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Cotype and absolutely summing homogeneous
polynomials in Lp spaces

by

Daniel Pellegrino (Campina Grande)

Abstract. We lift to homogeneous polynomials and multilinear mappings a linear
result due to Lindenstrauss and Pełczyński for absolutely summing operators. We explore
the notion of cotype to obtain stronger results and provide various examples of situations
in which the space of absolutely summing homogeneous polynomials is different from the
whole space of homogeneous polynomials. Among other consequences, these results enable
us to obtain answers to some open questions about absolutely summing homogeneous
polynomials and multilinear mappings on L∞ spaces.

1. Introduction and background. In the seminal paper [6], Linden-
strauss and Pełczyński provide a beautiful theorem which states that if X
is an infinite-dimensional Banach space with unconditional Schauder ba-
sis and every linear mapping from X into an infinite-dimensional Banach
space Y is absolutely (1; 1)-summing, then X is isomorphic to l1(Γ ) and
Y is isomorphic to a Hilbert space. We will refine this statement by ex-
ploring the cotype of Y, not only for the linear cases, but also and mainly
for homogeneous polynomials and multilinear mappings. As corollaries we
obtain several negative results, showing, in particular, that various known
Coincidence Theorems for polynomials and multilinear mappings cannot be
improved in many natural ways.

Throughout this paper X1, . . . ,Xn,X, Y will stand for Banach spaces.
The scalar field K can be either R or C.

The Banach spaces of all continuous n-linear mappings fromX1×. . .×Xn

into Y endowed with the sup norm will be denoted by L(X1, . . . ,Xn;Y ).
For the Banach space of all continuous n-homogeneous polynomials P from
X into Y with the sup norm we use the symbol P(nX,Y ).

For the natural isometry

Ψt : L(X1, . . . ,Xn;Y )→ L(X1, . . . ,Xt;L(Xt+1, . . . ,Xn;Y ))

we write Ψt(T ) = T1.
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The linear space of all sequences (xj)∞j=1 in X such that

‖(xj)∞j=1‖p =
( ∞∑

j=1

‖xj‖p
)1/p

<∞

will be denoted by lp(X). We will also denote by lwp (X) the linear space
composed by the sequences (xj)∞j=1 in X such that (〈ϕ, xj〉)∞j=1 ∈ lp(K) for
every continuous linear functional ϕ : X → K. We define ‖ · ‖w,p in lwp (X)
by

‖(xj)∞j=1‖w,p = sup
ϕ∈BX′

( ∞∑

j=1

|〈ϕ, xj〉|p
)1/p

.

The case p =∞ is the case of bounded sequences and in l∞(X) we use the
sup norm. One can see that ‖ · ‖p (resp. ‖ · ‖w,p) is a p-norm in lp(X) (resp.
lwp (X)) for p < 1, and a norm for p ≥ 1. In any case, they are complete
metrizable linear spaces.

Recall that if 2 ≤ q ≤ ∞ and (rj)∞j=1 are the Rademacher functions,
then X has cotype q if there exists Cq(X) ≥ 0 such that, no matter how we
choose k ∈ N and x1, . . . , xk ∈ X,

( k∑

j=1

‖xj‖q
)1/q

≤ Cq(X)
( 1�

0

∥∥∥
k∑

j=1

rj(t)xj
∥∥∥

2
dt
)1/2

.

To cover the case q = ∞ we replace (
∑k
j=1 ‖xj‖q)1/q by maxj≤n ‖xj‖. We

will define the smallest cotype of X by cotX.
The theory of absolutely summing multilinear mappings was sketched

by A. Pietsch in 1983 [12] and it was rapidly developed thereafter. The
definitions of absolutely summing homogeneous polynomials and multilinear
mappings we will work with in this paper were first explored by Alencar and
Matos [1] and have been broadly used (see [2], [5], [11]).

Definition 1 (Alencar–Matos). A continuous multilinear mapping T :
X1 × . . .×Xn → Y is absolutely (p; q1, . . . , qn)-summing (or (p; q1, . . . , qn)-
summing) if (T (x(1)

j , . . . , x
(n)
j ))∞j=1 ∈ lp(Y ) for all (x(s)

j )∞j=1 ∈ lwqs(Xs), s =
1, . . . , n. A continuous n-homogeneous polynomial P : X → Y is absolutely
(p; q)-summing (or (p; q)-summing) if (P (xj))∞j=1 ∈ lp(Y ) for all (xj)∞j=1 ∈
lwq (X).

In order to avoid trivialities we assume that p ≥ q/n in the polynomial
case and 1/p ≤ 1/q1 + . . .+ 1/qn in the n-linear case. We denote the space
of absolutely (p; q1, . . . , qn)-summing n-linear mappings from X1× . . .×Xn

into Y by Las(p;q1,...,qn)(X1, . . . ,Xn;Y ). When q1 = . . . = qn = q, we write
Las(p;q)(X1, . . . ,Xn;Y ). Analogously, the space of all n-homogeneous (p; q)-
summing polynomials from X into Y is denoted by Pas(p;q)(nX;Y ).
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In Las(p/n;p)(X1, . . . ,Xn;Y ) and Pas(p/n;p)(nX;Y ) there is a natural ver-
sion of the Grothendieck–Pietsch Domination Theorem and therefore the
(p/n; p)-summing n-homogeneous polynomials (resp. n-linear mappings) are
called p-dominated polynomials (resp. n-linear mappings), as in Matos [7]
and Tonge–Meléndez [9].

As in the linear case, we have a characterization theorem which plays a
prominent role in the theory.

Theorem 1 (Matos [7]). Let P be an m-homogeneous polynomial from
X into Y . Then the following statements are equivalent :

(1) P is absolutely (p; q)-summing.
(2) There exists L > 0 such that

( k∑

j=1

‖P (xj)‖p
)1/p

≤ L‖(xj)kj=1‖mw,q ∀k ∈ N and xj ∈ X.

(3) There exists L > 0 such that

(1.1)
( ∞∑

j=1

‖P (xj)‖p
)1/p

≤ L‖(xj)∞j=1‖mw,q ∀(xj)∞j=1 ∈ lwq (X).

The infimum of the L>0 for which (1.1) holds is a norm for the case p≥1
and a p-norm for p < 1 ([7]) on the space of (p; q)-summing homogeneous
polynomials. In any case, we thus obtain complete topological metrizable
spaces. This norm (and p-norm) will be denoted by ‖ · ‖as(p;q).

The characterization for the multilinear case and the definition of the
norm (and p-norm) follow the same pattern.

The next theorem states the definitive crucial connection of absolutely
summing linear mappings and cotype.

Theorem 2 (Maurey–Talagrand). If a Banach space X has cotype q
then id : X → X is (q; 1)-summing. The converse is true, except for q = 2.

As a consequence of Theorem 2 and the Generalized Hölder Inequality
one can prove the following result:

Theorem 3 (Botelho [2]). If Y has cotype q, then

L(nX;Y ) = Las(q;1)(
nX;Y ) for all Banach spaces X.

If X has cotype q, then

L(nX;Y ) = Las(q/n;1)(
nX;Y ) for all Banach spaces Y.

In the next sections, among other results, we will prove that, in general,
we cannot expect a result stronger than Theorem 3.
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2. Main results. The remarkable works of Maurey–Pisier [8] and Lind-
enstrauss–Pełczyński [6] will play a fundamental role in this paper. We start
with the following theorem, whose proof has inspired our results.

Theorem 4 (Lindenstrauss–Pełczyński [6, Theorem 4.2]). If X has an
unconditional Schauder basis, dimX = dimY = ∞ and every bounded lin-
ear operator from X into Y is absolutely (1; 1)-summing , then X is isomor-
phic to l1(Γ ) and Y is a Hilbert space.

This result and the Multilinear Grothendieck–Pietsch Domination The-
orem lead us to interesting, although restricted, initial results.

Example 1. Adapting an idea of M. C. Matos one can prove, for in-
stance, that if X has an unconditional Schauder basis, then

L(nX;K) 6= Las(1/n;1)(
nX;K)

and thus,

L(nX;Y ) 6= Las(1/n;1)(
nX;Y ) for every Banach space Y.

Indeed, if we had L(2X;K) = Las(1/2;1)(2X;K), then given S : X → X ′,
we could define TS : X × X → K such that (TS)1 = S. By hypothesis, TS
would be (1/2; 1, 1)-summing. Hence, by the Grothendieck–Pietsch Domi-
nation Theorem, there exists C > 0 such that

‖TS(x, y)‖ ≤ C
( �
BX′

|ϕ(x)| dµ1

)( �
BX′

|ψ(y)| dµ2

)

and
‖(TS)1(x)‖ = sup

‖y‖≤1
‖TS(x, y)‖ ≤ C

�
BX′

|ϕ(x)| dµ1.

Then ‖S(x)‖ ≤ C �
BX′
|ϕ(x)| dµ1 and hence L(X;X ′) = Las(1;1)(X;X ′)

(contradiction by Theorem 4). The general case follows by a standard in-
ductive process.

The same simple construction gives many other results. However, the
previous negative results, albeit interesting, are confined to the dominated
cases (which have Grothendieck–Pietsch Domination Theorem as a funda-
mental tool) and do not give us the full picture. In general, the spaces of
p-dominated homogeneous polynomials and multilinear mappings are small,
and negative results are not surprising. We will present new negative results
which significantly improve the last ones. Our approach consists in lifting
Theorem 4 to polynomial and multilinear versions and refining them by
exploring the properties of cotype.

Assume that X and Y are two infinite-dimensional Banach spaces, X
with unconditional Schauder basis (xn) with coefficient functionals (x∗n),
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and moreover Pas(q;1)(mX;Y ) = P(mX;Y ) with 1/m ≤ q. We will deal with
the following general question:

What is the best (smallest) t, 1 ≤ t ≤ ∞, such that in this situation
(x∗n(x)) ∈ lt for each x ∈ X? Henceforth the best such t will be denoted by
µ = µ(X,Y, q,m).

Firstly let us recall a well known concept:

Definition 2. We say that Y finitely factors (ff) the formal inclusion
lp → l∞ for 0 < δ < 1 if for every n there exist y1, . . . , yn such that

(1− δ)‖a‖∞ ≤
∥∥∥
∑

k≤n
akyk

∥∥∥ ≤ ‖a‖p for all a = (ak)nk=1 ∈ lnp .

Note that (1 − δ)|ak| ≤ ‖akyk‖ ≤ |ak| and then 1 − δ ≤ ‖yk‖ ≤ 1 for
all k.

Theorem 5. Let X and Y be infinite-dimensional Banach spaces. Sup-
pose that X has an unconditional Schauder basis (xn). If Y finitely factors
the formal inclusion lp → l∞ for some δ and Pas(q;1)(mX;Y ) = P(mX;Y )
with 1/m ≤ q, then

(a) µ ≤ mpq/(p− q) if q < p,
(b) µ ≤ mq if q ≤ p/2.

Proof. We can suppose, with no loss of generality, that (xn) is normal-
ized. Consider q ∈ [1/m, p[. By hypothesis, there exists K > 0 such that
‖P‖as(q;1) ≤ K‖P‖ for all P ∈ P(mX;Y ).

Let {µi}ni=1 be such that
∑n
j=1 |µj |s = 1 with s = p/q. Define P : X → Y

by

Px =
n∑

j=1

|µj |1/qamj yj if x =
∞∑

j=1

ajxj ,

where the yj satisfy (1 − δ)‖a‖∞ ≤ ‖
∑
k≤n akyk‖ ≤ ‖a‖p for all a =

(ak)nk=1 ∈ lnp . Since (xn) is an unconditional basis, there exists % > 0 satis-
fying

∥∥∥
∞∑

j=1

εjajxj

∥∥∥ ≤ %
∥∥∥
∞∑

j=1

ajxj

∥∥∥ = %‖x‖ for any εj = 1 or εj = −1.

Hence ‖∑n
j=1 εjajxj‖ ≤ %‖x‖ for all n and any εj = 1 or −1 and then we

have

‖Px‖ =
∥∥∥

n∑

j=1

|µj |1/qamj yj
∥∥∥ ≤

( n∑

j=1

∣∣|µj|1/qamj
∣∣p
)1/p

≤ %m‖x‖m
( n∑

j=1

|µj|p/q
)1/p

= %m‖x‖m
( n∑

j=1

|µj|s
)1/p

= %m‖x‖m.
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We obtain ‖P‖ ≤ %m and ‖P‖as(q;1) ≤ K%m and achieve the estimate below:

( n∑

j=1

∣∣amj |µj |1/q(1− δ)
∣∣q
)1/q

≤
( n∑

j=1

‖amj |µj |1/qyj‖q
)1/q

(2.1)

=
( n∑

j=1

‖Pajxj‖q
)1/q

≤ ‖P‖as(q;1)‖(ajxj)nj=1‖mw,1

≤ ‖P‖as(q;1) max
εj∈{1,−1}

{∥∥∥
n∑

j=1

εjajxj

∥∥∥
}m

≤ ‖P‖as(q;1)(%‖x‖)m ≤ K%2m‖x‖m.

Since 1
s + 1

s
s−1

= 1 we have

( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1

= ‖(|aj |mq)nj=1‖ s
s−1

(2.2)

= sup
{∣∣∣

n∑

j=1

µj |aj |mq
∣∣∣ :

n∑

j=1

|µj |s = 1
}

≤ sup
{ n∑

j=1

|µj| |aj |mq :
n∑

j=1

|µj|s = 1
}
.

It is plain that (2.1) holds whenever
∑n
j=1 |µj|s = 1. Thus, by (2.1) and

(2.2) it follows that

( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1 ≤ [(1− δ)−1K%2m‖x‖m]q,

and then

( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1mq ≤ [(1− δ)−1K%2m‖x‖m]1/m.

Since s
s−1mq = mpq

p−q and n is arbitrary, part (a) is proved. Now, if 1/m ≤
q ≤ p/2, define S : X → Y by

Sx =
n∑

j=1

amj yj if x =
∞∑

j=1

ajxj .

Since mp ≥ s
s−1mq, we obtain
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‖Sx‖ =
∥∥∥

n∑

j=1

amj yj

∥∥∥ ≤
( n∑

j=1

|amj |p
)1/p

=
[( n∑

j=1

|aj |mp
)1/mp]m

≤
[( n∑

j=1

|aj |
s
s−1mq

)1/ s
s−1mq

]m
≤ (1− δ)−1K%2m‖x‖m.

Thus ‖S‖ ≤ (1− δ)−1K%2m and ‖S‖as(q;1) ≤ (1− δ)−1K2%2m. Hence
n∑

j=1

|amj (1− δ)|q ≤
n∑

j=1

‖amj yj‖q =
n∑

j=1

‖Sajxj‖q

≤ ‖S‖qas(q;1) max
εj∈{1,−1}

{∥∥∥
n∑

j=1

εjajxj

∥∥∥
}mq

≤ ((1− δ)−1K2%2m)q(%‖x‖)mq.

Consequently, since n is arbitrary, we have
∑∞
j=1 |aj |mq < ∞ whenever

x =
∑∞
j=1 ajxj ∈ X.

The well known Dvoretzky–Rogers Theorem asserts that every infinite-
dimensional Banach space finitely factors the formal inclusion l2 → l∞. So
we have the following result:

Corollary 1. Let X and Y be infinite-dimensional Banach spaces.
Suppose that X has an unconditional Schauder basis. If Pas(q;1)(mX;Y ) =
P(mX;Y ) with 1/m ≤ q, then

(a) µ ≤ 2mq/(2− q) if q < 2,
(b) µ ≤ mq if q ≤ 1.

The following characterization of cotype is crucial to obtain important
improvements of Corollary 1.

Theorem 6 (Maurey–Pisier [8]). For any infinite-dimensional Banach
space Y we have

inf{2 ≤ p ≤ ∞ : Y has cotype p} = sup{2 ≤ p ≤ ∞ : Y ff lp → l∞}.
Now, Theorems 5 and 6 have the following consequences:

Corollary 2. Let X and Y be infinite-dimensional Banach spaces.
Suppose that X has an unconditional Schauder basis and cotY < ∞. If
Pas(q;1)(mX;Y ) = P(mX;Y ) with 1/m ≤ q, then

(a) µ ≤ mq cotY/(cotY − q) if q < cotY ,
(b) µ ≤ mq if q ≤ (cotY )/2.

The next three corollaries deal with the converse of the polynomial ver-
sion of Theorem 3.

Corollary 3. If Y is an infinite-dimensional Banach space, cotY <∞,
q ∈ [1/m, (cotY )/2] and P(mlt;Y ) = Pas(q;1)(mlt;Y ) then t ≤ mq.
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Corollary 4. If Y is an infinite-dimensional Banach space and cotY
<∞ then

P(mc0;Y ) = Pas(q;1)(
mc0;Y ) ⇔ q ≥ cotY.

Obviously localization allows one to replace c0 by any L∞ space in Corol-
lary 4.

Corollary 5. If P(mlt; lp) = Pas(q;1)(mlt; lp) for q ∈ [1/m, cot lp[, then

t ≤ mqmax{p, 2}
max{p, 2} − q .

The case that Y has only infinite cotype can also be obtained as a con-
sequence of Theorem 5. Precisely, we have:

Theorem 7. Let X and Y be infinite-dimensional Banach spaces. Sup-
pose that X has an unconditional Schauder basis and cotY =∞. If

Pas(q;1)(
mX;Y ) = P(mX;Y )

with 1/m ≤ q, then µ ≤ mq.

Proof. Since cotY = ∞, Theorem 6 asserts that Y finitely factors the
formal inclusion lp → l∞ for every p ≥ 2. Thus, by Theorem 5 we have
µ ≤ limp→∞mpq/(p− q) = mq.

Now, a standard localization argument gives the following straightfor-
ward consequence:

Corollary 6. If cotY =∞ and X is an L∞ space, then

P(mX;Y ) 6= Pas(r;s)(
mX;Y ) for every r > 0 and s ≥ 1.

It is plain that whenever P(nX;Y ) 6= Pas(r;s)(nX;Y ) we also obtain
L(nX;Y ) 6= Las(r;s)(nX;Y ). Moreover, we can consider the following prob-
lem:

If X1, . . . ,Xm and Y are infinite-dimensional Banach spaces, each Xj has
an unconditional Schauder basis (xj,n) with coefficient functionals (x∗j,n) and
moreover Las(q;1)(X1, . . . ,Xm;Y ) = L(X1, . . . ,Xm;Y ) with 1/m ≤ q, what
is the best (smallest) t, 1 ≤ t ≤ ∞, such that (

∏m
j=1 x

∗
j,n(xj)) ∈ lt for every

xj ∈ Xj , j = 1, . . . ,m?
Denoting the best such t by µ = µ(X1, . . . ,Xm, Y, q,m), one can realize

that the polynomial proof can be adjusted to give the following result:

Theorem 8. Let Y be an infinite-dimensional Banach space and let
X1, . . . ,Xm denote infinite-dimensional Banach spaces with unconditional
Schauder basis. If Y finitely factors the formal inclusion lp → l∞ for some
δ and Las(q;1)(X1, . . . ,Xm;Y ) = L(X1, . . . ,Xm;Y ) with 1/m ≤ q, then

(a) µ ≤ pq/(p− q) if q < p,
(b) µ ≤ q if q ≤ p/2.
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3. Final applications. The following simple result, whose proof we
will omit, added to our negative results will provide some simple answers
to interesting open questions about absolutely summing polynomials and
multilinear mappings.

Proposition 1. If

L(X1, . . . ,Xn;Y ) = Las(r;s1,...,st,∞,...,∞)(X1, . . . ,Xn;Y )

then

L(X1, . . . ,Xt;L(Xt+1, . . . ,Xn;Y ))

= Las(r;s1,...,st)(X1, . . . ,Xt;L(Xt+1, . . . ,Xn;Y )),

and reciprocally.

Now, Theorem 8 and Proposition 1 yield the results below, which will
be important at the end of the paper.

Proposition 2. Let n ≥ 3, r1, . . . , rn ∈ [1,∞] and X1, . . . ,Xn be infin-
ite-dimensional L∞ spaces such that

L(X1, . . . ,Xn;K) = Las(s;r1,...,rn)(X1, . . . ,Xn;K).

Then no more than one rj can be ∞.

Proof. We can assume X1 = . . . = Xn = c0. Suppose, with no loss of
generality, that rn−1 = rn =∞. Hence, by Proposition 1 we would have

L(X1, . . . ,Xn−2;Z) = Las(s;r1,...,rn−2)(X1, . . . ,Xn−2;Z)

with Z = L(Xn−1,Xn;K). But cotL(Xn−1,Xn;K) = ∞ and (a corollary
of) Theorem 8 asserts that this is impossible.

The same reasoning furnishes the next result.

Proposition 3. Let n be a natural number , n ≥ 2, r1, . . . , rn ∈ [1,∞]
and dimY = ∞. If X1, . . . ,Xn are infinite-dimensional L∞ spaces and
L(nX;Y ) = Las(s;r1,...,rn)(nX;Y ), then rj 6=∞ for all j.

Now we list two recent coincidence theorems; our previous results will
show that they cannot be improved in some natural directions.

Theorem 9 (D. Pérez-Garćıa [11]). If n ≥ 2 and each Xj is an L∞
space, then every continuous multilinear mapping from X1 × . . .×Xn into
K is (1; 2, . . . , 2)-summing.

It is clear that, in particular, Theorem 8 applied to X1, . . . ,Xn = c0 and
a standard localization argument imply that Theorem 9 cannot be improved
to an infinite-dimensional Y in place of K.

As a consequence of the last theorem, we have the following result.
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Theorem 10 (Pellegrino [10]). If n ≥ 2 and each Xj is an L∞ space
then

(3.1) L(X1, . . . ,Xn;K) = Las(2;2,...,2,∞)(X1, . . . ,Xn;K).

Proof. Let T : X1 × . . . × Xn → K be a continuous n-linear mapping.
Using Theorem 9 it is not hard to prove that every continuous multilinear
mapping from L∞ spaces into a cotype 2 space is (2; 2, . . . , 2)-summing.
Thus, since cotX ′n = 2 we can assert that T1 : X1 × . . . × Xn−1 → X ′n is
(2; 2, . . . , 2)-summing. Now, consider (x(k)

j )∞j=1 ∈ lw2 (Xk), 1 ≤ k ≤ n − 1.
Hence there exists C > 0 such that

( ∞∑

j=1

‖T1(x(1)
j , . . . , x

(n−1)
j )‖2

)1/2
≤ C

n−1∏

k=1

‖(x(k)
j )∞j=1‖w,2.

If (x(n)
j )∞j=1 ∈ l∞(Xn) is non-zero, we obtain

( ∞∑

j=1

∥∥∥∥T1(x(1)
j , . . . , x

(n−1)
j )

(
x

(n)
j

‖(x(n)
j )∞j=1‖∞

)∥∥∥∥
2)1/2

≤ C
n−1∏

k=1

‖(x(k)
j )∞j=1‖w,2.

Hence
( ∞∑

j=1

‖T (x(1)
j , . . . , x

(n)
j )‖2

)1/2
≤ C‖(x(n)

j )∞j=1‖∞
n−1∏

k=1

‖(x(k)
j )∞j=1‖w,2.

The case (x(n)
j )∞j=1 = 0 does not cause any trouble.

The above result generalizes a bilinear result due to Botelho ([2] and [3]).
In [3] it is asked whether

L(2C(K);K) = Las(2;2,∞)(
2C(K);K)

could be improved to some infinite-dimensional Banach space Y in place of
K or not.

In particular, Proposition 3 answers negatively this question and not
only for the bilinear case, but for any n-linear case of (3.1).

Another question raised in [3] was:
Do we have P(nC(K);Y ) 6= Pas(r/n;r)(nC(K);Y ) for every n > 2, r <∞

and every Banach space Y ?
If dimY = ∞, Corollary 1 gives a partial answer when r/n < 2. But

Corollary 4 achieves a more general result when cotY < ∞ since it asserts
that whenever r < n cotY we have P(nC(K);Y ) 6= Pas(r/n;r)(nC(K);Y ).

Finally, Corollary 6 shows that when Y does not have finite cotype, we
have P(nC(K);Y ) 6= Pas(r;s)(nC(K);Y ) for any r > 0 and s ≥ 1, which is
a complete answer and goes beyond the dominated case.
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This paper forms a part of the author’s doctoral thesis written at UNI-
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proprietés géométriques des espaces de Banach, Studia Math. 58 (1976), 45–90.

[9] Y. Meléndez and A. Tonge, Polynomials and the Pietsch domination theorem, Proc.
Roy. Irish Acad. Sect. A 99 (1999), 195–212.

[10] D. Pellegrino, Cotype and nonlinear absolutely summing mappings, preprint.
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