
STUDIA MATHEMATICA 157 (1) (2003)

A Banach space with a symmetric basis which is of
weak cotype 2 but not of cotype 2

by

Peter G. Casazza (Columbia, MO) and Niels J. Nielsen (Odense)

Abstract. We prove that the symmetric convexified Tsirelson space is of weak cotype
2 but not of cotype 2.

Introduction. Weak type 2 and weak cotype 2 spaces were originally
introduced and investigated by V. D. Milman and G. Pisier in [10] and weak
Hilbert spaces by Pisier in [13]. A further detailed investigation can be found
in Pisier’s book [14]. The first example of a weak Hilbert space which is not
isomorphic to a Hilbert space is the 2-convexified Tsirelson space (called the
convexified Tsirelson space in this paper). This follows from the results of
W. B. Johnson in [4]. For a detailed study of the original Tsirelson space we
refer to [3].

Let X be a Banach space with a symmetric basis. It was proved in [14]
that if X is a weak Hilbert space, then it is isomorphic to a Hilbert space,
and this has led to the belief that if X is just of weak cotype 2, then it is of
cotype 2. However, this turns out not necessarily to be the case. The main
result of this paper states that the symmetric convexified Tsirelson space is
of weak cotype 2 but not of cotype 2.

We now wish to discuss the arrangement of this paper in greater detail.
In Section 1 we give some basic facts on properties related to weak type 2

and weak cotype 2 while Section 2 is devoted to a review of some results on
the convexified Tsirelson space which we need for our main result. Most of
these results are stated without proofs since they can be proved in a similar
manner to the corresponding results for the original Tsirelson space.

In Section 3 we make the construction of the symmetric convexified
Tsirelson space, investigate its basic properties and prove our main result
stated above.
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1. Notation and preliminaries. In this paper we will use the no-
tation and terminology commonly used in Banach space theory as it ap-
pears in [8], [9] and [16]. BX will always denote the closed unit ball of
the Banach space X, and if X and Y are Banach spaces, then B(X,Y )
(B(X) = B(X,X)) denotes the space of all bounded linear operators fromX
to Y .

We let (gn) denote a sequence of independent standard Gaussian vari-
ables on a fixed probability space (Ω,S, µ) and recall that a Banach space X
is said to be of type p, 1 ≤ p ≤ 2, respectively cotype p, 2 ≤ p <∞, if there
is a constant K ≥ 1 so that for all finite sets {x1, . . . , xn} ⊆ X we have

( � ∥∥∥
n∑

j=1

gj(t)xj
∥∥∥
p
dµ(t)

)1/p
≤ K

( n∑

j=1

‖xj‖p
)1/p

,(1.1)

respectively
( n∑

j=1

‖xj‖p
)1/p

≤ K
( � ∥∥∥

n∑

j=1

gj(t)xj
∥∥∥
p
dµ(t)

)1/p
.(1.2)

The smallest constant K which can be used in (1.1) (respectively (1.2)) is
denoted by Kp(X) (respectively Kp(X)).

If L is a Banach lattice and 1 ≤ p < ∞, then L is said to be p-convex ,
respectively p-concave, if there is a constant C ≥ 1 so that for all finite sets
{x1, . . . , xn} ⊆ L we have

∥∥∥
( n∑

j=1

|xj|p
)1/p∥∥∥ ≤ C

( n∑

j=1

‖xj‖p
)1/p

,(1.3)

respectively
( n∑

j=1

‖xj‖p
)1/p

≤ C
∥∥∥
( n∑

j=1

|xj |p
)1/p∥∥∥.(1.4)

The smallest constant C which can be used in (1.3) (respectively (1.4)) is
denoted by Cp(L) (respectively Cp(L)).

It follows from [9, 1.d.6(i)] that if L is of finite concavity (equivalently
of finite cotype), then there is a constant K ≥ 1 so that

1
K

∥∥∥
( n∑

j=1

|xj |2
)1/2∥∥∥ ≤

( � ∥∥∥
n∑

j=1

gj(t)xj
∥∥∥

2
dµ(t)

)1/2
(1.5)

≤ K
∥∥∥
( n∑

j=1

|xj|2
)1/2∥∥∥.
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A Banach space X is said to be of weak type 2 if there is a constant C
and a δ, 0 < δ < 1, so that whenever E ⊆ X is a subspace, n ∈ N and
T ∈ B(E, `n2 ), then there is an orthogonal projection P on `n2 of rank larger
than δn and an operator S ∈ B(X, `n2 ) with Sx = PTx for all x ∈ E and
‖S‖ ≤ C‖T‖.

Similarly X is of weak cotype 2 if there is a constant C and a δ, 0 < δ < 1,
so that whenever E ⊆ X is a finite-dimensional subspace, then there is a
subspace F ⊆ E so that dimF ≥ δ dimE and d(F, `dimF

2 ) ≤ C.
Our definitions of weak type 2 and weak cotype 2 spaces are not the

original ones, but are chosen out of the many equivalent characterizations
given by Pisier [14].

A weak Hilbert space is a space which is both of weak type 2 and weak
cotype 2.

If A is a set we let |A| denote the cardinality of A.

Definition 1.1. If (xn) and (yn) are sequences in a Banach space X,
we say that (xn) is K-dominated by (yn) if there is a constant K > 0 so
that for all finitely non-zero sequences (an) of scalars we have∥∥∥

∑

n

anxn

∥∥∥ ≤ K
∥∥∥
∑

n

anyn

∥∥∥.

The sequences (xn) and (yn) are K-equivalent if they K-dominate each
other.

We will need some information about property (H) and related proper-
ties.

Definition 1.2. A Banach space X has property (H2) if there is a
function C(·, ·) so that for every 0 < δ < 1 and for every normalized λ-
unconditional basic sequence (xi)ni=1 in X there is a subset F ⊆ N such that
|F | ≥ δn and (xi)i∈F is C(λ, δ)-equivalent to the unit vector basis of `|F |2 .
If (xi)i∈F is just C(λ, δ)-dominated by the unit vector basis of `|F |2 , we say
that X has property upper (H2). Similarly, we define property lower (H2).

Definition 1.3. A Banach space X is said to have property (H) if there
is a function f(·) so that for every normalized λ-unconditional basic sequence
(xi)ni=1 in X, we have

1
f(λ)

n1/2 ≤
∥∥∥

n∑

i=1

xi

∥∥∥ ≤ f(λ)n1/2.

Similarly, we can define property upper (H) and property lower (H).

The following is clear.

Proposition 1.4. Property upper (resp. lower) (H2) implies upper
(resp. lower) (H).
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We will see later that the converses of Proposition 1.4 fail.
The next result shows that any percentage of the basis will work in

the definition of (H2). The proof follows from the argument of Pisier [14,
Proposition 12.4, p. 193].

Lemma 1.5. For a Banach space X, the following are equivalent :

(1) X has property upper (resp. lower) (H2).
(2) There exists one 0 < δ < 1 satisfying the conclusion of property upper

(resp. lower) (H2).

The corresponding result for property (H) is in [3, Proposition Ae1,
p. 14].

Lemma 1.6. For a Banach space X, the following are equivalent :

(1) X has property upper (resp. lower) (H).
(2) There is a 0 < δ < 1 so that for every λ-unconditional basic sequence

(xi)ni=1 in X there is a subset F ⊂ {1, . . . , n} with |F | ≥ δn such that (xi)i∈F
has property upper (resp. lower) (H).

The next theorem is due to Pisier [14, Proposition 12.4].

Proposition 1.7. Every weak Hilbert space has property (H2).

We also have from Pisier [14, Proposition 10.8, p. 160 and Proposition
11.9, p. 174]:

Proposition 1.8. The following implications hold for a Banach space X:

(1) Weak cotype 2 implies property lower (H).
(2) Weak type 2 implies property upper (H).

The converses of Proposition 1.8 are open questions. However, for Banach
lattices it is known that property (H), property (H2) and being a weak
Hilbert space are all equivalent. This is a result of Nielsen and Tomczak-
Jaegermann [12].

2. Convexified Tsirelson space. Since there is only a “partial theory”
developed for the convexified Tsirelson space T 2, we will review what we
need here.

Notation 2.1. If E,F are sets of natural numbers, we write E < F if
for every n ∈ E and every m ∈ F , n < m. If E = {k}, we just write k < F
for E < F .

Definition 2.2. Let (tn)∞n=1 be the canonical unit vectors in RN. The
convexified Tsirelson space T 2 (see [3]) is the set of vectors x =

∑
n antn for
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which the recursively defined norm below is finite:

‖x‖T 2 = max
{

sup |an|, 2−1/2 sup
( k∑

j=1

‖Ejx‖2T 2

)1/2}
,(2.1)

where the second “sup” is taken over all choices

k ≤ E1 < . . . < Ek,

and Ex =
∑

n∈E antn.

Remark. It follows from Pisier [14, Chapter 13] ([3, Chapter 1] for the
original Tsirelson space) that there exists a norm satisfying (2.1) above.

We will now list the known results for this space (which we will need)
and where they can be found. Although many of the results we need have
formally been proved for the original Tsirelson space T , using the fact that
T 2 is the 2-convexification of T we can easily carry these results over to T 2.
The first result can be found in [3] and [14].

Proposition 2.3. The unit vectors (tn) form a 1-unconditional basis
for T 2. The space T 2 is of type 2 and weak cotype 2 but does not contain
an infinite-dimensional Hilbert space. Also, the unit vector basis (en) of `2
1-dominates all subsequences of (tn). That is, for x ∈ T 2, ‖x‖T 2 ≤ ‖x‖`2.
Finally , if I ⊂ {n, n+ 1, . . .} with |I| ≤ n and x =

∑
n∈I antn then ‖x‖`2 ≤

2‖x‖T 2.

We also need [3, Lemma II.1, p. 19]. This lemma is stated in [3] for the
original Tsirelson space but the proof works the same in T 2.

Proposition 2.4. Let yn =
∑

i∈In aiti (n = 1, 2, . . .) be a normalized
disjointly supported sequence in (tn) and let pn = min In. Then for every
sequence (an) of scalars we have∥∥∥

∑

n

antpn

∥∥∥
T 2
≤
∥∥∥
∑

n

anyn

∥∥∥
T 2
.

Next we need to see which subsequences of the unit vector basis of T 2

are equivalent to the original basis. To do this we need:

Notation 2.5. The fast growing hierarchy from logic is a family of func-
tions on N given by: g0(n) = n+ 1, and for i ≥ 0, gi+1(n) = g

(n)
i (n), where

for any function f , f (n) is the n-fold iteration of f . We also set exp0(n) = n
and for i ≥ 1 and n ∈ N,

expi(n) = 2expi−1(n).

Finally we let log0(n) = n, and for any i ≥ 1 and n large enough so that
logi−1(n) > 0, let

logi(n) = log(logi−1(n)).
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The next result is due to Bellenot [1]. He states this result in the original
Tsirelson space T , but the proof works perfectly well in T 2.

Proposition 2.6. A subsequence (tkn) of (tn) is equivalent to (tn) if
and only if there is a natural number i so that kn ≤ gi(n) for all large n.
Moreover , (tkn) always 1-dominates (tn) and there is a constant K ≥ 1 so
that the equivalence constant is Ki for the case kn = gi(n).

One important consequence is (see [14] or [3])

Proposition 2.7. For every natural number i, every gi(n)-dimensional
subspace of span(tj)j≥n is Ki-isomorphic to a Hilbert space and Ki-comple-
mented in T 2.

If X is a weak Hilbert space with an unconditional basis, then it follows
from [12] that the conclusion of Proposition 2.7 remains true after a suitable
permutation of the basis.

The next result comes from [3, Theorem IV.b.3, p. 39]. The theorem there
is proved for the regular Tsirelson space but the techniques easily adapt to
the convexified space. Also, although the theorem is stated for distances
between subspaces, the proof actually checks the equivalence constant of
normalized disjointly supported sequences with n elements in (tk) and the
unit vector basis of `n1 . So we state this form here.

Proposition 2.8. Every n-dimensional subspace of T 2 is Ki logi(n)-
isomorphic to `n2 , for every i ≥ 2 with logi(n) ≥ 1. Moreover , every nor-
malized disjointly supported sequence (xj)nj=1 in T 2 is Ki logi(n)-equivalent
to the unit vector basis of `n2 , and if the support of the xj’s lies in (tj)∞j=n,
then (xj)nj=1 is 2-equivalent to the unit vector basis of `n2 .

We need one more result on convexified Tsirelson.

Proposition 2.9. If x =
∑

j ajtj ∈ T 2, then for all n ∈ N and all i ≥ 2
with logi(n) ≥ 1,

∥∥∥
∑

j

ajtnj

∥∥∥
T 2
≤ 2Ki logi(n)‖x‖T 2 .

Proof. By Propositions 2.6 and 2.8 we have
∥∥∥
∑

j

ajtnj

∥∥∥
T 2
≤
∥∥∥

n∑

j=1

ajtnj

∥∥∥
T 2

+
∥∥∥
∞∑

j=n+1

ajtnj

∥∥∥
T 2

≤
( n∑

j=1

|aj |2
)1/2

+K2
∥∥∥
∞∑

j=n+1

ajtj

∥∥∥
T 2
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≤ Ki logi(n)
∥∥∥

n∑

j=1

ajtj

∥∥∥
T 2

+K2
∥∥∥
∞∑

j=n+1

ajtj

∥∥∥
T 2

≤ 2Ki logi(n)‖x‖T 2 ,

where in the second inequality above we use Propositions 2.3 and 2.6 and
the fact that nj ≤ g2(j) for all j ≥ n + 1; and in the third inequality we
have used Proposition 2.8.

3. Symmetric convexified Tsirelson space. There is almost no ex-
isting theory for the symmetric convexified Tsirelson space. But there is a
theory for the symmetric Tsirelson space. We will list the results we need
on this topic. They can be found in [3, Chapter X.E].

Notation 3.1. For T 2 or (T 2)∗ we will work with the non-decreasing
rearrangement operator D. That is, if x =

∑
n antn then Dx =

∑
n a
∗
ntn

where (a∗n) is the non-decreasing rearrangement of the non-zero an’s where
by non-decreasing we mean the absolute values are non-decreasing.

The construction of [3, Chapters VIII and X.B] shows

Proposition 3.2. Let Π denote the group of all permutations of N.
There is a constant K ≥ 1 so that for any x =

∑
n ant

∗
n ∈ (T 2)∗ we have

‖x‖S[(T 2)∗] := sup
σ∈Π

∥∥∥
∑

n

aσ(n)t
∗
n

∥∥∥
(T 2)∗

(3.1)

≤ K‖Dx‖(T 2)∗ ≤ K sup
σ∈Π

∥∥∥
∑

n

aσ(n)t
∗
n

∥∥∥
S[(T 2)∗]

.

We will define the dual space of the symmetric convexified Tsirelson space
first, because it is natural in terms of the above.

Definition 3.3. We let S[(T 2)∗] be the family of all vectors for which
‖x‖S[(T 2)∗] is finite. Then this is a Banach space with a natural symmetric
basis, denoted by (ts∗n ), called the dual space of the symmetric convexified
Tsirelson space.

To define the symmetric convexified Tsirelson space we need a result
kindly communicated to us by N. J. Kalton.

Let X be a Banach sequence space with the standard unit vector basis
(ei). Define the permutation operators Sσ(ξ) = (ξσ(n))∞n=1 for σ ∈ Π and let
Ljk be the linear map such that Ljk(en) = ekn+j for all n ∈ N. Finally we let
c00 denote the spaces of real sequences which are eventually 0.

Theorem 3.4. Suppose X is a Banach sequence space which is p-convex
and q-concave where 1 < p < q <∞. Suppose max0≤j<k ‖Ljk‖ ≤ Cka where
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a+ p−1 < 1. Then

‖ξ‖Xinf = inf
σ∈Π
‖Sσξ‖X , x ∈ c00,

defines a quasi-norm on c00 which is equivalent to a norm. The dual of Xinf
is X∗sup where

‖ξ‖X∗sup
= sup

σ∈Π
‖Sσξ‖X∗ .

Proof. Let us start by supposing x1, . . . , xk ∈ c00 are disjointly supported
and that σ1, . . . , σk ∈ Π. Then

‖x1 + . . .+ xk‖Xinf ≤
∥∥∥

k∑

j=1

Lj−1
k Sσjxj

∥∥∥
X
≤
( k∑

j=1

‖Lj−1
k Sσjxj‖pX

)1/p

≤ Cka
( k∑

j=1

‖Sσjxj‖pX
)1/p

.

Now taking an infimum over σj gives

‖x1 + . . .+ xk‖Xinf ≤ Cka
( k∑

j=1

‖xj‖pXinf

)1/p
.(3.2)

Let us use (3.2) first to show that ‖ · ‖Xinf is a quasi-norm. Indeed if
x, y ∈ c00 then

‖x+ y‖Xinf ≤ 2‖max(|x|, |y|)‖Xinf ≤ 2a+1C(‖x‖Xinf + ‖y‖Xinf ).

Next note that (3.2) implies

‖x1 + . . .+ xk‖Xinf ≤ Cka+1/p max
1≤j≤k

‖xj‖Xinf .

From this it follows easily that if a+ 1/p < 1/r < 1 then

‖x1 + . . .+ xk‖Xinf ≤ Cr
( k∑

j=1

‖xj‖rXinf

)1/r

for disjoint x1, . . . , xk. Thus we have an upper r-estimate for Xinf .

It is trivial to show that Xinf has a lower q-estimate. Now by [5, Theorem
4.1] (a simpler proof is given in [6, Theorem 3.2]), Xinf is lattice-convex and
this means that an upper r-estimate implies (lattice) s-convexity for all s < r
(Theorem 2.2 of [5]). Hence Xinf is r-convex for every r with a+1/p < 1/r. In
particular 1-convexity implies that the quasi-norm is equivalent to a norm.
In fact X∗inf is a reflexive Banach space.

Now it is obvious that Xinf ⊂ (X∗sup)∗ and X∗sup ⊂ (Xinf)∗. Hence it
follows easily that (Xinf)∗ = X∗sup.
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Remark. We can apply the above result to the case of the weighted
`p-space X with 1 < p <∞, defined by the norm

‖ξ‖X =
( ∞∑

n=1

|ξn|pwn
)1/p

where (wn) is an increasing sequence satisfying an estimate of the form

wkn ≤ Ckawn
where a < p− 1. The Xinf is defined by the quasi-norm

‖ξ‖Xinf =
( ∞∑

n=1

(ξ∗n)pwpn
)1/p

where (ξ∗n) is the decreasing rearrangement of (|ξn|). In this case Xsup is the
Lorentz space d((wn)−q/p, q).

This result can be rephrased. If (vn) is a positive decreasing sequence
satisfying an estimate vn ≤ Ckbvkn where b < 1 then d((vn), p)∗ can be
identified with the space of all sequences (ξn) so that

( ∞∑

n=1

(ξ∗n)qv−q/pn

)1/q
<∞.

This result is a special case of results of Reisner [15].

Proposition VIII.a.8 of [3] states that the decreasing rearrangement op-
erator D is a bounded non-linear operator on the original Tsirelson space T .
This result then immediately carries over to the 2-convexification of T which
is our convexified Tsirelson space T 2. By Proposition 2.9, Theorem 3.4 holds
in this case. We summarize this in the following result:

Proposition 3.5. There is a constant K ≥ 1 so that for any x =∑
n antn ∈ T 2 we have

inf
σ∈Π

∥∥∥
∑

n

aσ(n)tn

∥∥∥
T 2
≤ ‖Dx‖T 2 ≤ K inf

σ∈Π

∥∥∥
∑

n

aσ(n)tn

∥∥∥
T 2
.(3.3)

Moreover , there is a norm ‖·‖S(T 2) on the set of vectors for which ‖Dx‖ <∞
satisfying

1
K
‖x‖S(T 2) ≤ ‖Dx‖T 2 ≤ K‖x‖S(T 2).(3.4)

Note that our operator D does not satisfy a triangle inequality, but does
with the constant K on the sum side.

Definition 3.6. The symmetric convexified Tsirelson space is the Ba-
nach space S(T 2) of vectors for which ‖x‖S(T 2) <∞ with natural unit vector
basis (tsn). By Theorem 3.4 this is a reflexive Banach space whose dual space
is S[(T 2)∗].
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It is known [3] that every infinite-dimensional subspace of S(T 2) contains
a subspace which embeds into T 2. In particular S(T 2) is a Banach space with
a natural symmetric basis which has no subspaces isomorphic to c0 or `p for
1 ≤ p < ∞. Also T 2 embeds into S(T 2). Since the unit vector basis of `2
uniformly dominates all block bases of (tn) in T 2, it follows that the unit
vector basis of S(T 2) is also dominated by the unit vector basis of `2.

Proposition 3.7. The space S(T 2) fails property upper (H) (even for
disjointly supported elements) and fails property lower (H2). Hence S(T 2)
is not of weak type 2 and not of cotype 2.

Proof. First we check property lower (H2). Since (tsn) is symmetric and
is dominated by the unit vector basis of `2, it follows that if this family had
subsets dominating the unit vector basis of `2, then (tsn) would be equivalent
to the unit vector basis of `2, which is impossible.

For property upper (H), fix M > 1 and choose a decreasing sequence
(ai)ni=1 of non-zero scalars with ‖∑n

i=1 aiei‖`2 ≥M and ‖∑n
i=1 aiti‖T 2 = 1.

This can be done by an obvious modification of the construction of [3, Chap-
ter IV]. For all 1 ≤ j ≤ 2n let

xj =
n(j+1)∑

i=nj+1

ai−njtsi

be vectors in S(T 2). So ‖xj‖S(T 2) ≤ K for all 1 ≤ j ≤ 2n. Now, D(
∑2n

i=1 xi)
=
∑2n

i=1 yi where each yi is an appropriate permutation of xi. Since the yi’s
are disjoint, there is a subset I ⊂ {1, . . . , 2n} with |I| ≥ n such that each yi
with i ∈ I has its support in (tsj)

∞
j=n. Hence,

∥∥∥
2n∑

i=1

xi

∥∥∥
S(T 2)

≥ K−1
∥∥∥D
( 2n∑

i=1

xi

)∥∥∥
T 2
≥ K−1

∥∥∥
∑

i∈I
yi

∥∥∥
T 2

≥
(1)

(2K)−1
(∑

i∈I
‖yi‖2T 2

)1/2
≥
(2)

(4K)−1
(∑

i∈I
‖yi‖2`2

)1/2

≥ (4K)−1M |I|1/2 = (4K)−1Mn1/2.

In (1) above we use Proposition 2.8, and in (2) we use Proposition 2.3.
Since M was arbitrarily large, it follows that S(T 2) fails upper (H) for

disjoint elements.

We shall now need a result essentially due to S. Kwapień. In the form
we present it, it is due to W. B. Johnson and it appeared in [7].

Proposition 3.8. There is a function

N(k, ε) = [2k2/ε]k
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such that for any fixed 0 < ε < 1, every order complete Banach lattice L,
and every k-dimensional subspace F of L, there are N = N(k, ε) disjoint
elements (xj)Nj=1 in L and a linear operator V : F → X = span(xj) such
that for all x ∈ F we have

‖V x− x‖ ≤ ε‖x‖.
Proposition 3.9. There is a constant K > 1 so that for every subspace

E of S(T 2) of dimension n, for all i ∈ N for which logi−1(n) exists, we have

d(E, `n2 ) ≤ Ki logi−2(n).

Moreover , any normalized disjointly supported sequence (xi)ni=1 of vectors
in S(T 2) is Ki logi−2(n)-equivalent to the unit vector basis of `n2 .

Proof. By giving up one level of logs we may assume by Proposition 3.8
that we are working with a normalized disjointly supported sequence (xj)nj=1

of vectors in S(T 2). We will show that this disjointly supported sequence is
Ki logi−2(n)-equivalent to the unit vector basis of `2. Now there is a disjoint
set of permutations yj of the xj so that

∥∥∥
n∑

j=1

ajxj

∥∥∥
S(T 2)

≥ 1
K

∥∥∥
n∑

j=1

ajyj

∥∥∥
T 2
≥ 1
K

∥∥∥
n∑

j=1

ajtj

∥∥∥
T 2

≥ 1
Ki+1 logi(n)

( n∑

j=1

|aj |2
)1/2

,

where in the second inequality above we use Proposition 2.4 and the third
uses Proposition 2.8. Also, let Dxj = zj and

wj =
∑

k

zj(k)tn(k−1)+j.

We may asume that K is larger than the type 2 constant of T 2. By Propo-
sition 2.9 we have

∥∥∥D
n∑

j=1

ajxj

∥∥∥
S(T 2)

≤ K
∥∥∥

n∑

j=1

ajwj

∥∥∥
T 2
≤ K2

( n∑

j=1

|aj |2‖wj‖2T 2

)1/2

≤ K2
( n∑

j=1

|aj |2[2Ki logi(n)]2
)1/2

≤ 2Ki+2 logi(n)
( n∑

j=1

|aj|2
)1/2

,

where in the second inequality above we used the fact that the type 2 con-
stant of T 2 is less than or equal to K. Now,

d(E, `n2 ) ≤ 2K2i+3 logi(n)2 ≤ Ki logi−1(n).
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The logi−2(n) in the statement of the theorem comes from the fact that we
first applied Proposition 3.8.

Recall that the Maurey–Pisier Theorem (see e.g. [11, p. 85]) states that
if X is a Banach space then `pX and `qX are finitely representable in X
where

pX = sup{p | X is of type p}, qX = inf{q | X is of cotype q}.
However, Proposition 3.9 implies that the only `p-space which is finitely
representable in S(T 2) is `2. This gives the following result.

Corollary 3.10. The space S(T 2) is of type p for all 1 ≤ p < 2 and of
cotype q for all q > 2.

Before we go on, we need a criterion for a Banach space to be of weak
cotype 2. We shall say that a Banach space X has property (P ) if there
is a constant K so that whenever {x1, . . . , xn} ⊆ X is a finite set with
max1≤j≤n |sj| ≤ ‖

∑n
j=1 sjxj‖ for all (sj) ⊆ R, then

√
n ≤ K

( � ∥∥∥
n∑

j=1

gj(t)xj
∥∥∥

2
dµ(t)

)1/2
.(3.5)

It was proved by Pisier [14, Proposition 10.8] that if X is of weak co-
type 2, then it has property (P ). It turns out that (P ) characterizes weak
cotype 2 spaces. This fact might be known to specialists but we shall give a
short proof here:

Theorem 3.11. If X has property (P ), then it is of weak cotype 2.

Proof. Let E ⊆ X be a finite-dimensional subspace, say dim(E) = 2n.
By a result of Bourgain and Szarek [2, Theorem 2] there is a universal
constant C and {x1, . . . , xn} ⊆ X so that for all (sj) ⊆ R we have

max
1≤j≤n

|sj | ≤
∥∥∥

n∑

j=1

sjxj

∥∥∥ ≤ C
( n∑

j=1

|sj |2
)1/2

.(3.6)

Using property (P ) we get

√
n ≤ K

( � ∥∥∥
n∑

j=1

gj(t)xj
∥∥∥

2
dµ(t)

)1/2
(3.7)

where K is the constant of property (P ). Now, (3.7) and the right inequality
of (3.6) allow us to use the well-known formulation of Dvoretzky’s theorem
(see e.g. [11, Theorem 4.2], also [16, pages 25 and 81]) to conclude that
there is a universal constant η such that if k ≤ ηK−2C−2n, then there is a
k-dimensional subspace F ⊆ [xj] with d(F, lk2) ≤ 2. From [14, Theorem 10.2]
it now follows that X is of weak cotype 2.
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We shall say that a sequence (xj)nj=1 in a Banach space X is 1-separated
if ‖xi − xj‖ ≥ 1 for all 1 ≤ i, j ≤ n, i 6= j. It follows immediately from
Theorem 3.11 that if every 1-separated sequence in X satisfies (3.5), then
X is of weak cotype 2.

We are now ready to prove that the symmetric convexified Tsirelson
space is a weak cotype 2 space with a symmetric basis which is not of
cotype 2. Hence its dual space is a symmetric space which is of weak type 2
but fails to be of type 2.

Theorem 3.12. The space S(T 2) is a weak cotype 2 space.

Proof. Let (xj)nj=1 be a 1-separated sequence in S(T 2). Without loss of
generality we may assume that for all 1 ≤ i ≤ n we have ‖xi‖S(T 2) ≥ 1. We
wish to show that (3.5) holds. If K is a constant which satisfies (1.5) for
both T 2 and S(T 2), and (3.4), then by definition we can find a σ ∈ Π so
that

∥∥∥
( n∑

j=1

|Sσxj |2
)1/2∥∥∥

T 2
=
∥∥∥Sσ

( n∑

j=1

|xj |2
)∥∥∥

T 2
(3.8)

≤ K
∥∥∥
( n∑

j=1

|xj|2
)1/2∥∥∥

S(T 2)
.

Since Sσ is an isometry on S(T 2), we can without loss of generality assume
that actually xj = Sσxj for all 1 ≤ j ≤ n.

Put k = log logn and let Pk be the natural projection of T 2 onto the
span of (tj)kj=1. We now examine two cases.

Case I: There is a subset I ⊂ {1, . . . , n} with |I| ≥ n/2 so that ‖Pkxj‖`2
≥ log k for all j ∈ I. Now we compute

(3.9)
( � ∥∥∥

n∑

j=1

gj(t)xj
∥∥∥

2

S(T 2)
dµ(t)

)1/2

≥
(1)

1
K

∥∥∥
( n∑

j=1

|xj|2
)1/2∥∥∥

S(T 2)
≥ 1
K2

∥∥∥
( n∑

j=1

|xj|2
)1/2∥∥∥

T 2

≥
(2)

1
K2

∥∥∥
( n∑

j=1

|Pkxj |2
)1/2∥∥∥

T 2

≥
(3)

1
(log k)K3

∥∥∥
(∑

j∈I
|Pkxj |2

)1/2∥∥∥
`2

=
1

(log k)K3

(∑

j∈I
‖Pkxj‖2`2

)1/2
≥
(4)

1

K3
√

2

√
n,
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where inequality (1) follows from equation (1.5); (2) from the fact that
‖Pk‖ ≤ 1; (3) from Proposition 2.7; and (4) from our assumption of case I.

Case II: There is a subset I ⊂ {1, . . . , n} with |I| ≥ n/2 so that
‖Pkxj‖`2 ≤ log k for all j ∈ I. In this case we make the following claim:

Claim. There is a subset J ⊂ I with |J | ≥ n/4 so that for all j ∈ J ,

‖(I − Pk)xj‖T 2 ≥ 1
8K

.

If not, there is a set J as above with

‖(I − Pk)xj‖T 2 ≤ 1
8K

.

By a standard volume comparison argument (see e.g. [11, Lemma 2.6] or [14,
Lemma 4.16]) the cardinality of a set of points which are 1/(4K) apart in a
ball of radius log k in k-dimensional Hilbert space is at most (1+8K log k)k,
which by our choice of k is less than or equal to n/4 (at least for large n).
Hence there exist i, j ∈ J , i 6= j, so that

‖Pk(xi − xj)‖`2 ≤
1

4K
.

Now we compute using our assumptions and Proposition 2.3:

‖xi − xj‖S(T 2) ≤ K‖xi − xj‖T 2

≤ K‖Pk(xi−xj)‖T 2 +K‖(I−Pk)xi‖T 2 +K‖(I−Pk)xj‖T 2

≤ K‖Pk(xi − xj)‖`2 +K
1

8K
+K

1
8K
≤ K 1

4K
+

1
4

=
1
2
.

This contradicts our 1-separation assumption. So the claim holds.
Now by the claim, the beginning of the proof, (1.5) and Proposition 2.7

we get

(3.10)
( � ∥∥∥

n∑

j=1

gj(t)xj
∥∥∥

2

S(T 2)
dµ(t)

)1/2

≥
(1)

1
K2

∥∥∥
( n∑

j=1

|xj|2
)1/2∥∥∥

T 2

≥
(2)

1
K2

∥∥∥(I − Pk)
(∑

j∈J
|xj|2

)1/2∥∥∥
T 2

≥
(3)

1
K3

( � ∥∥∥
n∑

j=1

gj(t)(I − Pk)xj
∥∥∥

2

T 2
dµ(t)

)1/2
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≥
(4)

1
K5

(∑

j∈J
‖(I − Pk)xj‖2T 2

)1/2

≥
(5)

1
K5

(∑

j∈J

(
1

8K

)2)1/2

≥ |J |
1/2

8K6 ≥
√
n

16K6 ,

where (1) follows from (1.5); (2) follows from the fact that ‖I−Pk‖ = 1; (3)
holds because T 2 is type 2 with constant (we assume) less than or equal to
K; (4) follows from the fact that k = log logn and ((I−Pk)xn) is supported
on (ti)∞i=k and Proposition 2.7; and (5) is our Claim. This completes the
proof.

As a corollary we obtain:

Corollary 3.13. Even for Banach lattices, property upper (H ) and the
weak type 2 property do not imply the upper (H2) property. Similarly , prop-
erty lower (H ) and the weak cotype 2 property do not imply the lower (H2)
property.
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