xi = pBai (T (fi)) ∈ X for i = 1, . . . , n. By the above inequality we
have ‖∑n

i=1 xi‖ ≤ 1. For every i, we have 1 = δai(fi) = (T−1)∗(δai)(T (fi)) =
zai(T (fi)). The fact that Bai contains the support of zai and the equality
xi|Bai = T (fi)|Bai imply that also 1 = zai(xi) = (T−1)∗(δai)(xi). Fur-
thermore, since b ∈ Gai we find that (T−1)∗(δb)(xi) = 1 for all i. Then
(T−1)∗(δb)(

∑n
i=1 xi) = n, which shows that ‖(T−1)∗‖ = ‖T−1‖ ≥ n > M ,

a contradiction.

Proof of Theorem 1.1. (i)⇒(ii). Suppose that {Ux : x ∈ X} is a T0-
separating family of finite order consisting of clopen subsets of K. Let gx =
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χUx : K → 2 for x ∈ X. Then the diagonal map h = 4x∈X gx : K → 2X is
an embedding with h(K) ⊂ σn(2X) for some n ∈ ω.

(ii)⇒(iii). We will prove this implication by induction on n. The case
n = 1 is obvious since every closed subset of σ1(2X) is homeomorphic to
some A(κ). Suppose that the implication considered holds true for n, and
K is a closed subset of σn+1(2X). Take M = K ∩ σn(2X). Then Cp(M) is
linearly homeomorphic to Cp(A(κ)) for some κ. By Proposition 3.1 there
exists a continuous linear extension operator e : Cp(M)→ Cp(K). It is well
known that this implies that the space Cp(K) is linearly homeomorphic to
the product Cp(M) × {f ∈ Cp(K) : f |M ≡ 0} (see [8, Proposition 6.6.6]).
Since all points of K \M are isolated, the second factor can be identified
with c0(K\M) equipped with the pointwise convergence topology. Standard
verification shows that the product Cp(A(κ))×c0(Γ ) (the second factor with
the pointwise topology) is linearly homeomorphic to Cp(A(η)) for some η.

(iii)⇒(iv). This follows easily from the Closed Graph Theorem and the
facts that Cp(A(κ)) is linearly homeomorphic to c0(κ) (with the pointwise
topology) and the pointwise topology is weaker than the norm topology.

(iv)⇒(v). Trivial.
(v)⇒(i). Let K be a compact space with C(K) isomorphic to a subspace

of c0(Γ ). It follows that C(K) is a WCG space, hence K is an Eberlein
compactum. We also have K(ω) = ∅ by [7, Thm. 3.8]. Then condition (i)
follows immediately from Lemmas 3.2 and 3.3.

4. Remarks

Remark 1. Note that the proof of the implication (v)⇒(i) of Theorem
1.1 can be simplified if we only want to prove the (weaker) implication
(iv)⇒(i). The implication (v)⇒(iv) can be derived from Remark 5.4 in [5]
stating that an L∞ subspace of c0(Γ ) is isomorphic to c0(Γ ). Since the proof
of that fact is not included in [5], we decided to give an independent proof
of the implication (v)⇒(i).

Remark 2. Godefroy, Kalton and Lancien have proved that, for a WCG
Banach space X of weight less than ωω, every subspace Y of X which is
isomorphic to c0(Γ ) is complemented in X (see [5, proof of Thm. 4.8]).
Again, the restriction on the weight of X cannot be omitted in this result.
Let K be an Eberlein compactum (with K(3) = ∅) described in Result 1.3.
Take Y = {f ∈ C(K) : f |K ′ ≡ 0}. Then Y is isometric to c0(K \K ′) and
C(K)/Y is isometric to C(K ′), which, in turn, is isomorphic to c0(Γ ) since
K(3) = ∅. Hence Y cannot be complemented in C(K) because C(K) is not
isomorphic to c0(Γ ) (cf. [5, proof of Thm. 4.8]).

Remark 3. Corollary 1.4 also shows that the cardinality restriction in
the following result of Godefroy, Kalton and Lancien cannot be removed.
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They proved [5, Corollary 5.2] that every WCG Banach space X of weight
less than ωω which is Lipschitz isomorphic to c0(Γ ) is isomorphic to c0(Γ ).

Remark 4. In this paper we restricted ourselves to the spaces of real-
valued functions. One can easily verify that this restriction is inessential;
the proofs of our results work in the complex case as well.
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