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Relative Fatou theorem for harmonic functions of rotation
invariant stable processes in smooth domains

by

Krzysztof Bogdan and Bartłomiej Dyda (Wrocław)

Abstract. For C1,1 domains we give exact asymptotics near the domain’s boundary
for the Green function and Martin kernel of the rotation invariant α-stable Lévy process.
We also obtain a relative Fatou theorem for harmonic functions of the stable process.

1. Introduction. The composition of a Markov process with a nonneg-
ative function harmonic for the process (for definitions see Preliminaries)
is a nonnegative supermartingale. By Doob’s theory of martingales the su-
permartingale has limits at the lifetime of the process. When the lifetime
coincides with the exit time of a domain, an important problem arises how
to interpret this probabilistic convergence in analytical or topological terms
involving only the function and the domain but not the process.

Such Fatou theorems [F] were first studied for classical harmonic func-
tions, the Brownian motion Wt being the underlying Markov process; see,
e.g., [S], [Ca] for purely analytical exposition, [D2] for the probabilistic coun-
terpart, and [BM], [Ba] for both approaches.

The continuous paths of Wt leave the domain by hitting the boundary
and, typically, do not creep along the boundary before the exit time [BaB].
This explains why for harmonic functions the notion of nontangential conver-
gence at the domain’s boundary ([S], [Wu1]) is an appropriate counterpart
of the martingale convergence for the Brownian motion and other diffusion
processes. A natural problem in a more general framework is to formulate
relevant analytical counterparts of the martingale convergence theorems for
discontinuous (jump) processes. Such processes typically leave a sufficiently
regular domain without approaching its boundary by jumping to the interior
of its complement [Mi], [Sz]; see also [Wu2] in this connection. In that case
Doob’s theory does not admit a natural and interesting topological interpre-
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tation even though some quantitative analytical results are still available.
In this connection we refer the reader to the paper [BaC], devoted to the
study of the boundary behavior of the symmetric stable Lévy processes Xt

in the unit ball of Rd.
The subject of the present paper is the same stable process Xt and its

boundary behavior on C1,1 domains in Rd (see below for the definitions).
However, to obtain a nontrivial result on the boundary convergence of har-
monic functions of Xt, we apply Doob’s h-transform to the process or, what
is the same, we normalize the harmonic functions considered by dividing
them by a suitable harmonic function h. We prove the existence of nontan-
gential limits of such quotients at the domain’s boundary.

Such relative Fatou theorems ([D1], [Wu1]) depend on the approximate
factorization of the Martin kernel of the domain. This factorization is related
([B3], [J]) to the boundary Harnack principle for nonnegative harmonic func-
tions [Da], [Wu1], [A], [JK]; see also [B1] for the case of harmonic functions
of the stable process Xt.

Doob’s h-process converges to the set of poles of the harmonic function h.
Thus the discontinuous stable process Xt may be conditioned to leave the
domain by hitting its boundary (see, e.g., [CZ], [BB2]). For C1,1 (more
generally, Lipschitz) domains the appropriate class of h functions is spanned
by the Martin kernel of the domain with poles at the boundary introduced
in [B2], [CS3]. Such functions are called singular α-harmonic (see below for
a definition), and they are harmonic for the stable process killed on leaving
the domain rather than for the process stopped at the exit time [CS3]; see
[MS] for the general representation theorem for α-harmonic functions and
[B2] for the special case of Lipschitz domains.

There is a growing literature on fine properties of α-harmonic functions
and other potential properties of the stable process Xt (see, e.g., [BB3],
[BKN], [M], [BBC]). In this paper we depend on the estimates of the Mar-
tin and Green functions of C1,1 domains obtained in [K], [CS1], [CS2]. The
estimates as well as other recent developments owe much to the explicit cal-
culation of the Green function and the Martin kernel of the ball by M. Riesz
[R1], [R2] (see also [BGR]).

In the present paper we do not use probabilistic techniques in an es-
sential way, keeping them only for interpretation as above. Our focus is on
expressing explicitly the asymptotic behavior of the relevant harmonic func-
tions in C1,1 domains in terms of the distance to the boundary. In Section 2
we introduce the notation used in this paper. In Section 3 we give the exact
asymptotics of the Green function of C1,1 domains. We note that the main
result of this section, Theorem 3.2, is stated in [CS1] but no detailed proof
is given there. Our methods are different from those used in [CS1]. They are
also simpler and in Section 4 we can pursue our asymptotic investigation fur-
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ther to obtain Theorem 4.3, which is our second main technical result. The
relative Fatou theorem for α-harmonic functions is given in Theorem 4.2.
The theorem answers a question of Jang-Mei Wu about C1,1 domains and
confirms a hypothesis of Renming Song. Still open remains the case of Lip-
schitz domains, which is perhaps the most natural setting for this problem.

2. Preliminaries. We denote by |·| the Euclidean length of a vector. For
A ⊂ Rd we put Ac = {x ∈ Rd : x 6∈ A}. For x ∈ Rd, r > 0 and a set A ⊂ Rd
we define B(x, r) = {y ∈ Rd : |x−y| < r} and δA(x) = inf{|x−y| : y ∈ Ac}.

We write D for a nonempty open bounded set in Rd. We assume that D is
a C1,1 domain, i.e., there exist r0 > 0 and λ > 0 such that for each Q ∈ ∂D
there are a C1,1 function ϕ : Rd−1 → R and an orthonormal coordinate
system y = (y1, . . . , yd) satisfying

D ∩B(Q, r0) = {y : yd > ϕ(y1, . . . , yd−1)} ∩B(Q, r0),

and, furthermore,∇ϕ is Lipschitz with Lipschitz constant not greater than λ.
For the rest of the paper, unless stated otherwise, α is a number in (0, 2)

and d = 1, 2, . . . We denote by (Xt,Px) the standard [BG] rotation in-
variant (“symmetric”) α-stable, Rd-valued Lévy process (i.e. homogeneous,
with independent increments) with stability index α and with characteristic
function

Exe
iξ(Xt−x) = e−t|ξ|

α
, x ∈ Rd, ξ ∈ Rd, t ≥ 0.

For a Borel set U ⊂ Rd, we put τU = inf{t ≥ 0 : Xt 6∈ U}, the first exit
time of U . Given x ∈ Rd, the Px distribution of XτU is a subprobability
measure on U c (probability measure if U is bounded) called the α-harmonic
measure.

When r > 0, |x|< r and B =B(0, r)⊂Rd, the corresponding α-harmonic
measure has the density function Pr(x, ·) (the Poisson kernel) given by

Pr(x, y) = Cdα

[
r2 − |x|2
|y|2 − r2

]α/2
|y − x|−d if |y| > r,(1)

with Cdα = Γ (d/2)π−d/2−1 sin(πα/2), and 0 otherwise. The formula for the
Poisson kernel for the exterior of the ball, {y ∈ Rd : |y − x| > r}, is similar.
Namely, for |x| > r we have

P̃r(x, y) = Cdα

[ |x|2 − r2

r2 − |y|2
]α/2
|y − x|−d if |y| < r,(2)

and P̃r(x, y) = 0 if |y| ≥ r. Both (1) and (2) can be found in [BGR].
We say that a function f defined on Rd is α-harmonic in an open set

D ⊂ Rd if it has the “mean value property”
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f(x) = Exf(XτU ), x ∈ U,(3)

for every bounded open set U with closure contained in D. It is called regular
α-harmonic in D if (3) holds for U = D and singular α-harmonic if f = 0
on Dc.

By the strong Markov property a regular α-harmonic function is α-
harmonic. The converse is not generally true as shown in [B2], [CS3]. An
alternative description of α-harmonic functions as those annihilated by the
fractional Laplacian is given in [BB3]. It follows from (1) and (3) that an
α-harmonic function f in D satisfies

f(x) =
�

|y−θ|>r
Pr(x− θ, y − θ)f(y) dy, x ∈ B(θ, r),(4)

for every ball B(θ, r) with closure contained in D. Note that if f is nonzero
in D, then it is positive in D, regardless of the connectedness of D. This is
a consequence of the Harnack inequality (see, e.g., [BB1]).

We write GD(·, ·) for the Green function of D, i.e.

Ex

τD�

0

f(Xt) dt =
�
GD(x, y)f(y) dy

for all nonnegative Borel measurable functions f (see [K], [L]). Recall from
[BGR] that

GB(0,r)(x, y) = Bd,α|x−y|α−d
w(x/r,y/r)�

0

sα/2−1

(s+ 1)d/2
ds, x, y ∈ B(0, r), x 6= y,

and

GB(0,r)c(x, y) = Bd,α|x−y|α−d
w(x/r,y/r)�

0

sα/2−1

(s+1)d/2
ds, x, y ∈ B(0, r)c, x 6= y,

where w(x, y) = (1−|x|2)(1−|y|2)/|x−y|2, Bd,α = 2−απ−d/2Γ (α/2)−2Γ (d/2).
We denote by Mx0(·, ·) the Martin kernel of D based at x0 ∈ D:

Mx0(x,Q) = lim
D3y→Q

GD(x, y)
GD(x0, y)

, x ∈ Rd, Q ∈ ∂D.

The existence of the above limit follows from the boundary Harnack principle
(see [B1]). There are constants c and C, depending only on D, α and x0,
such that

c
δD(x)α/2

|x−Q|d ≤M
x0(x,Q) ≤ C δD(x)α/2

|x−Q|d(5)

for all x ∈ D and Q ∈ ∂D (see [CS3]).
Every nonnegative function singular α-harmonic on D has a unique rep-

resentation
f(x) =

�

∂D

Mx0(x,Q)µ(dQ), x ∈ Rd,(6)
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where µ is a finite nonnegative measure on ∂D. Conversely, for every signed
measure µ on ∂D the formula (6) defines a (singular) α-harmonic function
on D (see [B2], [CS3]).

3. The Green function. We define

fr(x, y) =
2
α
Bd,αr−α|x− y|−d

∣∣|x|2 − r2
∣∣α/2(|y|+ r)α/2

for all x, y ∈ Rd, x 6= y.

Lemma 3.1. For x, y ∈ B(0, r), x 6= y, we have

fr(x, y)
(w(x/r, y/r) + 1)d/2

≤
GB(0,r)(x, y)

δB(0,r)(y)α/2
≤ fr(x, y),

and for x, y ∈ intB(0, r)c, x 6= y, we have

fr(x, y)
(w(x/r, y/r) + 1)d/2

≤
GB(0,r)c(x, y)

δB(0,r)c(y)α/2
≤ fr(x, y).

Proof. For x, y ∈ B(0, r), x 6= y, we have

GB(0,r)(x, y)

δB(0,r)(y)α/2
= Bd,α|x− y|α−d

∣∣|y| − r
∣∣−α/2

w(x/r,y/r)�

0

sα/2−1

(s+ 1)d/2
ds

≤ Bd,α|x− y|α−d
∣∣|y| − r

∣∣−α/2
w(x/r,y/r)�

0

sα/2−1 ds = fr(x, y).

We obtain the lower bound similarly. The same proof works for the second
part of the lemma.

Note that

lim
D3y→Q

GB(0,r)(x, y)

δB(0,r)(y)α/2
= fr(x,Q)

and similarly for GB(0,r)c .
Now we will introduce some notation. Our assumptions on D imply

existence of an R > 0 with the following property: for every z ∈ ∂D there
are two balls B(z) ⊂ D and E(z) ⊂ Dc with radius R, such that z ∈ B(z)
and z ∈ E(z). The balls B(z) and E(z) are uniquely determined; their
centers will be denoted by b(z) and e(z), respectively.

We will write l(z) for the open line segment with end points z and b(z).
Every point y ∈ D such that δD(y) < R belongs to l(z) for some z ∈ ∂D.
Indeed, we may take z ∈ ∂D with |y − z| = δD(y).

If y ∈ l(z) for some z ∈ ∂D, then

δD(y) = δB(z)(y) = δE(z)c(y) = |y − z|.
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We fix P = (p1, . . . , pd) ∈ ∂D and put p = (p1, . . . , pd−1). To simplify
the notation we assume as we may that there is a C1,1 function ϕ defined
on {x ∈ Rd−1 : |p − x| < r0} such that D ∩ B(P, r0) = {(x1, . . . , xd−1, xd) :
xd > ϕ(x1, . . . , xd−1)} ∩B(P, r0) and, last but not least, ∇ϕ(p) = 0.

We take Q ∈ ∂D ∩ B(P, r0). Again, we put q = (q1, . . . , qd−1), where
Q = (q1, . . . , qd−1, qd), so that Q = (q, ϕ(q)) and P = (p, ϕ(p)). Since
(−∇ϕ(q), 1) =

(
− ∂ϕ
∂x1

(q), . . . ,− ∂ϕ
∂xd−1

(q), 1
)

is a normal vector at Q,

b(Q) = Q+R
(−∇ϕ(q), 1)√
|∇ϕ(q)|2 + 1

,

which gives
|b(Q)− b(P )| ≤ (1 + 2Rλ)|Q− P |,(7)

where λ is the Lipschitz constant of∇ϕ. This shows that ∂D 3Q 7→ b(Q)∈D
is a Lipschitz function. The same argument works for the function ∂D 3
Q 7→ e(Q) ∈ Dc.

We denote by 〈·, ·〉 the usual inner product in Rd or Rd−1. We have

|〈b(Q)−Q,Q− P 〉| =
∣∣∣∣
〈
R

(−∇ϕ(q), 1)√
|∇ϕ(q)|2 + 1

, (q − p, ϕ(q)− ϕ(p))
〉∣∣∣∣

≤ R√
|∇ϕ(q)|2 + 1

(|∇ϕ(q)| |q − p|+ |ϕ(q)− ϕ(p)|)

≤ R√
|∇ϕ(q)|2 + 1

2λ|q − p|2 ≤ 2Rλ|Q− P |2,

and so
∣∣|b(Q)− P |2 −R2

∣∣ = |2〈b(Q)−Q,Q− P 〉+ 〈Q− P,Q− P 〉|(8)

≤ (4Rλ+ 1)|Q− P |2.
One of the main results of this paper is the following theorem.

Theorem 3.2. Let x0 ∈ D. For every Q ∈ ∂D the limit

g(Q) = lim
D3y→Q

GD(x0, y)
δD(y)α/2

exists and is a positive number. The function g defined above is continuous
on ∂D.

Proof. Fix Q ∈ ∂D. We first prove that

g0(Q) = lim
l(Q)3y→Q

GD(x0, y)
δD(y)α/2

(9)

exists and is a positive number. We consider 0 < η ≤ 1 and let x = x(Q) =
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ηb(Q) + (1− η)Q. Let l(Q) 3 y → Q. We have

GD(x0, y)
δD(y)α/2

=
GD(x0, y)
GD(x, y)

GD(x, y)
δE(Q)c(y)α/2

≤ GD(x0, y)
GD(x, y)

GE(Q)c(x, y)

δE(Q)c(y)α/2
(10)

≤ GD(x0, y)
GD(x, y)

fR(x− e(Q), y − e(Q))

→Mx0(x,Q)−1fR(x− e(Q), Q− e(Q)) <∞,
and

GD(x0, y)
δD(y)α/2

≥ GD(x0, y)
GD(x, y)

fR(x− b(Q), y − b(Q))
(
w
(x−b(Q)

R , y−b(Q)
R

)
+ 1
)d/2

→Mx0(x,Q)−1fR(x− b(Q), Q− b(Q)) > 0.

Therefore the limit (9), if exists, is positive and finite. Since

limGD(x0, y)/δD(y)α/2

lim GD(x0, y)/δD(y)α/2
≤ fR(x− e(Q), Q− e(Q))
fR(x− b(Q), Q− b(Q))

=
(

2 + η

2− η

)α/2
,

by letting η → 0 we get the existence of the limit (9).
For Q′ ∈ ∂D we have
(

2− η
2 + η

)α/2 Mx0(x(Q), Q)
Mx0(x(Q′), Q′)

≤ g0(Q′)
g0(Q)

≤
(

2 + η

2− η

)α/2 Mx0(x(Q), Q)
Mx0(x(Q′), Q′)

and since the kernel Mx0(·, ·) is continuous in D×∂D, and so is the function
∂D 3 Q 7→ x(Q) ∈ D, the continuity of g0 follows by letting η → 0.

Now, let y ∈ D be arbitrary and let y → Q. Let Q′ ∈ ∂D be such that
y ∈ l(Q′). As in (10) we have

GD(x0, y)
δD(y)α/2

≤ GD(x0, y)
GD(x(Q), y)

GD(x(Q), y)
GD(x(Q′), y)

fR(x(Q′)− e(Q′), y − e(Q′))

→Mx0(x(Q), Q)−1fR(x(Q)− e(Q), Q− e(Q)).

The fact that limy→QGD(x(Q), y)/GD(x(Q′), y) = 1, used above, follows
from α-harmonicity of GD(·, y) in a ball centered at x(Q) and (4), or from
the gradient estimates of [BKN]. We obtain similarly

lim
y→Q

GD(x0, y)
δD(y)α/2

≥Mx0(x(Q), Q)−1fR(x(Q)− b(Q), Q− b(Q))

and we proceed as before.

4. Convergence of α-harmonic functions. We fix a point x0 ∈ D
and denote by σ the (d−1)-dimensional Hausdorff measure on ∂D. We write
δx for δD(x).
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Recall that the Lebesgue set of a function f ∈ L1(∂D, σ) is the set of all
P ∈ ∂D satisfying

lim
r→0+

�
∂D∩B(P, r) |f(Q)− f(P )|σ(dQ)

σ(∂D ∩B(P, r))
= 0.

In particular

sup
r>0

�
∂D∩B(P,r) |f(Q)|σ(dQ)

σ(∂D ∩B(P, r))
<∞

for all points P in the Lebesgue set of such an f . It is well known that the
set of Lebesgue points is of full measure σ.

We introduce a suitable normalizing function:

N(x) =
�

∂D

Mx0(x,Q)σ(dQ).

By a remark after (6), N is singular α-harmonic on D, and this function
will play a role of Doob’s h function as discussed in the introduction.

There are constants c1 and c2, depending only on D, α and x0, such that

0 < c1 ≤
N(x)

δ
α/2−1
x

≤ c2 <∞(11)

for all x ∈ D. The proof of this fact is similar to the proof of Lemma 4.1
but simpler, and is left to the reader.

Lemma 4.1. If P ∈ ∂D is a Lebesgue point of f ∈ L1(∂D, σ), then

lim
D3x→P

�

∂D∩{Q : |Q−P |≥|x−P |2/3}
Mx0(x,Q)δ1−α/2

x f(Q)σ(dQ) = 0.

Proof. We may assume f ≥ 0. We fix P ∈ ∂D from the Lebesgue set of f .
Let D 3 x → P . We put Bn = B(P, 2n|x− P |2/3) and An = Bn \ Bn−1 for
n = 1, 2, . . . Our assumptions on D imply σ(∂D∩Bn) ≤ c(2n|x−P |2/3)d−1

for some constant c depending only on D. By (5) we have
�

∂D∩{Q : |Q−P |≥|x−P |2/3}
Mx0(x,Q)δ1−α/2

x f(Q)σ(dQ)

≤ c′
∞∑

n=1

�

∂D∩An

δ
α/2
x

|x−Q|d δ
1−α/2
x f(Q)σ(dQ)

≤ c′δx
∞∑

n=1

(1
42n|x− P |2/3

)−d
�
∂D∩Bn f(Q)σ(dQ)

σ(∂D ∩Bn)
c(2n|x− P |2/3)d−1

≤ c′′δx|x− P |−2/3 ≤ c′′|x− P |1/3 → 0,

and the lemma follows.
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For f ∈ L1(∂D, σ) we put

u(x) =
�

∂D

Mx0(x,Q)f(Q)σ(dQ)

(cf. (6)).

Theorem 4.2. Let f ∈ L1(∂D, σ). If f is continuous at P ∈ ∂D then

lim
x→P

u(x)
N(x)

= f(P ).(12)

Generally , (12) holds at every Lebesgue point P of f , but the limit should
be taken nontangentially.

Proof. Let P be a Lebesgue point of f . We have∣∣∣∣
u(x)
N(x)

−f(P )
∣∣∣∣

≤
�
∂D∩{Q : |Q−P |≥|x−P |2/3}M

x0(x,Q)δ1−α/2
x |f(Q)− f(P )|σ(dQ)

δ
1−α/2
x N(x)

+

�
∂D∩{Q : |Q−P |<|x−P |2/3}M

x0(x,Q)|f(Q)−f(P )|σ(dQ)

N(x)

= I1(x) + I2(x).

From Lemma 4.1 with |f(·) − f(Q)| in place of f and (11) it follows that
limx→P I1(x) = 0.

Put Bn = B(P, 2n|x − P |) and An = Bn+1 \ Bn for n ≥ 1, A0 = B1.
Denote by n0 the smallest integer for which B(P, |x − P |2/3) ⊂ Bn0 , so
−1

3 log2 |x − P | ≤ n0 < −1
3 log2 |x − P | + 1. Note that |x − Q| ≥ 1

2δx2n for
Q ∈ An. By (5) we have

N(x)I2(x) ≤ cδα/2x

n0∑

n=0

�

∂D∩An

|f(Q)− f(P )|
|x−Q|d σ(dQ)

≤ c′δα/2x

n0∑

n=0

(δx2n)−d
�
∂D∩Bn+1

|f(Q)− f(P )|σ(dQ)

σ(∂D ∩Bn+1)
(2n|x− P |)d−1

≤ c′δα/2−dx |x− P |d−1 sup
0<r<2|x−P |2/3

�
∂D∩B(P, r) |f(Q)− f(P )|σ(dQ)

σ(∂D ∩B(P, r))
.

From (11), N(x) ≥ c1δ
α/2−1
x , so

I2(x) ≤ c′′δ1−d
x |x− P |d−1 sup

0<r<2|x−P |2/3

�
∂D∩B(P, r) |f(Q)− f(P )|σ(dQ)

σ(∂D ∩B(P, r))
.

If x→ P nontangentially then δx ≥ γ|x−P | for some γ > 0 and consequently
I2(x)→ 0.
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Moreover, if f ∈ C(∂D), then

I2(x) ≤ sup{|f(Q)− f(P )| : Q ∈ ∂D, |Q− P | < |x− P |2/3} → 0

as x→ P . The proof is complete.

The exact asymptotics of N(x) for x near the boundary is described in
the following

Theorem 4.3. The limit

ν(P ) = lim
D3x→P

N(x)

δ
α/2−1
x

exists for all P ∈ ∂D. The function ν defined above is continuous on ∂D.

Proof. The proof is very similar to that of Theorem 3.2, however, it is
more complicated. Fix P ∈ ∂D. We start by proving the existence of the
limit

ν0(P ) = lim
l(P )3x→P

N(x)δ1−α/2
x(13)

(see also (11)). Let x ∈ l(P ); then δx = |x− P |.
Fix 0 < η ≤ 1 and let x1 = x1(P ) = ηb(P ) + (1 − η)P . We define

A(P, x) = {Q ∈ ∂D : |Q−P | < |x− P |2/3}. Taking f ≡ 1 in Lemma 4.1 we
see that

lim
l(P )3x→P

N(x)δ1−α/2
x = lim

l(P )3x→P

�

A(P,x)

Mx0(x,Q)δ1−α/2
x σ(dQ)

if either limit exists. From now on we assume Q ∈ A(P, x). We have

|x− b(Q)|2 −R2 = 〈x− P + P − b(Q), x− P + P − b(Q)〉 −R2

= |x− P |2 + 2〈x− P, P − b(P ) + b(P )− b(Q)〉
+ |P − b(Q)|2 −R2

= |x− P |2 − 2R|x− P |+ 2〈x− P, b(P )− b(Q)〉
+ |P − b(Q)|2 −R2

and similarly

|x− e(Q)|2 −R2 = |x− P |2 + 2R|x− P |+ 2〈x− P, e(P )− e(Q)〉
+ |P − e(Q)|2 −R2.

From (7) and (8) we see that

|〈x− P, b(P )− b(Q)〉| ≤ (1 + 2Rλ)|x− P |5/3

and ∣∣|P − b(Q)|2 −R2
∣∣ ≤ (4Rλ+ 1)|x− P |4/3,

hence for x ∈ l(P ) close enough to P we have

2R(1− η)|x− P | ≤ R2 − |x− b(Q)|2 ≤ 2R(1 + η)|x− P |,(14)
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2R(1− η)|x− P | ≤ |x− e(Q)|2 −R2 ≤ 2R(1 + η)|x− P |.(15)

In particular, x, x1 ∈ B(Q).
Note that Mx0(x,Q) = Mx0(x1, Q)Mx1(x,Q). By Lemma 3.1 and (15)

we have

Mx1(x,Q) = lim
l(Q)3y→Q

GD(x, y)
GD(x1, y)

≤ lim
l(Q)3y→Q

GE(Q)c(x, y)

δE(Q)c(y)α/2
δB(Q)(y)α/2

GB(Q)(x1, y)

=

∣∣|x− e(Q)|2 −R2
∣∣α/2 |x−Q|−d

∣∣|x1 − b(Q)|2 −R2
∣∣α/2 |x1 −Q|−d

≤ (2R(1 + η)|x− P |)α/2 |x−Q|−d
∣∣|x1 − b(Q)|2 −R2

∣∣α/2 |x1 −Q|−d
,

and similarly by Lemma 3.1 and (14),

Mx1(x,Q) ≥ (2R(1− η)|x− P |)α/2 |x−Q|−d
∣∣|x1 − e(Q)|2 −R2

∣∣α/2 |x1 −Q|−d
.

This gives
�

A(P,x)

Mx0(x,Q)

δ
α/2−1
x

σ(dQ)

≤ δx
�

A(P,x)

(2R(1 + η))α/2 |x−Q|−dMx0(x1, Q)
∣∣|x1 − b(Q)|2 −R2

∣∣α/2 |x1 −Q|−d
σ(dQ)

≤ sup
Q∈A(P,x)

(2R(1 + η))α/2 |x1 −Q|d∣∣|x1 − b(Q)|2 −R2
∣∣α/2

× sup
Q∈A(P,x)

Mx0(x1, Q) · δx
�

A(P,x)

|x−Q|−d σ(dQ)

→
(

2(1 + η)
η(2− η)

)α/2
(ηR)d ·Mx0(x1, P ) ·

�

Rd−1

(|q|2 + 1)−d dq

as x→ P . Similarly we obtain

lim
l(P )3x→P

�

A(P,x)

Mx0(x,Q)

δ
α/2−1
x

σ(dQ) ≥
(

2(1− η)
η(2 + η)

)α/2
(ηR)d ·Mx0(x1, P )

×
�

Rd−1

(|q|2 + 1)−d dq.
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Thus

lim
�
A(P,x)M

x0(x,Q)δ1−α/2
x σ(dQ)

lim
�
A(P,x)M

x0(x,Q)δ1−α/2
x σ(dQ)

≤
(

(1 + η)(2 + η)
(1− η)(2− η)

)α/2
.

Since η > 0 can be arbitrarily small, the existence of the limit (13) follows.
The rest of the proof is very similar to the corresponding part of the

proof of Theorem 3.2 and will be omitted.

Corollary 4.4. Let f ∈ L1(∂D, σ). If f is continuous at P ∈ ∂D then

lim
x→P

u(x)

δ
α/2−1
x

= ν(P )f(P ).(16)

Generally , (16) holds at every Lebesgue point P of f , but the limit should
be taken nontangentially.

Example 4.5. Let D be the ball B(0, r) ⊂ Rd, r > 0, and x0 = 0. The
corresponding Martin kernel M is

M(x,Q) = rd−α
(r2 − |x|2)α/2

|x−Q|d , |x| < r,(17)

for all Q ∈ ∂B(0, r). Formula (17) is an exact analogue of the clas-
sical Poisson kernel for the ball. It follows easily that multiplication by
r2−α(r2− |x|2)α/2−1 is an isomorphism from the nonnegative functions har-
monic in B(0, r) onto the nonnegative singular α-harmonic functions in
B(0, r). Clearly, there is no such isomorphism for general C1,1 domains,
as can be seen by considering a disconnected domain D.

We note that Theorem 4.2 readily generalizes to other normalizing func-
tions Ñ(x) =

�
∂DM

x0(x,Q)r(Q)σ(dQ) for nonnegative r ∈ L1(∂D, σ) by
using (12) twice. Further generalization in the spirit of [Wu1] requires a
separate argument and should perhaps be considered in the more general
context of Lipschitz domains.
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[BM] R. Bañuelos and C. N. Moore, Probabilistic Behavior of Harmonic Functions,
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[R1] M. Riesz, Intégrales de Riemann–Liouville et potentiels, Acta Sci. Math. (Szeged)
9 (1938), 1–42.
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