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Decomposition systems for function spaces

by

G. Kyriazis (Nicosia)

Abstract. Let Θ := {θeI : e ∈ E, I ∈ D} be a decomposition system for L2(Rd)

indexed over D, the set of dyadic cubes in Rd, and a finite set E, and let Θ̃ := {θ̃eI :
e ∈ E, I ∈ D} be the corresponding dual functionals. That is, for every f ∈ L2(Rd),
f =

∑
e∈E

∑
I∈D〈f, θ̃

e
I〉θeI . We study sufficient conditions on Θ, Θ̃ so that they constitute

a decomposition system for Triebel–Lizorkin and Besov spaces. Moreover, these conditions
allow us to characterize the membership of a distribution f in these spaces by the size of
the coefficients 〈f, θ̃eI〉, e ∈ E, I ∈ D. Typical examples of such decomposition systems
are various wavelet-type unconditional bases for L2(Rd), and more general systems such
as affine frames.

1. Introduction. Let E be a finite set and D be the family of dyadic
cubes in Rd. Given a decomposition system Θ := {θeI : e ∈ E, I ∈ D},
for L2(Rd) with dual functionals Θ̃ := {θ̃eI : e ∈ E, I ∈ D} our goal is to
study sufficient conditions on Θ, Θ̃ so that they constitute a decomposition
system for the homogeneous Triebel–Lizorkin and Besov spaces. That is,
every distribution f in the above spaces can be expressed in the form

f =
∑

e∈E

∑

I∈D
〈f, θ̃eI〉θeI .

Moreover, we are interested in characterizing the membership of a distribu-
tion f in the Triebel–Lizorkin and Besov spaces by the size of the coefficients
〈f, θ̃eI〉, e ∈ E, I ∈ D. Typical examples of such systems are various uncon-
ditional bases for L2(Rd) such as the biorthogonal wavelet bases, the bases
constructed in [Pet] or even the affine frames of L2(Rd).

To describe our results we first introduce the standard multi-index no-
tation. For x = (x1, . . . , xd) ∈ Rd and α = (α1, . . . , αd) ∈ Nd (N :=
{n : n ≥ 0}, d ≥ 1), we let |x| :=

√
x2

1 + . . .+ x2
d, x

α := xα1
1 . . . xαdd ,

|α| := α1 + . . . + αd, α! = α1! . . . αd!, and (·)(α) := ∂|α|(·)/∂xα1
1 . . . ∂xαdd .
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Also for every x ∈ R we use [x] for the greatest integer which is less than or
equal to x.

We denote by S := S(Rd) the Schwartz space of infinitely differentiable,
rapidly decreasing functions on Rd and by S ′ := S ′(Rd) its dual, the space
of tempered distributions. For every k ∈ N we define

Sk := Sk(Rd) :=
{
η ∈ S :

�
η(x)xα dx = 0, |α| ≤ k

}
,

and we identify the dual space of Sk with S ′/Pk, the space of equivalence
classes of distributions modulo polynomials of degree ≤ k.

Similarly, we use the notation

S∞ := S∞(Rd) :=
{
η ∈ S :

�
η(x)xα dx = 0, ∀α ∈ Nd

}
,

and we denote by S ′/P the space of equivalence classes of distributions
modulo polynomials.

For any m ∈ Z, k ∈ Zd, the dyadic cube Im,k ∈ D is defined by Im,k :=
2−m(k + [0, 1)d). If I = Im,k we use xI for its “lower-left” vertex 2−mk,
and |I| for its volume. Also by Dm, m ∈ Z, we denote the collection of all
cubes I ∈ D of sidelength `(I) = 2−m. We use 〈f, η〉 for the standard inner
product � fη of two functions, when this makes sense, and the same notation
is employed for the action of a distribution f ∈ S ′ on η ∈ S.

Also we denote the Fourier transform of an integrable function f by

f̂(ξ) :=
�
Rd
f(x)e−ix·ξ dx.

By duality the Fourier transform is extended to S ′.
Let now B := {θeI , θ̃eI : e ∈ E, I ∈ D}, be a family of functions on Rd

which satisfies the following assumptions:

A. B forms a decomposition system for L2(Rd), i.e., for every f ∈
L2(Rd),

f =
∑

e∈E

∑

I∈D
〈f, θ̃eI〉θeI ,

in the sense of L2(Rd).

B1. For every e ∈ E, I ∈ D,

|(θeI)(α)(x)| ≤ C|I|−1/2−|α|/d
(

1 +
|x− xI |
`(I)

)−MΘ

, |α| ≤ rΘ,
(1.1)

|(θ̃eI)(α)(x)| ≤ C|I|−1/2−|α|/d
(

1 +
|x− xI |
`(I)

)−M
Θ̃

, |α| ≤ rΘ̃,

where MΘ,MΘ̃ > 0.
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B2. For every e ∈ E, I ∈ D,
�
Rd
xαθeI(x) dx = 0, |α| ≤ rΘ̃ − 1,

(1.2) �
Rd
xαθ̃eI(x) dx = 0, |α| ≤ rΘ − 1.

By varying the smoothness and decay parameters rΘ, rΘ̃ and MΘ,MΘ̃,
one can prove that B forms a decomposition system for a host of distribu-
tion spaces such as Lp := Lp(Rd) (1 < p < ∞), Hp := Hp(Rd) (0 < p ≤ 1),
the potential spaces Hs

p , s > 0, 1 < p < ∞, or the more general homoge-
neous Triebel–Lizorkin and Besov spaces Ḟ spq and Ḃs

pq. Moreover, the size
of a distribution f measured in the (quasi)norms of these spaces can be
determined by (quasi)norms applied to the sequence of coefficients 〈f, θ̃eI〉,
e ∈ E, I ∈ D. We recall (see [T]) that for 1 < p < ∞, Ḟ 0

p2 ≈ Lp, while
for 0 < p ≤ 1, Ḟ 0

p2 ≈ Hp. Also, for s > 0, 1 < p < ∞, Ḟ sp2 ≈ Hs
p , and

for integer values of s, Ḟ sp2 ≈ W s
p , the Sobolev space equipped with its

seminorm (here ≈ means that the spaces have equivalent (quasi)norms—see
below).

In particular, we shall prove (Theorem 4.1) that if rΘ, rΘ̃ and MΘ,MΘ̃
are sufficiently large (depending on the parameters s ∈ R, 0 < p < ∞, and
0 < q ≤ ∞), then for every f ∈ Ḟ spq,

f =
∑

e∈E

∑

I∈D
ãeI(f)θeI , ãeI(f) := 〈f, θ̃eI〉,(1.3)

where the convergence is considered in the distributional sense (and in the
sense of Ḟ spq when q 6=∞). Moreover, the following characterization holds:

‖f‖Ḟ spq ≈
∑

e∈E

∥∥∥
(∑

I∈D
(|I|−s/d|ãeI(f)|χ̃I)q

)1/q∥∥∥
Lp
,(1.4)

where χ̃I := |I|−1/2χI is the characteristic function of I normalized in L2.
Here we have adopted the notation A ≈ B which means that there exist
constants C1, C2 > 0 such that C1A ≤ B ≤ C2A. The equivalence constants
C1 and C2 in (1.4) depend on d, p, q, and s. On other occasions, the reader
will have to consult the text to understand the parameters on which the
equivalence constants depend on. Throughout the paper, the constants are
denoted by C and they may vary at every occurrence.

Similarly (for suitable rΘ, rΘ̃ and MΘ,MΘ̃) we shall prove (Theorem 4.2)
that for every f ∈ Ḃs

pq, s ∈ R, 0 < p, q ≤ ∞, the representation (1.3) holds
in the distributional sense (and in the sense of Ḃs

pq when p, q 6=∞). Also
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‖f‖Ḃspq ≈
∑

e∈E

(∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+1/p−1/2|ãeI(f)|)p

)q/p)1/q
(1.5)

with the usual modifications when q =∞ or p =∞.
However, in the literature people are often interested in obtaining uncon-

ditional bases, rather than simple decomposition systems for various func-
tion spaces. In particular, biorthogonal wavelet bases have gained great pop-
ularity over the last decade. This is primarily due to their applications in
many fields such as statistics [Do], image processing [DJKP], Fourier and
functional analysis. One of the main features of the wavelet bases, which to
some degree explains their popularity, is that, similarly to (1.4) and (1.5),
they frequently lead to simple characterizations of various spaces whose
membership is expressed in terms of (quasi)norms applied to the sequence
of coefficients with respect to the basis. Thus, we would like to develop a
parallel theory for extending an unconditional basis of L2(Rd) to an uncon-
ditional basis for the Triebel–Lizorkin and Besov spaces as well.

This comes at no significant cost in our setting. We only need to replace
assumption A above with the following one:

A′. (i) With δ denoting the Kronecker delta,

〈θ̃eI , θe
′
J 〉 = δI,Jδe,e′ , I, J ∈ D, e, e′ ∈ E.

(ii) For every f ∈ L2(Rd),

f =
∑

e∈E

∑

I∈D
〈f, θ̃eI〉θeI , ‖f‖L2 ≈

(∑

e∈E

∑

I∈D
|〈f, θ̃eI〉|2

)1/2
.

Technically speaking, these systems will be bases for the Triebel–Lizorkin
and Besov spaces provided that p, q 6=∞, since the convergence of the corre-
sponding series then takes place in the (quasi)norm of the space in question.
However, with a slight abuse of the terminology we use the word bases even if
p or q is∞, where the convergence is considered only in distributional sense.
We recall that the characterizations of Lp,Hp and the potential spaces in
terms of orthogonal wavelet bases have been established by Meyer [M]; we
also refer the reader to [HW] for a complete account of these cases. On
the other hand Besov spaces with respect to orthogonal wavelets have been
studied in [M], and in [B], [K] for various subcases of the indices and under
different assumptions. Characterizations, though, for the general Triebel–
Lizorkin spaces can been found in [FJW] only in the special case of Meyer’s
orthogonal wavelets which belong in S and their Fourier transform vanishes
in a neighborhood of the origin.

In contrast, as a consequence of our results we establish the wavelet char-
acterizations of homogeneous Triebel–Lizorkin (Proposition 4.1) and Besov
spaces (Proposition 4.2) in terms of general biorthogonal wavelets for the full
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range of the indices s, p, q. One of the advantages of this approach is that it
allows us to disassociate the conditions imposed on the wavelet set Ψ from
the ones imposed on their dual set Ψ̃ (see definitions below) and thus the
various regularity and decay conditions of one family do not affect the other.

We also mention that in certain applications, such as image processing,
people are interested in unconditional bases for L2(Rd) that are indexed not
by the set D of all dyadic cubes, but by D+ :=

⋃
m≥0Dm, the set of dyadic

cubes with sidelength ≤ 1.
It turns out that these bases are tailor-made for the characterization of

the inhomogeneous Triebel–Lizorkin and Besov spaces F s
pq, B

s
pq. A brief but

comprehensive analysis of these results is presented in §5 solely within the
framework of biorthogonal wavelet bases, for notational reasons.

In dealing with homogeneous spaces, an important point that one needs
to be careful about is the meaning of the decomposition formula (1.3). This
is a rather delicate issue, and it turns out that the convergence as well as the
equality in (1.3) take place in the topology of S ′/Pk, where k ∈ N depends
on the space under consideration. To address this one needs to take a closer
look at Calderón’s reproducing formula. A complete account of these results
is presented in §2 and in Appendix I.

Recapitulating, our primary goal in this paper is to present a general
method for extending decomposition systems of L2(Rd), which due to the
geometric structure of this space are easier to construct, to decomposition
systems for both scales of Triebel–Lizorkin and Besov spaces. For this, our
main tool will be the φ-transform (see (2.16) below) and the powerful ma-
chinery developed in [FJ2].

1.1. Biorthogonal wavelets. Biorthogonal wavelet bases were introduced
by Cohen, Daubechies and Feauveau [CDF]. Their construction begins with
two univariate scaling functions ϕ and ϕ̃ whose shifts are in duality:

〈ϕ(· − k), ϕ̃(· − k′)〉 = δk,k′ , k, k′ ∈ Z.
Associated to each of the scaling functions are mother wavelets ψ and ψ̃.
These functions can be used to generate a basis for L2(Rd) as follows. We
define ψ0 := ϕ, ψ̃0 := ϕ̃, ψ1 := ψ and ψ̃1 := ψ̃. Let E0 denote the collection
of all vertices of the unit cube [0, 1]d and E := E0 \{0} (0 = (0, . . . , 0)). For
each vertex e = (e1, . . . , ed) ∈ E0, we define the multivariate functions

ψe(x1, . . . , xd) := ψe1(x1) . . . ψed(xd),

ψ̃e(x1, . . . , xd) := ψ̃e1(x1) . . . ψ̃ed(xd).

Following the wavelet literature, for every I ∈ D we also define

ψeI(·) := |I|−1/2ψe
( · − xI
`(I)

)
, ψ̃eI(·) := |I|−1/2ψe

( · − xI
`(I)

)
.(1.6)
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(A word of caution: this notation will be used only for specific functions
such as the wavelets and in the φ-transform (see (2.16) below) and not
necessarily for general functions as the ones in the sets Θ and Θ̃ considered
earlier.)

Then the collection of functions

W := {ψeI , ψ̃eI : I ∈ D, e ∈ E}
constitutes a Riesz basis for L2(Rd) with

〈ψ̃eI , ψe
′
J 〉 = δI,Jδe,e′ .

In particular, for every f ∈ L2(Rd),

f =
∑

e∈E

∑

I∈D
c̃eI (f)ψeI =

∑

e∈E

∑

I∈D
ceI(f)ψ̃eI ,(1.7)

where
c̃eI (f) := 〈f, ψ̃eI〉, ceI(f) := 〈f, ψeI〉,(1.8)

and in addition

‖f‖L2(Rd) ≈
(∑

e∈E

∑

I∈D
|c̃eI (f)|2

)1/2
≈
(∑

e∈E

∑

I∈D
|ceI(f)|2

)1/2
.(1.9)

If ϕ = ϕ̃ then {ψeI : I ∈ D, e ∈ E} constitutes an orthonormal basis for
L2(Rd).

Alternatively, one can construct biorthogonal bases indexed by the set
E0 and the dyadic cubes in D+, namely

W0 := {ψ0
I , ψ̃

0
I : I ∈ D0} ∪ {ψeI , ψ̃eI : I ∈ D+, e ∈ E}.

In this case for instance, for every f ∈ L2(Rd) we have

f =
∑

I∈D0

c̃0
I (f)ψ0

I +
∑

e∈E

∑

I∈D+

c̃eI (f)ψeI ,(1.10)

where c̃eI (f) := 〈f, ψ̃eI〉, e ∈ E0, and

‖f‖L2(Rd) ≈
( ∑

I∈D0

|c̃0
I (f)|2

)1/2
+
(∑

e∈E

∑

I∈D+

|c̃eI (f)|2
)1/2

.(1.11)

Standard assumptions on the sets

Ψ := {ψe : e ∈ E0}, Ψ̃ := {ψ̃e : e ∈ E0}(1.12)

include:

B1′. Ψ ⊂ CrΨ (Rd), Ψ̃ ⊂ CrΨ̃ (Rd), rΨ , rΨ̃ ∈ N+, and for e ∈ E0,

|(ψe)(α)(x)| ≤ C(1 + |x|)−MΨ , |α| ≤ rΨ ,
(1.13)

|(ψ̃e)(α)(x)| ≤ C(1 + |x|)−MΨ̃ , |α| ≤ rΨ̃ ,
where MΨ ,MΨ̃ > 0.
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B2′. For e ∈ E,
�
Rd
xαψe(x) dx = 0, |α| ≤ rΨ̃ − 1,

(1.14) �
Rd
xαψ̃e(x) dx = 0, |α| ≤ rΨ − 1.

For instance, starting with Meyer’s univariate scaling function and wave-
let (see [M]) one obtains an orthonormal basis of functions from S∞ which
satisfy B1′–B2′ for any selection of the parameters rΨ and MΨ .

We note that ψ0(x) = ϕ(x1) . . . ϕ(xd), ψ̃0(x) = ϕ̃(x1) . . . ϕ̃(xd), and from
B1′,

|(ψ0)(α)(x)| ≤ C(1 + |x|)−MΨ , |α| ≤ rΨ ,
(1.15)

|(ψ̃0)(α)(x)| ≤ C(1 + |x|)−MΨ̃ , |α| ≤ rΨ̃ ,
(no zero moments are required).

If Ψ, Ψ̃ satisfies B1′–B2′ then from (1.6) it becomes clear that the bior-
thogonal family W satisfies assumptions B1–B2, while A′ is inherited by
W from its construction. Therefore, for appropriate smoothness and decay
parameters rΨ , rΨ̃ and MΨ ,MΨ̃ , we see that W forms an unconditional basis
for the homogeneous Triebel–Lizorkin and Besov spaces Ḟ spq and Ḃs

pq.
1.2. Outline of the paper. In §2 we give the definitions of the homo-

geneous Triebel–Lizorkin and Besov spaces and we also give a complete
account of the topology of S ′/Pk, k ∈ N. In §3 we study the boundedness
of matrix operators on the sequence spaces ḟ spq and ḃspq (see definitions be-
low). This type of problems have been studied, in the case of ḟ -spaces, by
Frazier and Jawerth [FJ2] who used duality arguments; here instead we
use a straightforward approach and our assumptions are tailor-made for our
results. In §4 we prove the main results regarding the homogeneous spaces
while the results on the inhomogeneous spaces are briefly presented in §5.
Finally, in Appendix I we present some results related to Calderón’s repro-
ducing formula, while in Appendix II we have included some useful lemmas
which will be used throughout the paper.

2. Triebel–Lizorkin and Besov spaces. Let φ ∈ S be such that the
family of functions φν(·) := 2νdφ(2ν ·), ν ∈ Z, has the following properties:

(i) supp φ̂ν ⊂ {2ν−1 ≤ |ξ| ≤ 2ν+1},
(ii) |φ̂(β)

ν (ξ)| ≤ C2−ν|β|, β ∈ Zd,(2.1)

(iii)
∑

ν∈Z
|φ̂ν(ξ)|2 = 1, ξ ∈ Rd \ {0}.
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For s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, the homogeneous Triebel–Lizorkin
space Ḟ spq is defined to be the set of all f ∈ S ′/P such that

‖f‖Ḟ spq :=
∥∥∥
(∑

ν∈Z
(2νs|φν ∗ f |)q

)1/q∥∥∥
Lp
<∞(2.2)

(with the usual modification for q =∞).
In a similar vein, for s ∈ R, 0 < p, q ≤ ∞, the homogeneous Besov space

Ḃs
pq is defined to be the set of all f ∈ S ′/P such that

‖f‖Ḃspq :=
(∑

ν∈Z
(2νs‖φν ∗ f‖Lp)q

)1/q
<∞.(2.3)

Although the above definitions are independent of φ (different φ’s give
rise to equivalent (quasi)norms), the fact that {φ̂ν}ν∈N is a partition of unity,
in the sense of (2.1)(iii), is of paramount importance in the definition of these
spaces and will play a critical role in what follows. For instance in the case
of L2(Rd), applying the inverse Fourier transform we can easily deduce from
(2.1)(iii) that

∑

ν∈Z
φ̃ν ∗ φν ∗ f = f(2.4)

(φ̃ν(x) := φν(−x)) in the sense of L2(Rd). (2.4) is the so-called Calderón’s
reproducing formula. Trying to explore its meaning in the various function
spaces that we shall consider it is natural to ask whether the series

∑
ν∈Z φ̃ν∗

φν ∗ f is meaningful at least in the distributional sense. It turns out that if
f ∈ S ′ then the sum

∑∞
ν=0 φ̃ν ∗φν ∗f provides no difficulty since it converges

in the sense of S ′. To see this, using the continuity of the Fourier transform
on S ′ and applying the regularity theorem to f̂ ∈ S ′, we find that there
exists r ∈ N such that for every η ∈ S,

|〈f̂ , η̂ 〉| ≤ C
∑

|α|≤r

�
Rd
|ξ|r|η̂(α)(ξ)| dξ.

From this estimate it follows easily that
∑

ν≥0 |〈(φ̃ν ∗ φν ∗ f)∧, η̂〉| <∞ (see
[Pee, p. 52]).

However, the lower part of the series in (2.4), namely
∑

ν<0 φ̃ν ∗ φν ∗ f ,
in general, does not converge in S ′ and then one is forced to consider its
convergence in the space S ′/P. The following instructive example illustrates
this fact:

Example. We let fs, s > 0, be the univariate distribution in (S(R))′

defined by
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〈f̂s, η̂ 〉 :=
s�
0

η̂(ξ)− η̂(0)
ξ

dξ +
∞�
s

η̂(ξ)
ξ

dξ, η ∈ S(R).(2.5)

Let also θ̂ ∈ S(R) be such that θ̂ = 1 for |ξ| ≤ 2, and θ̂ = 0 for |ξ| ≥ 4. From
Parseval’s formula we get

∑

ν≤0

〈φ̃ν ∗ φν ∗ fs, θ〉 =
∑

ν≤0

∞�
0

|φ̂ν(ξ)|2θ̂(ξ)
ξ

dξ =
∑

ν≤0

∞�
0

|φ̂(ξ/2ν)|2
ξ

dξ =∞,

where {φν}ν is the univariate version of (2.1). This demonstrates that the
series

∑
ν≤0 φ̃ν ∗φν ∗ fs does not converge in (S(R))′. A moment’s reflection

reveals however that if we consider the action of
∑

ν≤0 φ̃ν ∗ φν ∗ fs on the
subspace

S0(R) :=
{
η ∈ S(R) :

�
η(x) dx = 0

}
,

then we can get around the singularity at the origin by using the estimate
|η̂(ξ)| ≤ C|ξ| (η̂(0) = 0). In other words, if we consider fs as an element of
the topological dual of S0(R) instead of S(R), then

∑
ν∈Z φ̃ν ∗φν ∗fs defines

a distribution in (S0(R))′ and it is easily seen that
∑

ν∈Z〈φ̃ν ∗ φν ∗ fs, η〉 =
〈fs, η〉 for every η ∈ S0(R), that is,

∑

ν∈Z
φ̃ν ∗ φν ∗ fs = fs in (S0(R))′.(2.6)

Using the Hahn–Banach theorem, we can extend
∑

ν∈Z φ̃ν∗φν∗fs from S0(R)
to a bounded linear functional on S(R), say g ∈ (S(R))′, such that g|S0(R) =
fs|S0(R). The question that arises naturally is whether fs coincides with g as
elements of (S(R))′. To address this, we shall construct such an extension g.
For this we note that the convergence of the series

∑
ν∈Z φ̃ν ∗ φν ∗ fs in

(S0(R))′ is equivalent to the existence of constants CN and C such that

lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ fs + CN

)
= fs + C(2.7)

in the sense of (S(R))′. Thus, we can set

g := lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ fs + CN

)
.

One way of proving (2.7) (see also Lemma 6.2) is to define

cν :=
{

0, ν > 0,

−〈|φ̂ν |2f̂s, θ̂〉, ν ≤ 0,
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where θ is the test function defined above. If η ∈ S(R), then

lim
N→∞

∞∑

ν=−N
〈φ̃ν ∗ φν ∗ fs + cν , η〉

= lim
N→∞

∞∑

ν=−N
(〈(φ̃ν ∗ φν ∗ fs)∧, η̂ 〉+ cν η̂(0))

= lim
N→∞

∞∑

ν=−N

(∞�
0

|φ̂ν(ξ)|2
ξ

η̂(ξ) dξ + cν η̂(0)
)

= lim
N→∞

∞∑

ν=−N

(1�
0

|φ̂ν(ξ)|2
ξ

η̂(ξ) dξ + cν η̂(0) +
∞�
1

|φ̂ν(ξ)|2
ξ

η̂(ξ) dξ
)

= lim
N→∞

0∑

ν=−N

1�
0

|φ̂ν(ξ)|2
ξ

(η̂(ξ)− η̂(0)) dξ +
∞∑

ν=0

∞�
1

|φ̂ν(ξ)|2
ξ

η̂(ξ) dξ

=
1�
0

(η̂(ξ)− η̂(0))
ξ

dξ +
∞�
1

η̂(ξ)
ξ

dξ = 〈f̂1, η̂〉 = 〈f1, η〉,

where in the fifth equality we used Lebesgue’s convergence theorem. This
proves that

lim
N→∞

∞∑

ν=−N
(φ̃ν ∗ φν ∗ fs + cν) = f1,(2.8)

and setting CN =
∑0

ν=−N cν we get

g := lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ fs + CN

)
= f1.(2.9)

However, fs − f1 vanishes on S0(R), and in particular from (2.5) it follows
that for every η ∈ S(R),

〈f̂s − f̂1, η̂〉 = − ln(s)η̂(0),

i.e.,

f1 = fs + ln(s).(2.10)

Putting together (2.9) and (2.10) we get

g = fs + ln(s) in (S(R))′.(2.11)

Another way of writing (2.11) is
∑

ν∈Z
φ̃ν ∗ φν ∗ fs = fs in (S(R))′/P0.(2.12)
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We note that (2.6) and (2.12) are equivalent formulations (see Lemma 6.2
for more details) and in this sense we write (S0(R))′ ≈ (S(R))′/P0.

Since it is possible to construct similar examples with singularity of
higher order at the origin, one is naturally led to the space S∞ and for
a general f ∈ S ′ one has to consider the convergence of

∑
φ̃ν ∗ φν ∗ f in the

sense of (S∞)′. Using the continuity of the Fourier transform on S it is easy
to see that S∞ becomes a complete locally convex space (in the topology
inherited from S). It turns out (see [FJW]) that for every f ∈ S ′,

∑

ν∈Z
φ̃ν ∗ φν ∗ f = f in (S∞)′.

A finer analysis, though, can be given in the cases where a distribution is
in the class of Triebel–Lizorkin or Besov spaces. Let us assume that f ∈ Ḟ spq,
s ∈ R, 0 < p < ∞, 0 < q ≤ ∞ (an identical analysis holds for the Besov
spaces as well). Then, as was noted by Peetre [Pee] (see also [FJ2]), for every
α ∈ Nd,
‖(φ̃ν ∗ φν ∗ f)(α)‖L∞ ≤ C‖φ̃(α)

ν ‖L1‖φν ∗ f‖L∞ ≤ C2ν(|α|+d/p)‖φν ∗ f‖Lp ,
where the second inequality follows from well known estimates on analytic
functions (see [T, p. 22]). It follows that if |α| > s−d/p (|α| = 0 for d/p > s)
then ∑

ν<0

‖(φ̃ν ∗ φν ∗ f)(α)‖L∞ ≤ C sup
ν<0

2νs‖φν ∗ f‖Lp ≤ C‖f‖Ḟ spq ,

which implies that the series
∑

ν∈Z(φ̃ν ∗φν ∗ f)(α) converges in S ′ (if s−d/p
∈ N and 0 < q ≤ 1 in the Ḃs

pq-case, or 0 < p, q ≤ 1 in the Ḟ spq-case, we can
take |a| = s−d/p). Employing now Lemma 6.2, for k := max{[s−d/p],−1},
we can find polynomials PN ∈ Pk (P−1 := {0}) such that the series

g := lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ f + PN

)

converges in S ′. On the other hand we see that supp(ĝ− f̂) = {0}, i.e., there
exists a polynomial P ∈ P such that

g = f + P in S ′.(2.13)

In other words ∑

ν∈Z
φ̃ν ∗ φν ∗ f = f in S ′/P.(2.14)

However, if we identify the equivalence class f + P with its representative
g then the elements of Ḟ spq, Ḃ

s
pq can be regarded as equivalence classes of

distributions modulo polynomials in Pk. Therefore, we may assume that
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Ḟ spq, Ḃ
s
pq ⊂ S ′/Pk (S ′/P−1 := S ′). Under this assumption for every η ∈ Sk

we define
〈f, η〉 :=

∑

ν∈Z
〈φ̃ν ∗ φν ∗ f, η〉,(2.15)

i.e.,
f =

∑

ν∈Z
φ̃ν ∗ φν ∗ f in S ′/Pk.

It is an interesting question, given f ∈ Ḟ spq, to determine the degree of
the polynomial P in (2.13). It turns out (see Proposition 6.3) that if f is of
polynomial growth, that is, if�

Rd
|f(x)|(1 + |x|)−(d+k+1) dx <∞, k ≥ −1,

then indeed P ∈ Pk. Since � |f(x)|(1 + |x|)−d dx ≤ C‖f‖Lp , p > 1, this
observation in particular identifies a distribution f ∈ Lp ≈ Ḟ 0

p2, 1 < p <∞,

with its representative
∑

ν∈Z φ̃ν ∗ φν ∗ f .
More generally, in Proposition 6.3 we show that if f ∈ S ′ satisfies

|〈f, η〉| ≤ C sup
|α|≤N

sup
x∈Rd

(1 + |x|)k|η(α)(x)|, η ∈ S,

for some k,N ∈ N, then
∑

ν∈Z
φ̃ν ∗ φν ∗ f = f in S ′/Pk.

This is for instance the case if f ∈ Hp, 0 < p ≤ 1 (with k = 0, N >
d(1/p− 1)).

The spaces Ḟ spq and Ḃs
pq have been studied extensively, as we already

mentioned, by Frazier and Jawerth in [FJ1], [FJ2]. Using techniques rem-
iniscent of the Shannon sampling theorem, it was shown in [FJ1] that for
every f ∈ S ′,

φ̃ν ∗ φν ∗ f(x) =
∑

I∈Dν
〈f, φI〉φI(x), x ∈ Rd,

where φI(·) := |I|−1/2φ((· − xI)/`(I)). It follows that every distribution f ∈
Ḟ spq (or Ḃs

pq) can be represented in the form

f =
∑

ν∈Z

∑

I∈Dν
〈f, φI〉φI =

∑

I∈D
〈f, φI〉φI ,(2.16)

where the outer summation is considered in the sense of S ′/Pk with k :=
max{[s− d/p],−1}. This is the so-called φ-transform identity.

Moreover, the coefficients

sI(f) := 〈f, φI〉, I ∈ D,
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in (2.16) contain all the necessary information to determine whether a distri-
bution belongs in the class of Triebel–Lizorkin or Besov spaces. In particular,
it was established in [FJ2] that if s ∈ R, 0 < p <∞ and 0 < q ≤ ∞ then

‖f‖Ḟ spq ≈
∥∥∥
(∑

I∈D
(|I|−s/d|sI(f)|χ̃I)q

)1/q∥∥∥
p
,(2.17)

where as before χ̃I := |I|−1/2χI .
Similarly if s ∈ R and 0 < p, q ≤ ∞ (see [FJ1]) then

‖f‖Ḃspq ≈
(∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+(1/p−1/2)|sI(f)|)p

)q/p)1/q
.(2.18)

3. Bounded operators on sequence spaces. In order to prove that
a decomposition system for L2(Rd) constitutes a decomposition system for
the spaces Ḟ spq and Ḃs

pq, we will use the boundedness of operators on the
corresponding sequence spaces ḟ spq and ḃspq. As already mentioned, this type
of questions, regarding the ḟ spq spaces, have been thoroughly studied in [FJ2].
In particular, a proof of Proposition 3.1, based on duality arguments, can be
found in [FJ2]. Nevertheless, for the sake of completeness we present here a
straightforward approach.

We start by recalling the definition of the ḟ spq and ḃspq spaces.

(a) For s ∈ R, 0 < p <∞, and 0 < q ≤ ∞, ḟ spq is defined to be the space
of all sequences h := (hI)I∈D such that

‖h‖ḟspq :=
∥∥∥
(∑

I∈D
(|I|−s/d|hI |χ̃I)q

)1/q∥∥∥
Lp
<∞.

(b) For s ∈ R and 0 < p, q ≤ ∞, ḃspq is defined to be the space of all
sequences h := (hI)I∈D such that

‖h‖ḃspq :=
(∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+1/p−1/2|hI |)p

)q/p)1/q
<∞.

Since the family B = {θeI , θ̃eI : I ∈ D, e ∈ E} forms a decomposition
system for L2(Rd), for every I ∈ D we have

φI =
∑

e∈E

∑

J∈D
ãe(I, J)θeJ , ãe(I, J) := 〈φI , θ̃eJ〉.

Similarly from (2.16), for every e ∈ E, I ∈ D we have

θeI =
∑

J∈D
ae(I, J)φJ , ae(I, J) := 〈θeI , φJ〉.

In essence our results are based on the fact that the transpose of the
transformation matrices of one decomposition system with respect to the
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other,
Ãe := (ãe(I, J))I,J∈D, Ae := (ae(I, J))I,J∈D,

are very close to the identity matrix, and thus, as we shall prove, are bounded
on ḟ spq and ḃspq for appropriate range of the indices s, p, q.

In order to measure the size of the entries of the matrices Ãe,Ae, e ∈ E,
we shall need the following lemma:

Lemma 3.1. Let I, J ∈ D with |J | ≤ |I|. Assume moreover that ηJ , θI
are functions on Rd such that for some r ≥ 1 and M > d+ r,�

Rd
xαηJ(x) dx = 0, |α| ≤ r − 1,(3.1)

|ηJ(x)| ≤ C|J |−1/2
(

1 +
|x− xJ |
`(J)

)−M
,(3.2)

|(θI)(α)(x)| ≤ C|I|−1/2−|α|/d
(

1 +
|x− xI |
`(I)

)−M
, |α| ≤ r.(3.3)

Then

|〈θI , ηJ〉| ≤ C
(
`(J)
`(I)

)r+d/2(
1 +
|xI − xJ |
`(I)

)−M
.

Proof. We refer the reader to [FJ2].

Remark 3.1. In the absence of zero moments, that is, if |J | ≤ |I| and

|ηJ(x)| ≤ C|J |−1/2
(

1 +
|x− xJ |
`(J)

)−M
,

|θI(x)| ≤ C|I|−1/2
(

1 +
|x− xI |
`(I)

)−M
,

with M > d, using arguments similar to the proof of the previous lemma it
is easy to show that

|〈θI , ηJ〉| ≤ C
(
`(J)
`(I)

)d/2(
1 +
|xI − xJ |
`(I)

)−M
.(3.4)

Remark 3.2. It is obvious from the above lemma that the size of
|〈θI , ηJ〉|, when |J | ≤ |I|, depends on the smoothness of θI and the zero
moments of ηJ , while in the case where |J | > |I| the requirements on θI , ηJ
have to be interchanged. For this reason for the rest of the section we shall
assume that for some r1, r2 ∈ N and M > d+ max{r1, r2}, (θI)I∈D, (ηI)I∈D
are families of functions on Rd satisfying�

Rd
θI(x)xα dx = 0, |α| ≤ r1 − 1,(3.5)
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|θ(α)
I (x)| ≤ C|I|−1/2−α/d

(
1 +
|x− xI |
`(I)

)−M
, |α| ≤ r2,(3.6)

�
Rd
ηI(x)xα dx = 0, |α| ≤ r2 − 1,(3.7)

|η(α)
I (x)| ≤ C|I|−1/2−α/d

(
1 +
|x− xI |
`(I)

)−M
, |α| ≤ r1,(3.8)

where (3.5) and (3.7) are void when r1 = 0 or r2 = 0.

Assuming that r1, r2 and M are sufficiently large we shall prove that the
infinite matrix

A := (〈θI , ηJ〉)I,J∈D(3.9)

gives rise to a bounded operator on the ḟ and ḃ spaces.

Proposition 3.1. Let (θI)I∈D, (ηI)I∈D be families of functions satis-
fying (3.5)–(3.8) for some r1, r2 ∈ N and M > d + max{r1, r2}. Let also
0 < p < ∞, 0 < q ≤ ∞, s ∈ R and J := d/min{1, p, q}. If r1 > s,
r2 > J − d − s and M > J then the matrix A in (3.9) defines a bounded
operator on ḟ spq.

Proof. For A to be bounded on ḟ spq it is sufficient to prove that

‖A‖ḟspq→ḟspq := sup
‖h‖ḟspq≤1

‖Ah‖ḟspq <∞.

Let a(I, J) := 〈θI , ηJ〉. Then for every h ∈ ḟ spq,

(Ah)I =
∑

J∈D
a(I, J)hJ ,

where the series is absolutely convergent (see proof below). It follows that

‖Ah‖ḟspq =
∥∥∥
(∑

I∈D
(|I|−s/d|(Ah)I |χ̃I)q

)1/q∥∥∥
Lp

(3.10)

≤
∥∥∥
(∑

I∈D

(
|I|−s/d

∑

J∈D
|a(I, J)| |hJ |χ̃I

)q)1/q∥∥∥
Lp

≤ C(σ1 + σ2),

where

σ1 :=
∥∥∥
(∑

I∈D

(
|I|−s/d

∑

|J |≤|I|
|a(I, J)| |hJ |χ̃I

)q)1/q∥∥∥
Lp
,

σ2 :=
∥∥∥
(∑

I∈D

(
|I|−s/d

∑

|J |>|I|
|a(I, J)| |hJ |χ̃I

)q)1/q∥∥∥
Lp
.
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To estimate σ1, from Lemma 3.1 (or Remark 3.1 for r2 = 0), if |J | ≤ |I|
then

|a(I, J)| ≤ C
(
`(J)
`(I)

)r2+d/2(
1 +
|xI − xJ |
`(I)

)−M
.(3.11)

Let λI := |I|−s/dχ̃I and 0 < t < min{1, p, q} be such that M > d/t and
r2 > d(1/t− 1)− s. Using Lemmas 7.1 and 7.2 we obtain

σ1 ≤ C
∥∥∥∥
(∑

I∈D

( ∑

|J |≤|I|

(
`(J)
`(I)

)r2+d/2(
1 +
|xI − xJ |
`(I)

)−M
|hJ |λI

)q)1/q∥∥∥∥
Lp

= C

∥∥∥∥
(∑

n∈Z

∑

I∈Dn

(∑

m≥n
2(n−m)(r2+d/2)

∑

J∈Dm

(
1 +
|xI − xJ |
`(I)

)−M
|hJ |λI

)q)1/q∥∥∥∥
Lp

≤ C
∥∥∥
(∑

n∈Z

∑

I∈Dn

(∑

m≥n
2(n−m)(r2+d/2−d/t)Mt

( ∑

J∈Dm
|hJ |χJ

)
(x)λI(x)

)q)1/q∥∥∥
Lp

= C
∥∥∥
(∑

n∈Z

(∑

m≥n
2(n−m)(r2+d−d/t+s)Mt

( ∑

J∈Dm
|hJ |λJ

)
(x)
)q)1/q∥∥∥

Lp

≤ C
∥∥∥
(∑

n∈Z

(
Mt

( ∑

I∈Dn
|hI |λI

)
(x)
)q)1/q∥∥∥

Lp
≤ C‖h‖ḟspq ,

where in the last inequality we used (7.1) (t < min{1, p, q}).
When |J | > |I|, by interchanging the roles of ηJ and θI in Lemma 3.1

(or in Remark 3.1 for r1 = 0), we have

|a(I, J)| ≤ C
(
`(I)
`(J)

)r1+d/2(
1 +
|xI − xJ |
`(J)

)−M
.(3.12)

Employing Lemmas 7.2 and 7.1 gives

σ2 ≤ C
∥∥∥∥
(∑

I∈D

( ∑

|J |>|I|

(
`(I)
`(J)

)r1+d/2(
1 +
|xI − xJ |
`(J)

)−M
|hJ |λI

)q)1/q∥∥∥∥
Lp

= C

∥∥∥∥
(∑

n∈Z

∑

I∈Dn

(∑

m<n

2(m−n)(r1+d/2)
∑

J∈Dm

(
1 +
|xI − xJ |
`(J)

)−M
|hJ |λI

)q)1/q∥∥∥∥
Lp

≤ C
∥∥∥
(∑

n∈Z

∑

I∈Dn

(∑

m<n

2(m−n)(r1+d/2)Mt

( ∑

J∈Dm
|hJ |χJ

)
(x)λI(x)

)q)1/q∥∥∥
Lp

= C
∥∥∥
(∑

n∈Z

(∑

m<n

2(m−n)(r1−s)Mt

( ∑

J∈Dm
|hJ |λJ

)
(x)
)q)1/q∥∥∥

Lp

≤ C
∥∥∥
(∑

n∈Z

(
Mt

( ∑

I∈Dn
|hI |λI

)
(x)
)q)1/q∥∥∥

Lp
≤ C‖h‖ḟspq ,
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where in the fourth inequality we used the inequality r1 > s. Employing the
two estimates for σ1 and σ2 in (3.10) yields the result.

Turning now our attention to the Besov spaces we have the following:

Proposition 3.2. Let (θI)I∈D, (ηI)I∈D be families of functions satis-
fying (3.5)–(3.8) for some r1, r2 ∈ N and M > d + max{r1, r2}. Assume
moreover that 0 < p, q ≤ ∞, s ∈ R and J := d/min{1, p}. If r1 > s,
r2 > J − d − s and M > J then the matrix A in (3.9) defines a bounded
operator on ḃspq.

Proof. We shall treat only the cases where 0 < p, q < ∞; when p = ∞
or q =∞ the result follows similarly. We need to prove that

‖A‖ḃspq→ḃspq := sup
‖h‖ḃspq≤1

‖Ah‖ḃspq <∞.(3.13)

Let a(I, J) := 〈θI , ηJ〉 and h ∈ ḃspq. To simplify our notation we define

γ := s/d− (1/p− 1/2) and h̃J := |J |−γhJ . Since (Ah)I =
∑

J∈D a(I, J)hJ ,

‖Ah‖ḃspq =
∑

m∈Z

( ∑

I∈Dm
(|I|−γ|(Ah)I |)p

)q/p

≤
∑

m∈Z

( ∑

I∈Dm

(∑

J∈D
(|J |/|I|)γ|a(I, J)| |h̃J |

)p)q/p
≤ C(σq1 + σq2),

with

σ1 :=
(∑

m∈Z

( ∑

I∈Dm

( ∑

|J |≤|I|
(|J |/|I|)γ|a(I, J)| |h̃J |

)p)q/p)1/q
,

σ2 :=
(∑

m∈Z

( ∑

I∈Dm

( ∑

|J |>|I|
(|J |/|I|)γ|a(I, J)| |h̃J |

)p)q/p)1/q
.

Case I: 1 ≤ p <∞. For σ1 using (3.11) (or (3.4) for r2 = 0), Minkowski’s
inequality and Lemmas 7.2 and 7.4 we get

σq1 ≤
∑

m∈Z

( ∑

I∈Dm

(∑

n≥m

∑

J∈Dn
(|J |/|I|)γ|a(I, J)| |h̃J |

)p)q/p

≤
∑

m∈Z

( ∑

I∈Dm

(∑

n≥m

∑

J∈Dn
(|J |/|I|)γ+r2/d+1/2

(
1 +
|xI − xJ |
`(I)

)−M
|h̃J |

)p)q/p

≤ C
∑

m∈Z

(∑

n≥m
2(m−n)(dγ+r2+d/2)

×
( ∑

I∈Dm

( ∑

J∈Dn

(
1 +
|xI − xJ |
`(I)

)−M
|h̃J |

)p)1/p)q
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≤ C
∑

m∈Z

(∑

n≥m
2(m−n)(dγ+r2−d/2+d/p)

( ∑

J∈Dn
|h̃J |p

)1/p)q

≤ C
∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+(1/p−1/2)|hI |)p

)q/p
,

since dγ + r2 − d/2 + d/p = r2 + s > 0.
Similarly, using (3.12) (or (3.4) for r1 = 0), Minkowski’s inequality and

Lemma 7.5 we obtain

σq2 ≤
∑

m∈Z

( ∑

I∈Dm

(∑

n<m

∑

J∈Dn
(|J |/|I|)γ|a(I, J)| |h̃J |

)p)q/p

≤
∑

m∈Z

( ∑

I∈Dm

(∑

n<m

∑

J∈Dn
(|J |/|I|)γ−r1/d−1/2

(
1 +
|xI − xJ |
`(J)

)−M
|h̃J |

)p)q/p

≤ C
∑

m∈Z

(∑

n<m

2(m−n)(dγ−r1−d/2)

×
( ∑

I∈Dm

( ∑

J∈Dn

(
1 +
|xI − xJ |
`(J)

)−M
|h̃J |

)p)1/p)q

≤ C
∑

m∈Z

(∑

n<m

2(m−n)(dγ−r1−d/2+d/p)
( ∑

J∈Dn
|h̃J |p

)1/p)q

≤ C
∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+(1/p−1/2)|hI |)p

)q/p
,

where in the last inequality we applied Lemma 7.2 (dγ − r1 − d/2 + d/p =
s− r1 < 0). Putting the estimates for σ1 and σ2 together we find that (3.13)
holds for 1 ≤ p <∞.

Case II: p ≤ 1. Similarly to the previous case,

σq1 ≤ C
∑

m∈Z

( ∑

J∈Dn

∑

n≥m

∑

I∈Dm
2(m−n)(r2+d/2+γd)p

(
1 +
|xI − xJ |
`(I)

)−Mp

|h̃J |p
)q/p

≤ C
∑

m∈Z

( ∑

J∈Dn

∑

n≥m
2(m−n)(r2+d/2+γd)p|h̃J |p

)q/p

= C
∑

m∈Z

(∑

n≥m
2(m−n)(r2+s−d(1/p−1))p

∑

J∈Dn
|h̃J |p

)q/p

≤ C
∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+(1/p−1/2)|hI |)p

)q/p
,

where in the last inequality we used the inequality r2 > J − d− s.
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Finally, from Lemmas 7.2 and 7.3,

σq2 ≤ C
∑

m∈Z

(∑

n<m

∑

J∈Dn

∑

I∈Dm
2(n−m)(r1+d/2−γd)p

(
1 +
|xI − xJ |
`(J)

)−Mp

|h̃J |p
)q/p

≤ C
∑

m∈Z

(∑

n<m

∑

J∈Dn
2(n−m)(r1+d/2−γd)p2(m−n)d|h̃J |p

)q/p

= C
∑

m∈Z

(∑

n<m

2(n−m)(r1−s)p
∑

J∈Dn
|h̃J |p

)q/p

≤ C
∑

m∈Z

( ∑

I∈Dm
(|I|−s/d+(1/p−1/2)|hI |)p

)q/p
.

This concludes the proof of (3.13).

4. Main results. In this section we shall establish our main charac-
terizations of the Triebel–Lizorkin and Besov spaces. We recall from the
introduction that S−1 := S and that S ′/P−1 := S ′.

Theorem 4.1. Let s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, J := d/min{1, p, q}
and k = max{[s−d/p],−1}. Let also θeI , θ̃

e
I , I ∈ D, e ∈ E, be a decomposition

system for L2(Rd) satisfying (1.1) and (1.2) for some rΘ, rΘ̃ ∈ N with rΘ
> s, rΘ̃ > J − d − s and MΘ,MΘ̃ > max{J , d + rΘ, d + rΘ̃}. Then, for
every f ∈ Ḟ spq,

f =
∑

e∈E

∑

I∈D
ãeI(f)θeI , where ãeI(f) = 〈f, θ̃eI〉,(4.1)

in the sense of S ′/Pk (and in Ḟ spq for q 6=∞). Moreover ,

‖f‖Ḟ spq ≈
∑

e∈E
‖(ãeI(f))I‖ḟspq .(4.2)

Adapting the above theorem to the case of biorthogonal wavelet bases
for L2(Rd) we immediately get

Proposition 4.1. Let s∈R, 0<p<∞, 0<q≤∞, J := d/min{1, p, q}
and k = max{[s − d/p],−1}. Let also Ψ, Ψ̃ be dual wavelet sets for L2(Rd)
satisfying (1.13) and (1.14) for some rΨ , rΨ̃ ∈ N+ with rΨ > s, rΨ̃ > J −d−s
and MΨ ,MΨ̃ > max{J , d+ rΨ , d+ rΨ̃}. Then, for every f ∈ Ḟ spq, there exist
unique coefficients

c̃eI (f) := 〈f, ψ̃eI〉, e ∈ E, I ∈ D,(4.3)

such that
f =

∑

e∈E

∑

I∈D
c̃eI (f)ψeI(4.4)
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in the sense of S ′/Pk (and in Ḟ spq for q 6=∞). Moreover ,

‖f‖Ḟ spq ≈
∑

e∈E
‖(c̃eI (f))I‖ḟspq .(4.5)

As far as the Besov spaces are concerned we shall prove:

Theorem 4.2. Let s ∈ R, 0 < p, q ≤ ∞, J := d/min{1, p} and k =
max{[s−d/p],−1}. Let also θeI , θ̃

e
I , I ∈ D, e ∈ E, be a decomposition system

for L2(Rd) satisfying (1.1) and (1.2) for some rΘ, rΘ̃ ∈ N with rΘ > s,
rΘ̃ > J − d − s and MΘ,MΘ̃ > max{J , d + rΘ, d + rΘ̃}. Then, for every
f ∈ Ḃs

pq,

f =
∑

e∈E

∑

I∈D
ãeI(f)θeI , where ãeI(f) = 〈f, θ̃eI〉,

in the sense of S ′/Pk (and in Ḃs
pq for p, q 6=∞). Moreover ,

‖f‖Ḃspq ≈
∑

e∈E
‖(ãeI(f))I‖ḃspq .(4.6)

Applying this theorem to biorthogonal wavelet bases we get

Proposition 4.2. Let s ∈ R, 0 < p, q ≤ ∞, J := d/min{1, p} and k =
max{[s− d/p],−1}. Let also Ψ, Ψ̃ be dual wavelet sets for L2(Rd) satisfying
(1.13) and (1.14) for some rΨ , rΨ̃ ∈ N+ with rΨ > s, rΨ̃ > J − d − s and
MΨ ,MΨ̃ > max{J , d + rΨ , d + rΨ̃}. Then, for every f ∈ Ḃs

pq, there exist
unique coefficients c̃eI (f), e ∈ E, I ∈ D, given by (4.3) such that

f =
∑

e∈E

∑

I∈D
c̃eI (f)ψeI

in the sense of S ′/Pk (and in Ḃs
pq for p, q 6=∞). Moreover ,

‖f‖Ḃspq ≈
∑

e∈E
‖(c̃eI (f))I‖ḃspq .(4.7)

For the proofs of Theorems 4.1, 4.2, we shall need the following lemmas:

Lemma 4.1. Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞, J := d/min{1, p, q} and
k = max{[s− d/p], − 1}. If (θI)I∈D satisfies (3.5)–(3.6) for some r1, r2 ∈ N
with r1 > J − d− s, r2 > s and M > max{J , d+ r1, d+ r2}, then for every
d := (dI) ∈ ḟ spq the series

∑
I∈D dIθI converges in S ′/Pk (and in Ḟ spq for

q 6=∞) and ∥∥∥
∑

I∈D
dIθI

∥∥∥
Ḟ spq
≤ C‖d‖ḟspq .(4.8)

Proof. Let η ∈ Sk. Employing Lemma 3.1 (or Remark 3.1 for k = −1 or
r1 = 0), we find that for |I| > 1,
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|〈θI , η〉| ≤ C`(I)−(k+1+d/2)
(

1 +
|xI |
`(I)

)−M
,(4.9)

while for |I| ≤ 1,

|〈θI , η〉| ≤ C`(I)r1+d/2(1 + |xI |)−M .(4.10)

Then ∣∣∣
∑

I∈D
dI〈θI , η〉

∣∣∣ ≤
∑

|I|>1

|dI | |〈θI , η〉|+
∑

|I|≤1

|dI | |〈θI , η〉| =: σ1 + σ2.

Using the fact that |dI | ≤ C|I|s/d+1/2−1/p for every I ∈ D, we get

σ1 ≤ C
∑

|I|>1

|I|s/d+1/2−1/p−(k+1)/d−1/2(1 + |xI |/`(I))−M

≤ C
∑

m≥0

2m(s−k−1−d/p) ∑

I∈Dm
(1 + |xI |/`(I))−M

≤ C
∑

m≥0

2m(s−k−1−d/p) <∞,

because k + 1 > s− d/p.
To estimate σ2 we will use the maximal operator Mt defined by

Mt(f)(x) :=
(

sup
Q3x
|Q|−1

�
Q

|f(y)|t dy
)1/t

,

where the sup is taken over all cubes Q (containing x) with sides parallel
to the axes, and t is selected so that 0 < t < min{1, p, q}, M > d/t, and
r1 > d/t− d− s. Using Lemma 7.1 from Appendix II we infer that for every
x in the unit cube I0,

σ2 = C
∑

|I|≤1

|I|r1/d+1/2|dI |(1 + |xI |)−M

≤ C
∑

m≥0

2−m(r1+d/2)
∑

I∈Dm
|dI |(1 + |xI |)−M

≤ C
∑

m≥0

2−m(r1+d/2−d/t)Mt

( ∑

I∈Dm
|dI |χI

)
(x).

We let λI := |I|−s/d−1/2χI . Since r1 > d/t− d− s, for x ∈ I0 we have

σ2 ≤ C
∑

m≥0

2−µ(r1+s+d−d/t)Mt

( ∑

I∈Dm
|dI |λI

)
(x)

≤ C sup
m≥0

Mt

( ∑

I∈Dm
|dI |λI

)
(x) ≤ C

(∑

m≥0

(
Mt

( ∑

I∈Dm
|dI |λ̃I

)
(x)
)q)1/q

.
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Taking the Lp(I0) norm and using the maximal inequality (7.1) we get

σ2 ≤ C
∥∥∥
(∑

m≥0

(
Mt

( ∑

I∈Dm
|dI |λ̃I

))q)1/q∥∥∥
Lp(I0)

≤ C‖d‖ḟspq <∞.

Thus, the series f :=
∑

I∈D dIθI converges in S ′/Pk.
It remains to prove (4.8). If c(I, J) := 〈θI , φJ〉, from the above we find

sJ := sJ(f) := 〈f, φJ 〉 =
∑

I∈D
dI〈θI , φJ〉 =

∑

I∈D
dIc(I, J), J ∈ D.

In other words if ς := (sJ) and C := (c(I, J))I,J∈D, we have

ς = CTd.

By Proposition 3.1, CT is bounded on ḟ spq. Therefore, using (2.17), we have

‖f‖Ḟ spq ≈ ‖ς‖ḟspq = ‖CTd‖ḟspq ≤ C‖d‖ḟspq .
Finally we note that once (4.8) has been established it follows that for q 6=∞
the series

∑
I∈D dIθI converges in the sense of Ḟ spq, since its tail

∑
|I|≥N dIθI

converges strongly to 0 as N →∞.

Lemma 4.2. Let s ∈ R, 0 < p, q ≤ ∞, J := d/min{1, p} and k :=
max{[s− d/p],−1}. If (θI)I∈D satisfies (3.5)–(3.6) for some r1, r2 ∈ N with
r1 > J − d − s, r2 > s and M > max{J , d + r1, d + r2}, then for every
d := (dI) ∈ ḃspq the series

∑
I∈D dIθI converges in S ′/Pk (and in Ḃs

pq for
p, q 6=∞) and ∥∥∥

∑

I∈D
dIθI

∥∥∥
Ḃspq
≤ C‖d‖ḃspq .(4.11)

Proof. The proof of (4.11) is identical to the one of (4.8) since under
our assumptions the matrix CT is bounded on ḃspq. Therefore, we need only
establish that the series

∑
I∈D dIθI converges in S ′/Pk. For this, we note

that for every η ∈ Sk,∣∣∣
∑

I∈D
dI〈θI , η〉

∣∣∣ ≤
∑

|I|>1

|dI | |〈θI , η〉|+
∑

|I|≤1

|dI | |〈θI , η〉| =: σ1 + σ2.

Since d ∈ ḃspq, we have |dI | ≤ C|I|s/d+1/2−1/p, I ∈ D, and the proof of
Lemma 4.1 shows immediately that σ1 <∞.

For σ2, we will consider two cases.

Case I: 0 < p ≤ 1. We have

σ2 ≤
∑

|I|≤1

|I|r1/d+1/2|dI |(1 + |xI |)−M

≤
∑

m≥0

2−m(r1+s+d−d/p) ∑

I∈Dm
|I|−s/d−1/2+1/p|dI |



Decomposition systems for function spaces 155

≤ sup
m≥0

( ∑

I∈Dm
(|I|−s/d−1/2+1/p|dI |)p

)1/p
≤ C‖d‖ḃspq <∞,

where we used r1 > J − d− s and
∑ |xj | ≤ (

∑ |xj|p)1/p, 0 < p ≤ 1.

Case II: p > 1. From Hölder’s inequality and
∑

I∈Dm
(1 + |xI |)−M ≤ C2md, m ≥ 0, M > d,

we obtain

σ2 =
∑

|I|≤1

|I|r1/d+1/2|dI |(1 + |xI |)−M

≤
∑

m≥0

2−m(r1+d/2)
( ∑

I∈Dm
|dI |p

)1/p( ∑

I∈Dm
(1 + |xI |)−Mp′

)1/p′

≤ C
∑

m≥0

2−m(r1+d/2−d/p′)
( ∑

I∈Dm
|dI |p

)1/p

= C
∑

m≥0

2−m(r1+s)
( ∑

I∈Dm
(|I|−s/d−1/2+1/p|dI |)p

)1/p
≤ C‖d‖ḃspq <∞,

where 1/p′ := 1− 1/p. This concludes the proof of the lemma.

Remark 4.1. Assuming that (dI)I∈D and (θI)I∈D satisfy the assump-
tions of Lemma 4.1 (or Lemma 4.2), it is obvious from its proof that the
series

∑
I∈D dI〈θI , η〉 converges not only for η ∈ Sk, k := max{[s−d/p],−1},

but for any function η which has k zero moments and satisfies

|η(α)(x)| ≤ C(1 + |x|)−M , |α| ≤ r1

(with r1,M as in Lemma 4.1 or Lemma 4.2). Therefore if f :=
∑

I∈D dIθI
we may define

〈f, η〉 :=
∑

I∈D
dI〈θI , η〉.

Remark 4.2. When s− d/p ∈ N and 0 < p, q ≤ 1 it can be shown that
the series

∑
I∈D dIθI in Lemma 4.1 converges in S ′/Pk with k = s−d/p−1

and as a consequence the same holds for the series in Theorem 4.1 and
the wavelet series in Proposition 4.1. A similar result holds, in the case
of Besov spaces, regarding the convergence of the corresponding series in
Lemma 4.2, Theorem 4.2 and the wavelet series in Proposition 4.2, under
the assumptions that s− d/p ∈ N and 0 < q ≤ 1.

For every e ∈ E we recall from §3 the matrices

Ãe := (ãe(I, J))I,J∈D, where ãe(I, J) = 〈φI , θ̃eJ〉,(4.12)

Ae := (ae(I, J))I,J∈D, where ae(I, J) = 〈θeI , φJ〉.(4.13)
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Corollary 4.1. Let θeI , θ̃
e
I , I ∈ D, e ∈ E, satisfy the assumptions of

Theorem 4.1 (or Theorem 4.2). Then

φI =
∑

e∈E

∑

J∈D
〈φI , θ̃eJ〉θeJ , I ∈ D,(4.14)

where the convergence is in S ′, as well as in Ḟ spq (resp. Ḃs
pq) for p, q 6=∞.

Proof. Since B is a decomposition system for L2(Rd), (4.14) holds im-
mediately in the L2 sense and consequently in the distributional sense. To
show that the convergence of the series also holds in the sense of Ḟ or Ḃ
spaces, it is sufficient by Lemmata 4.1, 4.2 to show that for each I ∈ D
and e ∈ E the sequence (ãe(I, J))J is in ḟ spq (or ḃspq). For this we define the
sequence δI := (δI,J) by

δI,J :=
{

1, I = J ,

0, I 6= J.

Then (ãe(I, J))J = ÃT
e δ

I . By Proposition 3.1 (or 3.2), ÃT
e is bounded on

ḟ spq (or ḃspq) and consequently (ãe(I, J))J ∈ ḟ spq (resp. ∈ ḃspq).
Proof of Theorem 4.1. We are going to establish that for every f ∈ Ḟ spq,

f =
∑

e∈E

∑

J∈D
〈f, θ̃eJ 〉θeJ ,(4.15)

‖f‖Ḟ spq ≈
∑

e∈E
‖(ãeI(f))I‖ḟspq .(4.16)

From (2.16) and Corollary 4.1 we get

f =
∑

I∈D
sI(f)φI =

∑

I∈D

∑

e∈E

∑

J∈D
sI(f)ãe(I, J)θeJ(4.17)

=
∑

e∈E

∑

J∈D

∑

I∈D
sI(f)ãe(I, J)θeJ

=
∑

e∈E

∑

J∈D

∑

I∈D
〈f, φI〉〈φI , θ̃eJ〉θeJ =

∑

e∈E

∑

J∈D
〈f, θ̃eJ〉θeJ ,

where all identities above are considered in the distributional sense. To
justify the third equality, we note that the assumptions of the theorem
guarantee that for every e ∈ E the matrix ÃT

e is bounded on ḟ spq. Since
ς := (sI(f))I ∈ ḟ spq, the sequence (deJ) := (

∑
I∈D |ãe(I, J)| |sI(f)|)J belongs

in ḟ spq. Finally, for every η ∈ Sk with k := max{[s − d/p],−1}, as in the
proof of Lemma 4.1 we have∑

J∈D
|deJ | |〈θeJ , η〉| <∞,

which allows us to interchange the order of the summations.
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Next, we will prove the norm equivalence (4.16). From (4.17) we get

sI(f) =
∑

e∈E

∑

J∈D
〈f, θ̃eJ 〉〈θeJ , φI〉 =

∑

e∈E

∑

J∈D
ae(J, I)ãeJ(f), I ∈ D.(4.18)

Setting ãe := (ãeI(f))I we can rewrite (4.18) in the form

ς =
∑

e∈E
AT
e ãe.

Similarly

ãeI(f) =
∑

J∈D
ãe(J, I)sJ(f), I ∈ D, e ∈ E,

i.e.,
ãe = ÃT

e ς, e ∈ E.
Since by Proposition 3.1, ÃT

e , AT
e , e ∈ E, are bounded on ḟ spq it follows that

‖ς‖ḟspq =
∥∥∥
∑

e∈E
AT
e ãe

∥∥∥
ḟspq
≤ C

∑

e∈E
‖AT

e ãe‖ḟspq ≤ C
∑

e∈E
‖ãe‖ḟspq

= C
∑

e∈E
‖ÃT

e s‖ḟspq ≤ C‖ς‖ḟspq .

This concludes the proof of the theorem.

Proof of Theorem 4.2. The proof is identical to that of Theorem 4.1,
one only needs to change ḟ spq to ḃspq and use Proposition 3.2 and Lemma 4.2
instead of Proposition 3.1 and Lemma 4.1.

5. Inhomogeneous spaces. As we already stated in the introduction,
the results of the previous section hold for the inhomogeneous Triebel–
Lizorkin and Besov spaces as well. For notational reasons we present them
here only within the framework of the biorthogonal wavelet bases W0 de-
scribed in the introduction. Since the proofs of these results are identical
to the ones already given, we restrict ourselves to highlighting the only dif-
ference in the assumptions on the wavelet sets W and W0, namely the fact
that the wavelets ψ0, ψ̃0 do not satisfy the zero moments condition B2′.

For the definition of these spaces we start with the family of functions
φν , ν ∈ Z, which satisfies (2.1)(i), (ii) and we define a function Φ ∈ S such
that supp Φ̂ ⊂ {ξ : |ξ| ≤ 2} and

|Φ̂(ξ)|2 +
∑

ν≥1

|φ̂ν(ξ)|2 = 1.(5.1)

For s ∈ R, 0 < p <∞, 0 < q ≤ ∞, the inhomogeneous Triebel–Lizorkin
space F spq is defined to be the set of all f ∈ S ′ such that
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‖f‖F spq := ‖f ∗ Φ‖Lp +
∥∥∥
(∑

ν≥1

(2νs|φν ∗ f |)q
)1/q∥∥∥

Lp
<∞(5.2)

(with the usual modification for q =∞).
Similarly for s ∈ R, 0 < p, q ≤ ∞, the inhomogeneous Besov space Bs

pq

is defined to be the set of all f ∈ S ′ such that

‖f‖Bspq := ‖f ∗ Φ‖Lp +
(∑

ν≥1

(2νs‖φν ∗ f‖Lp)q
)1/q

<∞.(5.3)

From (5.1) one can prove that for every f ∈ S ′,
f = Φ̃ ∗ Φ ∗ f +

∑

ν≥1

φ̃ν ∗ φν ∗ f

in the sense of S ′ (Φ̃(x) := Φ(−x)). Also, similarly to (2.16),

f =
∑

|I|=1

〈f, ΦI〉ΦI +
∑

|I|<1

〈f, φI〉φI .(5.4)

Let us now define the sequence ς := (sI)I∈D+ with

sI := sI(f) :=
{ 〈f, ΦI〉, |I| = 1,

〈f, φI〉, |I| < 1.

It turns out that f ∈ F spq if and only if ς ∈ f spq, where for any sequence
h := (hI)I∈D+ and s ∈ R, 0 < p <∞, 0 < q ≤ ∞,

‖h‖fspq :=
∥∥∥
( ∑

I∈D+

(|I|−s/d|hI |χ̃I)q
)1/q∥∥∥

Lp
<∞.

In particular it was shown in [FJ2] that

‖f‖F spq ≈ ‖ς‖fspq .(5.5)

Similarly, membership in Bs
pq, s ∈ R, 0 < p, q ≤ ∞, can be determined

by the size of the sequence ς measured in the (quasi)norm ‖ · ‖bspq defined by

‖h‖bspq :=
(∑

m≥0

( ∑

I∈Dm
(|I|−s/d+1/p−1/2|hI |)p

)q/p)1/q
<∞.

In other words (see [FJ1]),

‖f‖Bspq ≈ ‖ς‖bspq .(5.6)

We are now ready to state the main results of the section:

Proposition 5.1. Let s∈R, 0<p<∞, 0<q≤∞, J :=d/min{1, p, q}.
Let also Ψ, Ψ̃ be dual wavelet sets for L2(Rd) which satisfy (1.13) and (1.14)
for some rΨ , rΨ̃ ∈ N+ with rΨ > s, rΨ̃ > J − d− s and MΨ ,MΨ̃ > max{J ,
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d+ rΨ , d+ rΨ̃}. Then, for every f ∈ F spq, there exist unique coefficients

c̃eI (f) := 〈f, ψ̃eI〉, e ∈ E0, I ∈ D+,(5.7)

such that
f =

∑

I∈D0

c̃0
I (f)ψ0

I +
∑

e∈E

∑

I∈D+

c̃eI (f)ψeI(5.8)

in the sense of S ′ (and in F spq for q 6=∞). Moreover ,

‖f‖F spq ≈
( ∑

I∈D0

|c̃0
I (f)|p

)1/p
+
∑

e∈E
‖(c̃eI (f))I‖fspq .(5.9)

Proposition 5.2. Let s ∈ R, 0 < p, q ≤ ∞, J := d/min{1, p}. Let also
Ψ, Ψ̃ be dual wavelet sets for L2(Rd) which satisfy (1.13) and (1.14) for some
rΨ , rΨ̃ ∈ N+ with rΨ > s, rΨ̃ > J − d − s and MΨ ,MΨ̃ > max{J , d + rΨ ,
d + rΨ̃}. Then, for every f ∈ Bs

pq, there exist unique coefficients c̃eI (f),
e ∈ E0, I ∈ D+, given by (5.7) such that

f =
∑

I∈D0

c̃0
I (f)ψ0

I +
∑

e∈E

∑

I∈D+

c̃eI (f)ψeI(5.10)

in the sense of S ′ (and in Bs
pq for p, q 6=∞). Moreover ,

‖f‖Bspq ≈
( ∑

I∈D0

|c̃0
I (f)|p

)1/p
+
∑

e∈E
‖(c̃eI (f))I‖bspq .(5.11)

Since the family

W0 = {ψ0
I , ψ̃

0
I : I ∈ D0} ∪ {ψeI , ψ̃eI : I ∈ D+, e ∈ E},

forms an unconditional basis for L2(Rd), for every I ∈ D0 we have

ΦI =
∑

J∈D0

ã0(I, J)ψ0
J +

∑

e∈E

∑

J∈D+

ãe(I, J)ψeJ ,

and similarly for |I| < 1,

φI =
∑

J∈D0

ã0(I, J)ψ0
J +

∑

e∈E

∑

J∈D+

ãe(I, J)ψeJ ,

where for e ∈ E,

ãe(I, J) :=

{
〈ΦI , ψ̃eJ〉, |I| = 1, |J | ≤ 1,

〈φI , ψ̃eJ 〉, |I| < 1, |J | ≤ 1,

while

ã0(I, J) :=





〈ΦI , ψ̃0
J 〉, |I| = 1, |J | = 1,

〈φI , ψ̃0
J 〉, |I| < 1, |J | = 1,

0, |I| ≤ 1, |J | < 1.
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Similarly, using (5.4), for every e ∈ E0, I ∈ D+ we have

ψeI =
∑

|J |=1

ae(I, J)ΦJ +
∑

|J |<1

ae(I, J)φJ ,

where for e ∈ E,

ae(I, J) :=
{ 〈ψeI , ΦJ〉, |I| ≤ 1, |J | = 1,

〈ψeI , φJ〉, |I| ≤ 1, |J | < 1,

and

a0(I, J) :=





〈ψ0
I , ΦJ〉, |I| = 1, |J | = 1,

〈ψ0
I , φJ〉, |I| = 1, |J | < 1,

0, |I| < 1, |J | ≤ 1.

Similarly to Propositions 4.1, 4.2, we note that the proofs of both proposi-
tions above are based on the fact that the transposes of the transformation
matrices

Ãe := (ãe(I, J))I,J∈D+ , Ae := (ae(I, J))I,J∈D+ , e ∈ E0,

are bounded on f spq and bspq, for the range of the indices s, p, q given above.
To prove this, one has essentially to establish the inhomogeneous versions of
Propositions 3.1, 3.2. Going a step further, we note that in order to estimate
the size of the entries of the above matrices one uses Lemma 3.1 and the only
point of possible concern is that ψ0, ψ̃0 and Φ do not have any vanishing
moments. However, we recall (see Remark 3.2) that the size of |〈θI , ηJ〉|
when |J | ≤ |I| depends on the zero moments of ηJ and the smoothness
of θI . Taking a closer look at the above matrices we see that, indeed, all
three functions ψ0, ψ̃0 and Φ are indexed only by D0 and thus will play the
role of θI , except for 〈ψ0

I , ΦJ〉 or 〈ΦI , ψ̃0
J 〉 with I, J ∈ D0, in which case one

has to use Remark 3.1.

6. Appendix I: Calderón’s formula. Our goal is to shed some light
on the reproduction formula (2.4). For η ∈ S it is not hard to see that

∑

ν∈Z
φ̃ν ∗ φν ∗ η(x) = η(x), x ∈ Rd.(6.1)

Indeed, since η, η̂ ∈ L1(Rd), by Fourier inversion, for every x ∈ Rd and
N,K ≥ 0,

lim
N,K→∞

∣∣∣
∑

−N≤ν≤K
φ̃ν ∗ φν ∗ η(x)− η(x)

∣∣∣

≤ lim
N,K→∞

�
Rd

(
1−

∑

−N≤ν≤K
|φ̂ν(ξ)|2

)
|η̂(ξ)| dξ = 0,

where the last equality holds by Lebesgue’s convergence theorem.
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Lemma 6.1. Suppose that η ∈ Sk with k ≥ −1 (S−1 := S). Then there
exists a constant C such that∑

ν∈Z
|φ̃ν ∗ φν ∗ η(x)| ≤ C(1 + |x|)−(d+k+1), x ∈ Rd.(6.2)

Proof. Use the fact that if ν > 0 then

|φ̃ν ∗ φν ∗ η(x)| ≤ C2−ν(1 + |x|)−M , x ∈ Rd,(6.3)

while for ν ≤ 0,

|φ̃ν ∗ φν ∗ η(x)| ≤ C2ν(d+k+1)(1 + 2ν |x|)−M , x ∈ Rd,(6.4)

for any M > 0. We leave the details to the reader and we refer to [FJW,
Appendix III] for the proof of the continuous version of this lemma.

Proposition 6.1. Let k ≥ −1 and f ∈ S ′ be such that�
Rd
|f(x)|(1 + |x|)−(d+k+1) dx <∞.

Then ∑

ν∈Z
φ̃ν ∗ φν ∗ f = f

in the sense of (Sk)′.
Proof. Let η ∈ Sk. Since 〈φ̃ν ∗ φν ∗ f, η〉 = 〈f, φ̃ν ∗ φν ∗ η〉 we need to

establish that

lim
N,K→∞

�
Rd
f(x) η(x)−

∑

−N≤ν≤K
φ̃ν ∗ φν ∗ η(x) dx = 0.(6.5)

From (6.1),
∣∣∣

�
Rd
f(x) η(x)−

∑

−N≤ν≤K
φ̃ν ∗ φν ∗ η(x) dx

∣∣∣

≤
�
Rd
|f(x)|

( ∑

ν<−N
+
∑

ν>K

)
|φ̃ν ∗ φν ∗ η(x)| dx

=
�
Rd

|f(x)|
(1 + |x|)d+k+1 gN,K(x) dx,

where gN,K(x) := (1+ |x|)d+k+1(
∑

ν<−N +
∑

ν>K)|φ̃ν ∗φν ∗η(x)|. Moreover,
from (6.2),

lim
N,K→∞

gN,K(x) = 0.

Applying Lebesgue’s convergence theorem yields the result.

For each η ∈ S and k,N ∈ N we define
pk,N (η) := sup

|α|≤N
sup
x∈Rd

(1 + |x|)k|η(α)(x)|.

A useful consequence of Proposition 6.1 is the following:
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Proposition 6.2. Let k,N ∈ N and suppose that f ∈ S ′ is such that

|〈f, η〉| ≤ Cpk,N (η), η ∈ S.(6.6)

Then ∑

ν∈Z
φ̃ν ∗ φν ∗ f = f

in the sense of (Sk)′.
Proof. Let

Φ̂ := 1−
∑

ν≥0

|φ̂ν |2.

Since
∑

ν∈N |φ̂ν(ξ)| = 1, ξ 6= 0,

f = f ∗ Φ+
∑

ν≥0

φ̃ν ∗ φν ∗ f =: f1 + f2.

From our discussion in §2 we know that
∑

ν∈Z
φ̃ν ∗ φν ∗ f2 =

∑

ν≥−1

φ̃ν ∗ φν ∗ f2 = f2 in S ′.

Thus, it is sufficient to show that
∑

ν∈Z
φ̃ν ∗ φν ∗ f1 = f1 in (Sk)′.

However (6.6) implies that f1 is of polynomial growth and in particular
|f1(x)| ≤ C|x|k (see [R, p. 179]). The statement now follows immediately
from Proposition 6.1.

For the next lemma it is useful to observe that an equivalent definition
for Sk, k ∈ N, is given by

Sk := {η ∈ S : η̂(α)(0) = 0, |α| ≤ k}.
(This follows from the identity � xαη(x) dx = x̂αη(0) = (−i)−|α|η̂(α)(0).)

Lemma 6.2. Let f ∈ S ′ and k ≥ −1. Then the following are equivalent :

(i)
∑

ν∈Z φ̃ν ∗ φν ∗ f = g in (Sk)′.
(ii) There exist polynomials PN , P ∈ Pk such that

lim
N→∞

∞∑

ν=−N
φ̃ν ∗ φν ∗ f + PN = g + P in S ′.

(iii) For every α ∈ Nd with |α| > k, the series
∑

ν<0 (φ̃ν ∗ φν ∗ f)(α)

converges in S ′.
Proof. Since for k = −1 the result is trivial we assume that k ∈ N.
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(i)⇒(ii). Let θ ∈ S be such that θ̂ = 1 for |ξ| ≤ 2 and θ̂ = 0 for |ξ| > 4.
For ν > 0 we set Pν = 0 while for ν ≤ 0 we define

Pν(x) =
∑

|α|≤k
cα,νx

α, where cα,ν := −(−i)|α|
α!

〈|φ̂ν(ξ)|2f̂(ξ), ξαθ̂(ξ)〉.(6.7)

Then for every η ∈ S we have

lim
N→∞

∞∑

ν=−N
〈φ̃ν ∗ φν ∗ f + Pν , η〉

=
∑

ν>0

〈φ̃ν ∗ φν ∗ f, η〉+ lim
N→∞

0∑

ν=−N
〈φ̃ν ∗ φν ∗ f + Pν , η〉.

There is no difficulty to prove that the first sum converges absolutely (see
§2). As far as the second sum is concerned, from the identity f̂ (α)(·) =
((−ix)αf)∧(·) we get

〈Pν , η〉 =
∑

|α|≤k
cα,ν(−i)−|α| η̂(α)(0).

It follows that

lim
N→∞

0∑

ν=−N
〈φ̃ν ∗ φν ∗ f + Pν , η〉

= lim
N→∞

0∑

ν=−N
(〈|φ̂ν |2f̂ , η̂〉+ 〈Pν , η〉)

= lim
N→∞

0∑

ν=−N
(〈|φ̂ν |2f̂ , θ̂η̂〉+

∑

|α|≤k
cα,ν(−i)−|α| η̂(α)(0))

= lim
N→∞

0∑

ν=−N

〈
|φ̂ν(ξ)|2f̂(ξ), θ̂(ξ)(η̂(ξ)−

∑

|α|≤k

ξα

α!
η̂(α)(0))

〉

= lim
N→∞

0∑

ν=−N
〈|φ̂ν(ξ)|2f̂(ξ), ω̂(ξ)〉 =

∑

ν≤0

〈φ̃ν ∗ φν ∗ f, ω〉,

where ω̂(ξ) = θ̂(ξ)(η̂(ξ) −∑|α|≤k(ξα/α!)η̂(α)(0)). Since ω ∈ Sk we immedi-
ately see that the last sum above is finite. Thus

h := lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ f + PN

)
,

where PN =
∑0

ν=−N Pν , defines a distribution in S ′. We claim that h − g
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∈ Pk. To see this we note that if |α| > k and η ∈ S then η(α) ∈ Sk. Also
supp(ĥ − ĝ) = {0}, i.e., h − g is a polynomial which in addition vanishes
on Sk. Finally, since

〈(h− g)(α), η〉 = (−1)|α|〈h− f, η(α)〉 = 0

there exists P ∈ Pk such that h = g + P.

(ii)⇒(i). This direction is trivial.
(i)⇒(iii). Let η ∈ S and |α| > k. Since η(α) ∈ Sk,

∑

ν∈Z
〈(φ̃ν ∗ φν ∗ f)(α), η〉 = (−1)|α|

∑

ν∈Z
〈φ̃ν ∗ φν ∗ f, η(α)〉

= (−1)|α|〈g, η(α)〉 = 〈g(α), η〉.

(iii)⇒(i). We know that
∑

ν>0 φ̃ν ∗φν ∗f converges in S ′, thus it remains
to be shown that

∑
ν≤0 φ̃ν ∗φν ∗ f ∈ (Sk)′. Let η ∈ Sk. Then η̂(α)(0) = 0 for

|α| ≤ k and from Taylor’s expansion of η̂ around 0 we have

η̂(ξ) =
∑

|β|=k+1

ξβ

β!

1�
0

η̂(β)(tξ)tk dt =
∑

|β|=k+1

ξβ ĝβ(ξ),

where ĝβ(ξ) = (1/β!) � 1
0 η̂

(β)(tξ)tk dt. It follows that

θ̂(ξ)η̂(ξ) =
∑

|β|=k+1

ξβ θ̂(ξ)ĝβ(ξ).

By inverting the Fourier transforms we get θ ∗ η =
∑
|β|=k+1 η

(β)
β , where

ηβ := (−i)|β|θ ∗ gβ ∈ S. Thus,
∑

ν≤0

〈φ̃ν ∗ φν ∗ f, η〉 =
∑

ν≤0

〈φ̃ν ∗ φν ∗ f, θ ∗ η〉

=
∑

|β|=k+1

∑

ν≤0

〈φ̃ν ∗ φν ∗ f, η(β)
β 〉

=
∑

|β|=k+1

∑

ν≤0

(−1)|β|〈(φ̃ν ∗ φν ∗ f)(β), ηβ〉.

Since
∑

ν≤0(φ̃ν ∗ φν ∗ f)(β) (|β| = k + 1) converges in S ′, this shows that∑
ν≤0 φ̃ν ∗ φν ∗ f defines an element of (Sk)′.

Combining Propositions 6.1, 6.2 and Lemma 6.2 we immediately get

Proposition 6.3. If f ∈ S ′ satisfies the assumptions of either Proposi-
tion 6.1 or 6.2, then
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(i) There exist polynomials PN , P ∈ Pk such that

lim
N→∞

( ∞∑

ν=−N
φ̃ν ∗ φν ∗ f + PN

)
= f + P in S ′.

(ii) For every α ∈ Nd with |α| > k,
∑

ν≤0(φ̃ν ∗φν ∗ f)(α) converges in S ′.

7. Appendix II: inequalities. Let f be a locally integrable function.
The maximal operator Mt, t > 0, is defined by

Mt(f)(x) :=
(

sup
Q3x
|Q|−1

�
Q

|f(y)|t dy
)1/t

,

where the supremum is taken over all cubes with sides parallel to the axes.
It is well known (see [FS]) that if 0 < p < ∞, 0 < q ≤ ∞, and 0 < t <

min{p, q} then for any sequence (fj)j∈Z of functions,
∥∥∥
(∑

j∈Z
Mt(fj)q

)1/q∥∥∥
Lp
≤ C

∥∥∥
(∑

j∈Z
|fj |q

)1/q∥∥∥
Lp
.(7.1)

Lemma 7.1. Let 0 < t ≤ 1 and M > d/t. For any m ∈ Z, any sequence
{hJ}J∈Dm of complex numbers, and x ∈ I ∈ D, we have

∑

J∈Dm
|hJ |

(
1 +

|xI − xJ |
max{`(I), `(J)}

)−M

≤ C max{(|I|/|J |)1/t, 1}Mt

( ∑

J∈Dm
|hJ |χJ

)
(x).

Proof. Without loss of generality we assume that xI = 0.

Case I: |I| ≤ 2−md. We let δ := M/d − 1/t > 0, and for each j ∈ N+
we define Ωj := {J ∈ Dm : 2j−1 < 2m|xJ | ≤ 2j}, while Ω0 := {J ∈ Dm :
2m|xJ | ≤ 1}. If x ∈ I then

∑

J∈Dm
|hJ |(1 + 2m|xJ |)−M =

∞∑

j=0

∑

J∈Ωj
|hJ |(1 + 2m|xJ |)−M

≤ C
∞∑

j=0

∑

J∈Ωj
|hJ |2−jM = C

∞∑

j=0

2−jd/t−jδd
∑

J∈Ωj
|hJ |

≤ C sup
j≥0

2−jd/t
∑

J∈Ωj
|hJ | ≤ C

(
sup
j≥0

2−jd
∑

J∈Ωj
|hJ |t

)1/t

= C
(

sup
j≥0

2−jd2md
� (∑

J∈Ωj
|hJ |χJ

)t)1/t
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≤ C
(

sup
j≥0

1
|⋃J∈Ωj J |

�
⋃
J∈Ωj J

(∑

J∈Ωj
|hJ |χJ

)t)1/t

≤ CMt

( ∑

J∈Dm
|hJ |χJ

)
(x).

Case II: |I| > 2−md. Assume that `(I) = 2−n, n < m. For j ∈ N+ we
define Ωj := {J ∈ Dm : 2j−1 < 2n|xJ | ≤ 2j}, while Ω0 := {J ∈ Dm :
2n|xJ | ≤ 1}. Then for every x ∈ I we have

∑

J∈Dm
|hJ |(1 + 2n|xJ |)−M =

∞∑

j=0

∑

J∈Ωj
|hJ |(1 + 2n|xJ |)−M

≤ C
∞∑

j=0

∑

J∈Ωj
|hJ |2−jM = C

∞∑

j=0

2−jd/t−jδd
∑

J∈Ωj
|hJ |

≤ C sup
j≥0

2−jd/t
∑

J∈Ωj
|hJ | ≤ C

(
sup
j≥0

2−jd
∑

J∈Ωj
|hJ |t

)1/t

= C
(

sup
j≥0

2−jd2md
� (∑

J∈Ωj
|hJ |χJ

)t)1/t

≤ C2(m−n)d/t
(

sup
j≥0

1
|⋃J∈Ωj J |

�
⋃
J∈Ωj J

( ∑

J∈Ωj
|hJ |χJ

)t)1/t

≤ C2(m−n)d/tMt

( ∑

J∈Dm
|hJ |χJ

)
(x).

We leave the proof of the following Hardy-type elementary inequality to
the reader.

Lemma 7.2. Let θ > 0 and 0 < q ≤ ∞. If an, bn ≥ 0, n ∈ Z, satisfy

0 ≤ bn ≤
∑

m≤n
2(m−n)θam,

then (∑

n∈Z
bqn

)1/q
≤ C

(∑

n∈Z
aqn

)1/q
.

Lemma 7.3. Let m,n ∈ Z with m ≥ n. If J ∈ Dn and M > d then

∑

I∈Dm

(
1 +
|xI − xJ |
`(J)

)−M
≤ C2(m−n)d.
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Proof. We have

∑

I∈Dm

(
1 +
|xI − xJ |
`(J)

)−M
= 2(m−n)M

∑

j∈Zd
(2m−n + |2mxJ − j|)−M .

If we now use the fact that for every % ≥ 1 and M > d,
∑

j∈Zd
(%+ |j|)−M ≤ C%d−M ,

the result follows.

Lemma 7.4. Let M > d, 1 ≤ p ≤ ∞ and m,n ∈ Z with m ≤ n. If
(dJ)J∈Dn is a sequence of complex numbers then
( ∑

I∈Dm

( ∑

J∈Dn

(
1+
|xI − xJ |
`(I)

)−M
|dJ |

)p)1/p

≤ C2(n−m)d/p′
( ∑

J∈Dn
|dJ |p

)1/p
,

where 1/p+ 1/p′ = 1.

Proof. We note that for every I, ∆ ∈ Dm, and J ∈ Dn with J ⊂ ∆,

1 +
|x∆ − xI |
`(I)

≤ C
(

1 +
|xJ − xI |
`(I)

)
.

Also for every I ∈ Dm, Dm = {∆ : ∆ = I + j/2−m, j ∈ Zd}. Using these
two facts we find
( ∑

I∈Dm

( ∑

J∈Dn

(
1 +
|xI − xJ |
`(I)

)−M
|dJ |

)p)1/p

=
( ∑

I∈Dm

( ∑

∆∈Dm

∑

J∈Dn
J⊂∆

(
1 +
|xI − xJ |
`(I)

)−M
|dJ |

)p)1/p

≤ C
( ∑

I∈Dm

( ∑

∆∈Dm

∑

J∈Dn
J⊂∆

(
1 +
|xI − x∆|
`(I)

)−M
|dJ |

)p)1/p

= C
( ∑

I∈Dm

(∑

j∈Zd
(1 + |j|)−M

∑

J∈Dn
J⊂I+j/2m

|dJ |
)p)1/p

≤ C
∑

j∈Zd
(1 + |j|)−M

( ∑

I∈Dm

( ∑

J∈Dn
J⊂I+j/2m

|dJ |
)p)1/p
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≤ C2(n−m)d/p′
∑

j∈Zd
(1 + |j|)−M

( ∑

I∈Dm

∑

J∈Dn
J⊂I+j/2m

|dJ |p
)1/p

≤ C2(n−m)d/p′
( ∑

J∈Dn
|dJ |p

)1/p
,

where we used Minkowski’s and Hölder’s inequalities.

In a similar vein we have (we leave the proof to the reader):

Lemma 7.5. Let M > d, 1 ≤ p ≤ ∞ and m,n ∈ Z with m ≥ n. If
(dJ)J∈Dn is a sequence of complex numbers then
( ∑

I∈Dm

( ∑

J∈Dn

(
1 +
|xI − xJ |
`(J)

)−M
|dJ |

)p)1/p

≤ C2(m−n)d/p
( ∑

J∈Dn
|dJ |p

)1/p
.
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