Distortion and spreading models in modified mixed Tsirelson spaces

by
S. A. Argyros (Athens), I. Deliyanni (Heraklion) and A. Manoussakis (Chania)

Abstract

The results of the first part concern the existence of higher order ℓ_{1} spreading models in asymptotic ℓ_{1} Banach spaces. We sketch the proof of the fact that the mixed Tsirelson space $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right], \theta_{n+m} \geq \theta_{n} \theta_{m}$ and $\lim _{n} \theta_{n}^{1 / n}=1$, admits an ℓ_{1}^{ω} spreading model in every block subspace. We also prove that if X is a Banach space with a basis, with the property that there exists a sequence $\left(\theta_{n}\right)_{n} \subset(0,1)$ with $\lim _{n} \theta_{n}^{1 / n}=1$, such that, for every $n \in \mathbb{N},\left\|\sum_{k=1}^{m} x_{k}\right\| \geq \theta_{n} \sum_{k=1}^{m}\left\|x_{k}\right\|$ for every \mathcal{S}_{n}-admissible block sequence $\left(x_{k}\right)_{k=1}^{m}$ of vectors in X, then there exists $c>0$ such that every block subspace of X admits, for every n, an ℓ_{1}^{n} spreading model with constant c. Finally, we give an example of a Banach space which has the above property but fails to admit an ℓ_{1}^{ω} spreading model.

In the second part we prove that under certain conditions on the double sequence $\left(k_{n}, \theta_{n}\right)_{n}$ the modified mixed Tsirelson space $T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$ is arbitrarily distortable. Moreover, for an appropriate choice of $\left(k_{n}, \theta_{n}\right)_{n}$, every block subspace admits an ℓ_{1}^{ω} spreading model.

1. Introduction. A Banach space X with a basis $\left(e_{i}\right)_{i}$ is an asymptotic ℓ_{1} space if there exists a constant $C>0$ such that for every $n \in \mathbb{N}$ and for every block sequence $\left(x_{i}\right)_{i=1}^{n}$ supported after n,

$$
\left\|\sum_{i=1}^{n} x_{i}\right\| \geq \frac{1}{C} \sum_{i=1}^{n}\left\|x_{i}\right\| .
$$

Tsirelson's famous space [33] was the first nontrivial example of such a space. Mixed Tsirelson spaces, introduced in [5], and their variants offer a large class of examples of asymptotic ℓ_{1} spaces.

This paper consists of two independent parts. The first part concerns the existence of higher order ℓ_{1} spreading models in asymptotic ℓ_{1} spaces. The second part concerns the problem of distortion on these spaces. In particular, we prove the following.

Theorem A. For an appropriate sequence $\left(k_{j}, \theta_{j}\right)_{j=1}^{\infty}$, the modified mixed Tsirelson space $T_{M}\left[\left(\mathcal{S}_{k_{j}}, \theta_{j}\right)_{j=1}^{\infty}\right]$ is arbitrarily distortable.

We recall that a Banach space $(X,\|\cdot\|)$ is said to be λ-distortable, $\lambda>1$, if there exists an equivalent norm $\|\cdot\| \|$ on X such that

$$
\inf _{Y} \sup \left\{\|x\| /\|y\| \|: x, y \in S_{Y}\right\} \geq \lambda
$$

where the infimum is taken over all infinite-dimensional subspaces Y of X. Moreover, X is said to be distortable if it is λ-distortable for some λ, and arbitrarily distortable if it is λ-distortable for every $\lambda>1$. R. C. James [18] proved that c_{0} and ℓ_{1} are not distortable. V. D. Milman [24] showed that if a Banach space X does not have a distortable subspace then it contains an almost isometric copy of either c_{0} or ℓ_{p} for some $1 \leq p<\infty$ (see also [28]). Much later E. Odell and Th. Schlumprecht [26] settled the famous Distortion Problem, by proving that the spaces $\ell_{p}, 1<p<\infty$, are arbitrarily distortable. It remains an open problem whether there exists a distortable but not arbitrarily distortable Banach space. In view of the results of B. Maurey [23], V. Milman and N. Tomczak-Jaegermann [25] and N. Tomczak-Jaegermann [32], the search for such a space has focused on asymptotic ℓ_{1} spaces with an unconditional basis. It is unknown whether Tsirelson's space is such an example.

The first example of an arbitrarily distortable asymptotic ℓ_{1} Banach space was a mixed Tsirelson space [5]. We recall the definition of this class of spaces and their modified versions. Let $\left(\mathcal{M}_{n}\right)_{n \in \mathbb{N}}$ be a sequence of compact families of finite subsets of \mathbb{N}, and $\left(\theta_{n}\right)_{n \in \mathbb{N}}$ a sequence of numbers in $(0,1)$ decreasing to 0 . The mixed Tsirelson space $T\left[\left(\mathcal{M}_{n}, \theta_{n}\right)_{n}\right]$ and its modified version $T_{M}\left[\left(\mathcal{M}_{n}, \theta_{n}\right)_{n}\right]$ are the Banach spaces whose norms are defined implicitly as follows: For $x \in c_{00}$ (the space of finitely supported sequences),

$$
\|x\|_{\star}=\max \left\{\|x\|_{\infty}, \sup _{n} \sup \theta_{n} \sum_{i=1}^{p}\left\|E_{i} x\right\|_{\star}\right\}
$$

where the inner supremum is taken over all families $\left\{E_{1}, \ldots, E_{p}\right\}, p \in \mathbb{N}$, of finite subsets of \mathbb{N} such that:
(i) In the case of the mixed Tsirelson norm,

$$
\forall i=1, \ldots, p-1 \quad \max E_{i}<\min E_{i+1} \quad \text { and } \quad\left(\min E_{i}\right)_{i=1}^{p} \in \mathcal{M}_{n}
$$

Such a family $\left(E_{i}\right)_{i=1}^{p}$ is said to be \mathcal{M}_{n}-admissible.
(ii) In the case of the modified mixed Tsirelson norm,

$$
E_{1}, \ldots, E_{p} \text { are pairwise disjoint } \quad \text { and } \quad\left(\min E_{i}\right)_{i=1}^{p} \in \mathcal{M}_{n}
$$

We call such a family $\left(E_{i}\right)_{i=1}^{p} \mathcal{M}_{n}$-allowable.
Not all spaces included in this general definition are asymptotic ℓ_{1}. This depends on the sequence $\left(\mathcal{M}_{n}\right)_{n}$. There are two sequences $\left(\mathcal{M}_{n}\right)_{n}$ which give the fundamental examples of mixed Tsirelson spaces: the sequence $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ where $\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leq n\}$, and the sequence $\left(\mathcal{S}_{n}\right)_{n \in \mathbb{N}}$ of the gener-
alized Schreier families. A typical representative of mixed Tsirelson spaces defined by $\left(\mathcal{A}_{n}\right)_{n \in \mathbb{N}}$ is Schlumprecht's space $S=T\left[\left(\mathcal{A}_{n}, 1 / \log _{2}(n+1)\right)_{n=1}^{\infty}\right]$ [31], while for the spaces defined by the Schreier sequence, typical representatives are the spaces $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n=1}^{\infty}\right]$ with the sequence $\left(\theta_{n}\right)_{n}$ satisfying the Androulakis-Odell conditions [2]. It follows immediately from the definition that all mixed Tsirelson spaces defined by the Schreier sequence are asymptotic ℓ_{1}.

In the literature, the term "mixed Tsirelson spaces" is often used exclusively for the spaces defined by the Schreier sequence $\left(\mathcal{S}_{n}\right)_{n}$ (or, more generally, $\left(\mathcal{S}_{\xi_{n}}\right)_{n}$ for some sequence $\left(\xi_{n}\right)_{n}$ of countable ordinals). However, the main results concerning these spaces are completely analogous in the two cases $T\left[\left(\mathcal{A}_{n}, 1 / \log _{2}(n+1)\right)_{n=1}^{\infty}\right]$ and $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n=1}^{\infty}\right]$. This justifies putting all these spaces in the same class. This similarity disappears when one looks at the modified versions of these two main classes. Indeed, as was shown by Th. Schlumprecht, the modified space $T_{M}\left[\left(\mathcal{A}_{n}, 1 / \log _{2}(n+1)\right)_{n=1}^{\infty}\right]$ contains isomorphically the space ℓ_{1} (unpublished result, see also [21] for related results). On the other hand, if for some $n \in \mathbb{N}, \mathcal{M}_{n}$ contains the Schreier family \mathcal{S}, then the space $T_{M}\left[\left(\mathcal{M}_{n}, \theta_{n}\right)_{n=1}^{\infty}\right]$ is reflexive [6]. This fact is not easily explained, since in the second case the local ℓ_{1} structure of the space is richer than in the first case.

Let us also recall that the modified version of Tsirelson's space, defined by W. B. Johnson [19], is isomorphic to the original one [13]. On the other hand, the spaces $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ and $T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ are totally incomparable in the case $\lim _{n} \theta_{n}^{1 / n}=1$; this can be seen by the fact (shown in [6]) that c_{0} is finitely disjointly representable in every block subspace of $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$, which clearly is not true in the modified space.

In [6] a "boundedly modified" version of mixed Tsirelson spaces was considered. It was proved that for appropriate sequences $\left(n_{j}\right)$ and $\left(\theta_{j}\right)$, the boundedly modified mixed Tsirelson space defined by $\left(\mathcal{S}_{n_{j}}, \theta_{j}\right)_{j}$ is arbitrarily distortable. The proof presented there was rather complicated.

We proceed to describe the contents of this paper. Theorem A is presented in Section 4. Its proof is along the same lines as that of the corresponding result for ordinary mixed Tsirelson spaces [5]. As in that case, we prove that the space $T_{M}\left[\left(\mathcal{S}_{k_{j}}, \theta_{j}\right)_{j=1}^{\infty}\right]$ has an asymptotic biorthogonal system. We recall that $\left(C_{j}, A_{j}\right)_{j=1}^{\infty}$ is an asymptotic biorthogonal system in the Banach space X if $C_{j} \subset S_{X}, A_{j} \subset B_{X^{*}}$ for every $j \in \mathbb{N}$, and there exist a constant $c>0$ and a sequence $\left(\varepsilon_{j}\right)_{j}$ decreasing to 0 such that for every j :
(i) $\left(C_{j}+\varepsilon B_{X}\right) \cap Y \neq \emptyset$ for every $\varepsilon>0$ and every infinite-dimensional subspace Y of X.
(ii) For every $y \in C_{j}$ there exists $y^{*} \in A_{j}$ such that $y^{*}(y) \geq c$.
(iii) For every $i \neq j$, every $x \in C_{i}$ and $y^{*} \in A_{j},\left|y^{*}(x)\right| \leq \varepsilon_{\min \{i, j\}}$.

In the space $X_{M}=T_{M}\left[\left(\mathcal{S}_{k_{j}}, \theta_{j}\right)_{j=1}^{\infty}\right]$ each set C_{j} consists of normalized $\left(\theta_{j}^{2}, k_{j}\right)$-rapidly increasing special convex combinations. These classes of vectors played a similar part in the corresponding result of [5]. The set A_{j} consists of functionals of the form $f=\theta_{j} \sum_{r=1}^{d} f_{r}$, where $f_{r} \in B_{X_{M}^{*}}$ for all $r=1, \ldots, d$ and $\left(\operatorname{supp} f_{r}\right)_{r=1}^{d}$ is $\mathcal{S}_{k_{j}}$-allowable.

The key point that distinguishes the behavior of $T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ from that of $T_{M}\left[\left(\mathcal{A}_{n}, 1 / \log _{2}(n+1)\right)_{n}\right]$ is the following (Lemma 4.9).

Lemma. Let $X=T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right], j \in \mathbb{N}, \varepsilon<\theta_{j}$ and let $\sum_{k=1}^{m} \alpha_{k} x_{k}$ be an (ε, j)-special convex combination with $\left\|x_{k}\right\| \leq 1$ for all $k=1, \ldots, m$. Then, for every $l<j$ and every finite sequence $\left(f_{i}\right)_{i=1}^{d}$ in $B_{X^{*}}$ such that $\left(\operatorname{supp} f_{i}\right)_{i=1}^{d}$ is \mathcal{S}_{l}-allowable, we have

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k=1}^{m} \alpha_{k} x_{k}\right)\right| \leq \frac{1}{\theta_{1}}+1
$$

This is a variation of a result holding for both $S=T\left[\left(\mathcal{A}_{n}, 1 / \log _{2}(n+1)\right)_{n}\right]$ and $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$. However, in the modified Schlumprecht space $T_{M}\left[\left(\mathcal{A}_{n}\right.\right.$, $\left.1 / \log _{2}(n+1)\right)_{n}$], an analogous result is no longer true.

In Section 3 we study asymptotic ℓ_{1} Banach spaces with respect to their higher order ℓ_{1} spreading models. We start with the following:

Definition. Let $\left(x_{k}\right)_{k}$ be a seminormalized sequence in a Banach space X and let ξ be a countable ordinal. The sequence $\left(x_{k}\right)_{k}$ has an ℓ_{1}^{ξ} spreading model if there exists $c>0$ such that for every $F \in \mathcal{S}_{\xi}$ and $\left(\lambda_{k}\right)_{k \in F} \subset \mathbb{R}$,

$$
\left\|\sum_{k \in F} \lambda_{k} x_{k}\right\| \geq c \sum_{k \in F}\left|\lambda_{k}\right|
$$

It is easy to see that every subspace of an asymptotic ℓ_{1} space admits an ℓ_{1}^{k} spreading model for every $k \in \mathbb{N}$. We prove here that the spaces $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ with $\left(\theta_{n}\right)_{n}$ satisfying the Androulakis-Odell conditions admit an ℓ_{1}^{ω} spreading model in every subspace with the same constant c. We obtain this as a consequence of the fact that c_{0} is finitely representable in every subspace. This result, as well as its proof, should be compared to the result of D. Kutzarova and P. K. Lin [20] that Schlumprecht's space admits an ℓ_{1} spreading model.

A recent result of I. Gasparis [15] includes another method for constructing sequences which have an ℓ_{1}^{ω} spreading model, without the use of the finite representability of c_{0}. This depends on a careful choice of the sequence $\left(k_{n}, \theta_{n}\right)_{n}$. Using this method we show in Section 4 that if the sequence $\left(k_{n}, \theta_{n}\right)_{n}$ satisfies what we call the Gasparis conditions, then every block subspace of the modified mixed Tsirelson space $T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$ admits an ℓ_{1}^{ω} spreading model with constant $c \geq 1 / 64$. We note (see Remark 3.2)
that c_{0} is not finitely representable in the modified mixed Tsirelson spaces $T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$.

In Proposition 3.3 we show that if X is an asymptotic ℓ_{1} space with a basis and there exists a sequence $\left(\theta_{k}\right)_{k=1}^{\infty}$ with $\lim _{k} \theta_{k}^{1 / k}=1$ such that, for all $n<\omega$ and all \mathcal{S}_{n}-admissible block sequences $\left(x_{i}\right)_{i=1}^{d},\left\|\sum_{i=1}^{d} x_{i}\right\| \geq$ $\theta_{n} \sum_{i=1}^{d}\left\|x_{i}\right\|$, then there exists $c>0$ such that every block subspace of X admits, for every k, an ℓ_{1}^{k} spreading model with constant c.

Then we proceed to give an example of a Banach space X falling in the previous class which does not admit any ℓ_{1}^{ω} spreading model. The norm of the space X is defined implicitly in the following manner. For appropriate sequences $\left(n_{j}\right)_{j=1}^{\infty}$ in \mathbb{N} and $\left(\theta_{j}\right)_{j=1}^{\infty}$ in $(0,1)$, the norm $\|\cdot\|$ of X satisfies the following equation: For $x \in c_{00}$,

$$
\|x\|=\max \left\{\|x\|_{\infty}, \sup \left\{\sum_{k=1}^{n}\left\|\left.x\right|_{[n, \infty)}\right\|_{j_{k}}: n \in \mathbb{N}, j_{1}<\ldots<j_{n}\right\}\right\}
$$

where $\|x\|_{j}=\theta_{j} \sup \left\{\sum_{l=1}^{d}\left\|E_{l} x\right\|: d \in \mathbb{N},\left(E_{l}\right)_{l=1}^{d}\right.$ is $\mathcal{S}_{n_{j}}$-admissible $\}$. Our construction is similar to the example of E. Odell and Th. Schlumprecht [27] of a Banach space with no $\ell_{p}(1 \leq p<\infty)$ or c_{0} spreading model. A construction of this type was first employed by W. T. Gowers [16] to provide an example of a Banach space which does not contain c_{0}, ℓ_{1} or a reflexive subspace.

The structure of asymptotic ℓ_{1} Banach spaces has been studied in [29], where some results which relate the distortion problem with spreading models are included. In this direction the third named author has recently obtained the following result [22]: Let $c>0$ and let X be a Banach space with a bimonotone shrinking basis $\left(e_{i}\right)$ such that X does not admit any ℓ_{1}^{ω} spreading model, but every block subspace of X admits, for every $k<\omega$, an ℓ_{1}^{k} spreading model with constant c. Then every subspace of X contains an arbitrarily distortable subspace. This implies in particular that the space X of our last mentioned example has an arbitrarily distortable subspace.

Although the present work concerns mainly Banach spaces with an unconditional basis, let us mention that spreading models have also been used in the study of hereditarily indecomposable (H.I.) Banach spaces. It is well known that if a Banach space X does not contain ℓ_{1} then there exists a unique $\xi<\omega_{1}$ such that X admits an ℓ_{1}^{ζ} spreading model for all $\zeta<\xi$, but does not admit any ℓ_{1}^{ξ} spreading model. This is used in [10] to show that every separable Banach space Z not containing ℓ_{1} is a quotient of a hereditarily indecomposable asymptotic ℓ_{1} Banach space X, and moreover Z^{*} is complemented in X^{*}.

In another direction, spreading models are employed for the construction of strictly singular noncompact operators on H.I. spaces. Recall that
W. T. Gowers [17] first established the existence of a strictly singular noncompact operator from a subspace of the Gowers-Maurey space to the whole space. Next S. Argyros and V. Felouzis [7], using interpolation techniques, proved that there are H.I. spaces admitting strictly singular noncompact operators. Also G. Androulakis and Th. Schlumprecht [4] proved that a strictly singular noncompact operator exists on the Gowers-Maurey space, using the fact that the spreading model of the unit vector basis of this space is the unit vector basis of Schlumprecht's space. Another result in this direction which is related to our work was obtained by I. Gasparis [15]. He proves that, under certain conditions on the H.I. space X, the existence of a c_{0}^{ω} spreading model in X^{*} implies that X admits a strictly singular noncompact operator. See also [3] for related results.

2. Preliminaries

Notation. Let $\left(e_{i}\right)_{i=1}^{\infty}$ be the standard basis of the linear space c_{00} of finitely supported sequences. For $x=\sum_{i=1}^{\infty} a_{i} e_{i} \in c_{00}$, the support of x is the set $\operatorname{supp} x=\left\{i \in \mathbb{N}: a_{i} \neq 0\right\}$. The range of x, written range (x), is the smallest interval of \mathbb{N} containing the support of x. For finite subsets E, F of $\mathbb{N}, E<F$ means $\max E<\min F$ or either E or F is empty. For $n \in \mathbb{N}$ and $E \subset \mathbb{N}, n<E($ resp. $E<n)$ means $n<\min E($ resp. $\max E<n)$. For x, y in $c_{00}, x<y$ means $\operatorname{supp} x<\operatorname{supp} y$. For $n \in \mathbb{N}$ and $x \in c_{00}$, we write $n<x($ resp. $x<n)$ if $n<\operatorname{supp} x($ resp. $\operatorname{supp} x<n)$. We say that the sets $E_{i} \subset \mathbb{N}, i=1, \ldots, n$, are successive if $E_{1}<\ldots<E_{n}$. Similarly, the vectors $x_{i}, i=1, \ldots, n$, are successive if $x_{1}<\ldots<x_{n}$. For $x=\sum_{i=1}^{\infty} a_{i} e_{i}$ and $E \subset \mathbb{N}$, we denote by $E x$ the vector $\sum_{i \in E} a_{i} e_{i}$. For an infinite subset M of \mathbb{N} we denote by $[M]$ the class of infinite subsets of M, and by $[M]^{<\omega}$ the class of finite subsets of M.

The proofs of the first part of the paper rely essentially on the infinite Ramsey theorem (F. Galvin and K. Prikry, J. Silver, E. E. Ellentuck). We recall the statement of this theorem. Here $[\mathbb{N}]$ is endowed with the topology of pointwise convergence.

Theorem 2.1. Let A be an analytic subset of $[\mathbb{N}]$. For every $M \in[\mathbb{N}]$ there exists $L \in[M]$ such that either $[L] \subset A$ or $[L] \subset[M] \backslash A$.

The generalized Schreier families $\left(\mathcal{S}_{\xi}\right)_{\xi<\omega_{1}}$, introduced in [1], are defined by transfinite induction as follows:

$$
\mathcal{S}_{0}=\{\{n\}: n \in \mathbb{N}\} \cup\{\emptyset\}
$$

Suppose that the families \mathcal{S}_{α} have been defined for all $\alpha<\xi$. If $\xi=\zeta+1$, we set

$$
\begin{array}{r}
\mathcal{S}_{\xi}=\left\{F \in[\mathbb{N}]^{<\omega}: F=\bigcup_{i=1}^{n} F_{i}, n \in \mathbb{N}, \quad F_{i} \in \mathcal{S}_{\zeta} \text { for } i=1, \ldots, n\right. \text { and } \\
\left.n \leq F_{1}<\ldots<F_{n}\right\} \cup\{\emptyset\} .
\end{array}
$$

If ξ is a limit ordinal, let $\left(\xi_{n}+1\right)_{n}$ be a sequence of successor ordinals which strictly increases to ξ. We set

$$
\mathcal{S}_{\xi}=\left\{F \in[\mathbb{N}]^{<\omega}: \text { for some } n \in \mathbb{N}, n \leq \min F \text { and } F \in \mathcal{S}_{\xi_{n}+1}\right\} .
$$

For $\xi<\omega_{1}$ and $M=\left(m_{i}\right)_{i=1}^{\infty} \in[\mathbb{N}]$, we denote by $\mathcal{S}_{\xi}(M)$ the family

$$
\mathcal{S}_{\xi}(M)=\left\{\left(m_{i}\right)_{i \in F}: F \in \mathcal{S}_{\xi}\right\} .
$$

We next pass to the definition of the repeated averages hierarchy introduced in [9]. We let $\left(e_{n}\right)$ denote the standard basis of c_{00}. For every countable ordinal ξ and every $M \in[\mathbb{N}]$, we define a convex block sequence $\left(\xi_{n}^{M}\right)_{n=1}^{\infty}$ of $\left(e_{n}\right)$ by transfinite induction on ξ in the following manner: If $\xi=0$ and $M=\left(m_{n}\right)_{n=1}^{\infty}$, then $\xi_{n}^{M}=e_{m_{n}}$ for all $n \in \mathbb{N}$. Assume that $\left(\eta_{n}^{M}\right)_{n=1}^{\infty}$ has been defined for all $\eta<\xi$ and $M \in[\mathbb{N}]$. Let $\xi=\zeta+1$. We set

$$
\xi_{1}^{M}=\frac{1}{m_{1}} \sum_{i=1}^{m_{1}} \zeta_{i}^{M},
$$

where $m_{1}=\min M$. Suppose that $\xi_{1}^{M}<\ldots<\xi_{n}^{M}$ have been defined. Let

$$
M_{n}=\left\{m \in M: m>\max \operatorname{supp} \xi_{n}^{M}\right\}, \quad k_{n}=\min M_{n}
$$

Set

$$
\xi_{n+1}^{M}=\frac{1}{k_{n}} \sum_{i=1}^{k_{n}} \zeta_{i}^{M_{n}}=\xi_{1}^{M_{n}} .
$$

If ξ is a limit ordinal, let $\left(\xi_{n}+1\right)_{n}$ be the sequence of ordinals associated to ξ. Define

$$
\xi_{1}^{M}=\left[\xi_{m_{1}}+1\right]_{1}^{M},
$$

where $m_{1}=\min M$. Suppose that $\xi_{1}^{M}<\ldots<\xi_{n}^{M}$ have been defined. Again, let $M_{n}=\left\{m \in M: m>\max \operatorname{supp} \xi_{n}^{M}\right\}$ and $k_{n}=\min M_{n}$. Set

$$
\xi_{n+1}^{M}=\left[\xi_{k_{n}}+1\right]_{1}^{M_{n}} .
$$

The inductive definition of $\left(\xi_{n}^{M}\right)_{n=1}^{\infty}, M \in[\mathbb{N}]$, is now complete. We note that $\operatorname{supp} \xi_{n}^{M} \in \mathcal{S}_{\xi}$ for all $M \in[\mathbb{N}], \xi<\omega_{1}$ and $n \in \mathbb{N}$.

Definition 2.2. Let $\xi<\omega_{1}$ and $\delta>0$. A seminormalized sequence $\left(x_{n}\right)$ in a Banach space has an ℓ_{1}^{ξ} spreading model with constant δ if

$$
\left\|\sum_{i \in F} \alpha_{i} x_{i}\right\| \geq \delta \sum_{i \in F}\left|\alpha_{i}\right|
$$

for every $F \in \mathcal{S}_{\xi}$ and all choices of scalars $\left(\alpha_{i}\right)_{i \in F}$. We say that $\left(x_{n}\right)$ has an ℓ_{1}^{ξ} spreading model if it has an ℓ_{1}^{ξ} spreading model with constant δ for some $\delta>0$.

A family \mathcal{F} of finite subsets of \mathbb{N} is called hereditary if, for every $G \in \mathcal{F}$ and $F \subset G$, we have $F \in \mathcal{F}$.

For every vector $x=\sum_{i=1}^{n} a_{i} e_{i} \in c_{00}$ and every finite subset F of \mathbb{N}, we set $\langle x, F\rangle=\sum_{i \in F} a_{i}$.

We next state the definition of large families and a result from [9] (see also [8]) which is the main tool for our proof of Proposition 3.3.

Definition 2.3. Let $M \in[\mathbb{N}], \xi<\omega_{1}, \delta>0$ and $n \in \mathbb{N}$. A hereditary family \mathcal{F} is called (M, ξ, δ)-large provided that for all $N \in[M]$ there exists $F \in \mathcal{F}$ such that $\left\langle\xi_{1}^{N}, F\right\rangle \geq \delta$.

Proposition 2.4 ([9] and [8]). Let $\mathcal{F} \subset[\mathbb{N}]^{<\omega}$ be a hereditary family, $M \in[\mathbb{N}], \xi<\omega_{1}$ and $\varepsilon>0$. If \mathcal{F} is (M, ξ, ε)-large then there exists $N \in[M]$ with $\mathcal{S}_{\xi}(N) \subseteq \mathcal{F}$.

Definition 2.5. (a) Let $k \in \mathbb{N}$. A finite sequence $\left(E_{i}\right)_{i=1}^{m}$ of successive subsets of \mathbb{N} is said to be $\mathcal{S}_{k^{-}}$admissible if $\left(\min E_{i}\right)_{i=1}^{m} \in \mathcal{S}_{k}$. A finite block sequence $\left(x_{i}\right)_{i=1}^{m}$ in c_{00} is said to be $\mathcal{S}_{k^{-}}$admissible if $\left(\operatorname{supp} x_{i}\right)_{i=1}^{m}$ is $\mathcal{S}_{k^{-}}$ admissible.
(b) Let $\left(k_{n}\right)_{n}$ be an increasing sequence of integers and $\left(\theta_{n}\right) \subset(0,1)$ such that $\theta_{n} \searrow 0$. The mixed Tsirelson space $X=T\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n=1}^{\infty}\right]$ is the completion of c_{00} under the norm which satisfies the implicit equation

$$
\|x\|=\max \left\{\|x\|_{\infty}, \sup _{n} \theta_{n}\left\{\sup \sum_{i=1}^{m}\left\|E_{i} x\right\|\right\}\right\}
$$

where the inner supremum is taken over all $\mathcal{S}_{k_{n}}$-admissible families $\left(E_{i}\right)_{i=1}^{m}$, $m \in \mathbb{N}$.

An essential role in our proofs is played by the following special vectors.
Definition 2.6. (a) Let $n \geq 1, \varepsilon>0$ and $F \subseteq \mathbb{N}, F \in \mathcal{S}_{n}$. A convex combination $\sum_{j \in F} a_{j} e_{j}$ is called an (ε, n)-basic special convex combination (basic s.c.c.) if $\sum_{j \in G} a_{j}<\varepsilon$ for every $G \in \mathcal{S}_{n-1}$.
(b) Let $\varepsilon>0, n \in \mathbb{N}$ and suppose that $\left(z_{j}\right)_{j=1}^{m}$ is a finite block sequence in c_{00} with the property that there exist integers $\left(l_{j}\right)_{j=1}^{m}$ with $2<z_{1} \leq l_{1}<$ $z_{2} \leq l_{2}<\ldots \leq l_{m-1}<z_{m} \leq l_{m}$ such that a convex combination $\sum_{j=1}^{m} a_{j} e_{l_{j}}$ is an (ε, n)-basic s.c.c. Then the corresponding convex combination of the z_{j}^{\prime} 's, $x=\sum_{j=1}^{m} a_{j} z_{j}$, is called an (ε, n)-s.c.c. of $\left(z_{j}\right)_{j=1}^{m}$.

An (ε, j)-s.c.c. $x=\sum_{j=1}^{m} a_{j} z_{j}$ of unit vectors $\left(z_{j}\right)_{j=1}^{m}$ in a Banach space is said to be seminormalized if $\|x\| \geq 1 / 2$.

It is proved in [5, Lemma 1.6] that for every $\varepsilon>0, n \in \mathbb{N}$ and $M \in[\mathbb{N}]$, there exists an (ε, n)-basic s.c.c. $\sum_{j \in F} a_{j} e_{j}$ with $F \subset M$. In fact, it is not hard to see that the average n_{1}^{L} is a $(3 / \min L, n)$-basic s.c.c. for every $L \in[M]$.

Lemma 2.7. Let $\left(\theta_{n}\right)_{n}, 0<\theta_{n}<1$, be a decreasing sequence. Let X be a Banach space with a basis with the following property: For every n and every \mathcal{S}_{n}-admissible block sequence $\left(x_{i}\right)_{i=1}^{d}$ we have $\left\|\sum_{i=1}^{d} x_{i}\right\| \geq \theta_{n} \sum_{i=1}^{d}\left\|x_{i}\right\|$.

Suppose that for some $n \in \mathbb{N}, x=\sum_{j=1}^{m} a_{j} x_{j}$ is an (ε, n)-s.c.c in X, where $\varepsilon<\theta_{n}$. Let $i<n$ and suppose that $\left(E_{r}\right)_{r=1}^{s}$ is an \mathcal{S}_{i}-admissible family of intervals. Then

$$
\sum_{r=1}^{s}\left\|E_{r} x\right\| \leq\left(1+\varepsilon / \theta_{i}\right) \max _{1 \leq j \leq m}\left\|x_{j}\right\| \leq 2 \max _{1 \leq j \leq m}\left\|x_{j}\right\|
$$

The proof is the same as that of [6, Lemma 1.13], so we omit it.
3. ℓ_{1}^{ω} spreading models. In this section we present an example of a Banach space X with the following properties:
(1) There exists a constant $\delta>0$ such that for every $k<\omega$, every block subspace of X admits an ℓ_{1}^{k} spreading model with constant δ.
(2) The space X does not admit any ℓ_{1}^{ω} spreading model.

As we shall show in Proposition 3.3, (1) is true in a large class of asymptotic ℓ_{1} spaces. On the other hand, our next proposition shows that the original mixed Tsirelson spaces admit in addition ℓ_{1}^{ω} spreading models.

Proposition 3.1. Let $\left(\theta_{n}\right)_{n}$ be a sequence in $(0,1)$ such that $\theta_{m+n} \geq$ $\theta_{m} \theta_{n}, \theta_{n} \searrow 0$ and $\lim _{n} \theta_{n}^{1 / n}=1$, and let $X=T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n \in \mathbb{N}}\right]$ be the corresponding mixed Tsirelson space. Then there exists a constant $K>0$ such that every block subspace Y of X has a block sequence which has an ℓ_{1}^{ω} spreading model with constant $1 / K$.

The proof of this fact is influenced by the result of [20] that Schlumprecht's space has an ℓ_{1} spreading model. To present a complete proof of the proposition we would have to almost copy some proofs from [6], so we only give an outline of the proof.

Sketch of the proof. A refinement of the proof of [6, Theorem 1.6] implies that there exists a lacunary sequence $\left(j_{k}\right)_{k \in \mathbb{N}}$ of positive integers such that

$$
\frac{\theta_{k+j_{1}+\ldots+j_{k}+1}}{\theta_{j_{1}+\ldots+j_{k}}} \geq \frac{1}{2} \quad \text { for all } k
$$

and with the following property: in every block subspace Y of X there exists an infinite block sequence $\left(z_{i}\right)_{i}$ of seminormalized s.c.c.'s such that for every $n \in \mathbb{N}$, we can choose a finite nested sequence $\left(x_{k}^{n}\right)_{k=1}^{n}=\left(y_{k}^{n} /\left\|y_{k}^{n}\right\|\right)_{k=1}^{n}$ satisfying:
(1) $y_{k}^{n}=\sum_{i \in F_{k}^{n}} \alpha_{i} z_{i}$ is a $j_{1}+\ldots+j_{k}$-rapidly increasing s.c.c. (r.i.s.c.c.) of $\left(z_{i}\right)_{i}$ for every $k=1, \ldots, n([6$, Definition 1.14] and our Definition 4.11).
(2) $F_{k}^{n}<F_{j}^{n+1}$ for all $n \in \mathbb{N}, k \leq n$ and $j \leq n+1$. That is, the sequence $\left(\sum_{k=1}^{n} x_{k}^{n}\right)_{n}$ is a block sequence.
(3) $\left\|\sum_{k=1}^{n} x_{k}^{n}\right\| \leq 2$ for all $n \in \mathbb{N}$.

It follows from [6, Proposition 1.15] that there exists a constant $C>0$ such that $\frac{1}{2} \theta_{j_{1}+\ldots+j_{k}+1} \leq\left\|y_{k}^{n}\right\| \leq C \theta_{j_{1}+\ldots+j_{k}}$ for all n and k. We set $w^{n}=$ $\sum_{k=1}^{n} x_{k}^{n}$. Then $\left(w^{n}\right)_{n \in \mathbb{N}}$ is an ℓ_{1}^{ω} spreading model with constant $1 /(4 C)$. Indeed, let $k \in \mathbb{N}$ and $G \in \mathcal{S}_{k}$ with $\min G \geq k$. Then, for all $\left(\beta_{n}\right)_{n \in G}$,

$$
\begin{equation*}
\left\|\sum_{n \in G} \beta_{n} w^{n}\right\| \geq\left\|\sum_{n \in G} \beta_{n} x_{k}^{n}\right\| \tag{3.1}
\end{equation*}
$$

By the definition of a $j_{1}+\ldots+j_{k}$-r.i.s.c.c., it follows that for all n the family $\left\{z_{i}: i \in F_{k}^{n}\right\}$ is $j_{1}+\ldots+j_{k}+1$-admissible. Also $\left\{\min F_{k}^{n}: n \in G\right\}$ is \mathcal{S}_{k}-admissible, so $\left\{z_{i}: i \in \bigcup_{n \in G} F_{k}^{n}\right\}$ is $k+j_{1}+\ldots+j_{k}+1$-admissible. Together with (3.1) and the fact that $\left\|y_{k}^{n}\right\|=\left\|\sum_{i \in F_{k}^{n}} \alpha_{i} z_{i}\right\| \leq C \theta_{j_{1}+\ldots+j_{k}}$, this implies that

$$
\begin{aligned}
\left\|\sum_{n \in G} \beta_{n} w^{n}\right\| & \geq \theta_{k+j_{1}+\ldots+j_{k}+1} \sum_{n \in G}\left|\beta_{n}\right| \frac{\sum_{i \in F_{k}^{n}} \alpha_{i}\left\|z_{i}\right\|}{\left\|y_{k}^{n}\right\|} \\
& \geq \frac{1}{2 C} \frac{\theta_{k+j_{1}+\ldots+j_{k}+1}}{\theta_{j_{1}+\ldots+j_{k}}} \sum_{n \in G}\left|\beta_{n}\right| \geq \frac{1}{4 C} \sum_{n \in G}\left|\beta_{n}\right| .
\end{aligned}
$$

Remark 3.2. The proof of Proposition 3.1 is based on the fact that c_{0} is finitely disjointly representable in the spaces $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n \in \mathbb{N}}\right]$ with $\lim _{n \rightarrow \infty} \theta_{n}^{1 / n}=1$. Note that, on the contrary, c_{0} is not finitely representable in the modified spaces $T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n \in \mathbb{N}}\right]$. However, in Section 4 , we shall show that under certain conditions on the sequence $\left(k_{n}, m_{n}\right)_{n}$, the modified mixed Tsirelson space $T_{M}\left[\left(\mathcal{S}_{k_{n}}, 1 / m_{n}\right)_{n}\right]$ contains an ℓ_{1}^{ω} spreading model in every block subspace.

The fact that c_{0} is not finitely representable in the modified spaces is implied by the following theorem of A. Pełczyński and H. Rosenthal [30], as stated in [19].

Theorem (see [30]). For every $n \in \mathbb{N}$ there is an $N=N(n)$ with the following property: Let X be a Banach space with a 1-unconditional basis $\left(e_{i}\right)$, and F an n-dimensional subspace of X. Then F is contained in an N-dimensional subspace of X which is 2 -isomorphic to the span of N disjointly supported vectors.

A proof of this theorem can be found in [12]. Let us see how this result implies that c_{0} is not finitely representable in $X_{M}=T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$. Suppose that c_{0} is finitely representable in X_{M}. Then there exists $C>0$ such that for every $n \in \mathbb{N}$ there exist n normalized vectors $\left(y_{i}\right)_{i=1}^{n}$ in X_{M} with supp $y_{i} \geq$ $N=N(n)$ for all $i=1, \ldots, n$, which are C-equivalent to the unit vector basis of ℓ_{∞}^{n}. It follows from the theorem that there exist N vectors disjointly supported after $N,\left(z_{i}\right)_{i=1}^{N}$, and an into 2-isomorphism $S: \operatorname{span}\left\{y_{i}: 1 \leq\right.$ $i \leq n\} \rightarrow \operatorname{span}\left\{z_{i}: 1 \leq i \leq N\right\}$. Since the vectors $\left(z_{i}\right)_{i=1}^{N}$ are disjointly
supported after N we find that $\operatorname{span}\left\{z_{i}: 1 \leq i \leq N\right\}$ is $1 / \theta_{1}$-isomorphic to ℓ_{1}^{N}. For $i=1, \ldots, n$ let $x_{i}=S\left(y_{i}\right)$. Then $\left\|x_{i}\right\| \geq 1 / 2$, and since ℓ_{1} has cotype 2, it follows that

$$
\begin{aligned}
C \geq \frac{1}{2^{n}} \sum_{\varepsilon_{i}= \pm 1}\left\|\sum_{i=1}^{n} \varepsilon_{i} y_{i}\right\| & \geq \frac{1}{2^{n}} \sum_{\varepsilon_{i}= \pm 1} \frac{1}{2}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \\
& \geq \frac{A_{1} \theta_{1}}{2}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \geq \frac{\theta_{1} A_{1}}{4} \sqrt{n}
\end{aligned}
$$

where A_{1} is the cotype- 2 constant of ℓ_{1}. This yields a contradiction for large n.

Proposition 3.3. Let X be a Banach space with a basis $\left(e_{i}\right)_{i}$ satisfying the following: There exists a sequence $\left(\theta_{k}\right)_{k \in \mathbb{N}}$ such that $\lim _{k} \theta_{k}^{1 / k}=1$ and, for every $k \in \mathbb{N}$, every \mathcal{S}_{k}-admissible block sequence $\left(z_{j}\right)_{j=1}^{d}$ of $\left(e_{i}\right)_{i}$ satisfies

$$
\left\|\sum_{j=1}^{d} z_{j}\right\| \geq \theta_{k} \sum_{j=1}^{d}\left\|z_{j}\right\| .
$$

Then there exists $c>0$ such that for every $k \in \mathbb{N}$, every block sequence $\left(x_{i}\right)_{i}$ of $\left(e_{i}\right)_{i}$ has a further block sequence which has an ℓ_{1}^{k} spreading model with constant c.

Proof. We shall use the repeated averages hierarchy. Let $k \in \mathbb{N}$ and let $\vec{x}=\left(x_{i}\right)_{i=1}^{\infty}$ be a normalized block sequence in X. For each $i \in \mathbb{N}$, let

$$
l_{i}=\operatorname{minsupp} x_{i}
$$

and set $L=\left(l_{i}\right)_{i=1}^{\infty}$. For $P \in[\mathbb{N}]$, we set $S=\left\{l_{p}: p \in P\right\} \subseteq L$. Let k_{1}^{S} be the first k-average with respect to the set S and suppose that $k_{1}^{S}=\sum_{j \in G} \alpha_{j} e_{l_{j}}$, where $G \subseteq P, \alpha_{j} \geq 0$ and $\sum_{j \in G} \alpha_{j}=1$. Then we set $\alpha(k, \vec{x}, P)=\sum_{j \in G} \alpha_{j} x_{j}$. Since $\operatorname{supp} k_{1}^{S} \in \mathcal{S}_{k}$, it is clear that the family $\left(x_{j}\right)_{j \in G}$ is \mathcal{S}_{k}-admissible. Since $\alpha(k, \vec{x}, P)$ is determined by an initial segment of P, the set $\mathcal{A}=\{P \in$ $[\mathbb{N}]:\|\alpha(k, \vec{x}, P)\| \geq 1 / 2\}$ is open. Therefore, applying the infinite Ramsey theorem, we see that either
(i) there exists $M \in[\mathbb{N}]$ such that $\|\alpha(k, \vec{x}, P)\| \geq 1 / 2$ for all $P \in[M]$, or
(ii) there exists $M \in[\mathbb{N}]$ such that $\|\alpha(k, \vec{x}, P)\|<1 / 2$ for all $P \in[M]$.

Suppose that (i) holds. We shall show that $\left(x_{i}\right)_{i}$ has a subsequence $\left(y_{i}\right)_{i}$ which has an ℓ_{1}^{k} spreading model with constant $c=1 / 4$ if $\left(x_{i}\right)$ is unconditional, and $c=1 / 512$ in the general case. Let

$$
\mathcal{F}_{1 / 4}=\left\{F \subseteq L: \exists x_{F}^{*} \in B_{X^{*}} \text { with } x_{F}^{*}\left(x_{j}\right) \geq 1 / 4 \text { for every } l_{j} \in F\right\}
$$

Set $N=\left\{l_{m}: m \in M\right\} \subseteq L$. Then $\mathcal{F}_{1 / 4}$ is $(N, k, 1 / 4)$-large.

Indeed, by our assumption, for every $N^{\prime}=\left\{l_{m}: m \in M^{\prime}\right\} \in[N]$, $\left\|\alpha\left(k, \vec{x}, M^{\prime}\right)\right\|=\left\|\sum_{j \in G} \alpha_{j} x_{j}\right\| \geq 1 / 2$, so there exists $x^{*} \in B_{X^{*}}$ such that $x^{*}\left(\sum_{j \in G} \alpha_{j} x_{j}\right) \geq 1 / 2$. Set $F=\left\{l_{j}: j \in G\right.$ and $\left.x^{*}\left(x_{j}\right) \geq 1 / 4\right\}$. By definition, $F \in \mathcal{F}_{1 / 4}$. Also,

$$
\begin{aligned}
\left\langle k_{1}^{N^{\prime}}, F\right\rangle & =\sum_{l_{j} \in F} \alpha_{j} \geq \sum_{l_{j} \in F} \alpha_{j} x^{*}\left(x_{j}\right) \\
& =x^{*}\left(\sum_{j \in G} \alpha_{j} x_{j}\right)-x^{*}\left(\sum_{l_{j} \notin F} \alpha_{j} x_{j}\right) \geq \frac{1}{2}-\frac{1}{4}=\frac{1}{4}
\end{aligned}
$$

So, $\mathcal{F}_{1 / 4}$ is $(N, k, 1 / 4)$-large. It follows from Proposition 2.4 that there exists $Q \in[N]$ such that $\mathcal{S}_{k}(Q) \subseteq \mathcal{F}_{1 / 4}$. Suppose first that the basic sequence $\left(x_{i}\right)$ is unconditional. Let $Q=\left\{l_{s_{1}}, l_{s_{2}}, \ldots\right\}$. We set $y_{i}=x_{s_{i}}, i=1,2, \ldots$ We claim that the sequence $\left(y_{i}\right)_{i=1}^{\infty}$ has an ℓ_{1}^{k} spreading model with constant $1 / 4$.

Indeed, if $A \in \mathcal{S}_{k}$ then $\left\{l_{s_{i}}: i \in A\right\} \in \mathcal{S}_{k}(Q)$, and so $\left\{l_{s_{i}}: i \in A\right\} \in \mathcal{F}_{1 / 4}$. It follows then there exists $x^{*} \in B_{X^{*}}$ such that $x^{*}\left(y_{i}\right)=x^{*}\left(x_{s_{i}}\right) \geq 1 / 4$ for all $i \in A$. So $\left\|\sum_{i \in A} \beta_{i} y_{i}\right\| \geq 1 / 4$ for every $\left(\beta_{i}\right)_{i \in A}$ with $\beta_{i} \geq 0$ and $\sum_{i \in A} \beta_{i}=1$, which proves our claim.

If $\left(x_{i}\right)_{i}$ is not unconditional then the existence of an ℓ_{1}^{k} spreading model with constant $c \geq 1 / 512$ is a consequence of the following result [8, Corollary 3.6]: For a normalized weakly null sequence $\left(x_{i}\right)_{i}$ and $\xi<\omega_{1}$, the following are equivalent:
(a) There exists $M \in[\mathbb{N}], M=\left(m_{i}\right)$, so that $\left(x_{m_{i}}\right)_{i}$ has an ℓ_{1}^{ξ} spreading model.
(b) There exist $N \in[\mathbb{N}]$ and $\delta>0$ such that $\mathcal{S}_{\xi}(N) \subset \mathcal{F}_{\delta}$.

Suppose now that (ii) holds. We shall show that also in this case, $\left(x_{i}\right)_{i=1}^{\infty}$ has a block sequence which has an ℓ_{1}^{k} spreading model.

Set $N=\left\{l_{m}: m \in M\right\}$ and consider the sequence $k_{n}^{N}=\sum_{j \in F_{n}} \alpha_{j} e_{l_{j}}$, $n=1,2, \ldots$ For $n=1,2, \ldots$, we set $y_{n}^{1}=\sum_{j \in F_{n}} \alpha_{j} x_{j}=\alpha\left(k, \vec{x}, M_{n}\right)$, where $M_{1}=M$ and $M_{n}=\left\{m \in M: m>\operatorname{supp} k_{n-1}^{M}\right\}, n=2,3 \ldots$ By our assumption, $\left\|y_{n}^{1}\right\|<1 / 2$ for every n. We now set $w_{n}^{1}=y_{n}^{1} /\left\|y_{n}^{1}\right\|$ for $n \in \mathbb{N}$. We note that for every \mathcal{S}_{k}-admissible sequence $\left(w_{i}^{1}\right)_{i \in G}$, the family $\left\{x_{j}: j \in \bigcup_{i \in G} F_{i}\right\}$ is $\mathcal{S}_{2 k}$-admissible. So, for any choice of convex coefficients $\left(\beta_{i}\right)_{i \in G}$ we have

$$
\left\|\sum_{i \in G} \beta_{i} w_{i}^{1}\right\|=\left\|\sum_{i \in G} \beta_{i} \frac{y_{i}^{1}}{\left\|y_{i}^{1}\right\|}\right\| \geq\left\|\sum_{i \in G} \frac{\beta_{i}}{\left\|y_{i}^{1}\right\|} \sum_{j \in F_{i}} \alpha_{j} x_{j}\right\| \geq 2 \theta_{2 k} .
$$

We again apply the infinite Ramsey theorem, this time to the sequence $\vec{w}=\left(w_{i}^{1}\right)_{i=1}^{\infty}$, to conclude that there exists $M \in[\mathbb{N}]$ such that either
(1) $\|\alpha(k, \vec{w}, P)\| \geq 1 / 2$ for all $P \in[M]$, or
(2) $\|\alpha(k, \vec{w}, P)\|<1 / 2$ for all $P \in[M]$.

If (1) holds, then as in case (i) above, we obtain a subsequence of $\left(w_{i}^{1}\right)_{i}$ which has an ℓ_{1}^{k} spreading model with constant c.

So suppose that (2) holds. Then, as before, we find a block sequence $\left(y_{i}^{2}\right)_{i=1}^{\infty}$ of $\left(w_{i}^{1}\right)_{i=1}^{\infty}$ where, for every $i=1,2, \ldots, y_{i}^{2}$ is a convex combination of an \mathcal{S}_{k}-admissible sequence $\left(w_{j}^{1}\right)_{j \in J_{i}}$, and $\left\|y_{i}^{2}\right\|<1 / 2$. Set $w_{i}^{2}=y_{i}^{2} /\left\|y_{i}^{2}\right\|$; then for every \mathcal{S}_{k}-admissible sequence $\left(w_{i}^{2}\right)_{i \in G}$ and every choice of convex coefficients $\left(\beta_{i}\right)_{i \in G},\left\|\sum_{i \in G} \beta_{i} w_{i}^{2}\right\| \geq 2^{2} \theta_{3 k}$. Once more we pass to a set $M \in[\mathbb{N}]$ such that for the sequence $\vec{w}=\left(w_{i}^{2}\right)_{i=1}^{\infty}$ either (1) or (2) holds. If (1) is true then we are done. If (2) holds, then we proceed in the same way to construct a sequence $\left(w_{i}^{3}\right)_{i=1}^{\infty}$ and so on.

Claim. Let $n \in \mathbb{N}$ be such that $2^{n+1} \theta_{(n+1) k} \geq 1$. Then there exists some $j \leq n$ such that (1) holds for the sequence $\vec{w}=\left(w_{i}^{j}\right)_{i=1}^{\infty}$.

Proof of the Claim. Suppose not. Then we can continue the previous construction up to a normalized block sequence $\left(w_{i}^{n}\right)_{i=1}^{\infty}$ with the following property: For every \mathcal{S}_{k}-admissible family $\left(w_{i}^{n}\right)_{i \in G}$, and every choice of convex coefficients $\left(\beta_{i}\right)_{i \in G}$, we have $\left\|\sum_{i \in G} \beta_{i} w_{i}^{n}\right\| \geq 2^{n} \theta_{(n+1) k} \geq 1 / 2$.

On the other hand, by our assumption, there is a set $M \in[\mathbb{N}]$ for which (2) holds for $\vec{w}=\left(w_{i}^{n}\right)_{i=1}^{\infty}$. So $\|\alpha(k, \vec{w}, M)\|<1 / 2$, a contradiction. This completes the proof of the claim.

We have already seen that the claim yields the existence of a block sequence which has an ℓ_{1}^{k} spreading model with constant c.

We proceed to give an example of an asymptotic ℓ_{1} Banach space X satisfying the assumptions of Proposition 3.3, which does not admit any ℓ_{1}^{ω} spreading model.

Definition of the space X. We choose a decreasing sequence $\theta_{j} \in(0,1)$, $j=1,2, \ldots$, with the property $\sum_{j=1}^{\infty} \theta_{j}<1 / 100$. We also choose a sequence $\left(n_{j}\right)_{j=1}^{\infty}$ of integers with $n_{1}=1$ and such that $\lim _{j \rightarrow \infty} \theta_{j}^{1 / n_{j-1}}=1$.

Inductively, we construct a sequence $\left(K_{j}\right)_{j}$ of subsets of $c_{00}(\mathbb{N})$ as follows: Let $K_{0}=\left\{ \pm e_{n}: n \in \mathbb{N}\right\}$. Suppose that for some $j \geq 0, K_{j}$ is defined. For $r=1,2, \ldots$, set
$A_{j+1}^{r}=\left\{\theta_{r}\left(f_{1}+\ldots f_{d}\right):\left(f_{i}\right)_{i=1}^{d}\right.$ is $\mathcal{S}_{n_{r}}$-admissible and $f_{i} \in K_{j}$ for all $\left.i \leq d\right\}$. We set $L_{j+1}=\bigcup_{r=1}^{\infty} A_{j+1}^{r}$ and

$$
\begin{aligned}
& M_{j+1}=\left\{\sum_{i=1}^{n} f_{i}: n\right. \in \mathbb{N}, n \leq \min \left(\bigcup_{i=1}^{n} \operatorname{supp} f_{i}\right), \forall i=1, \ldots, n, f_{i} \in L_{j+1} \\
&\text { and } \left.f_{i} \in A_{j+1}^{r_{i}} \text { for some } r_{1}, \ldots, r_{n} \text { with } r_{1}<\ldots<r_{n}\right\} .
\end{aligned}
$$

Note that there is no requirement of disjointness on the supports of the f_{i} 's,
$i=1, \ldots, n$. Finally we set $K_{j+1}=K_{j} \cup L_{j+1} \cup M_{j+1}$. We define

$$
L=\bigcup_{j=1}^{\infty} L_{j}, \quad M=\bigcup_{j=1}^{\infty} M_{j}, \quad K=\bigcup_{j=0}^{\infty} K_{j} .
$$

The norm $\|\cdot\|$ of X is defined on $c_{00}(\mathbb{N})$ by

$$
\|x\|=\sup _{f \in K}\langle x, f\rangle .
$$

X is the completion of $c_{00}(\mathbb{N})$ under this norm. The following properties are easily established:
(1) $\left(e_{i}\right)_{i}$ is a 1-unconditional basis of X.
(2) If $x_{1}<\ldots<x_{k}$ is a block sequence of $\left(e_{i}\right)_{i}$ which is $\mathcal{S}_{n_{r}}$-admissible, then $\left\|\sum_{i=1}^{k} x_{i}\right\| \geq \theta_{r} \sum_{i=1}^{k}\left\|x_{i}\right\|$
(3) $\|\cdot\|$ is dominated by the ℓ_{1}-norm.

Remarks 3.4. 1. The space X is reflexive. This follows from the fact that it is an asymptotic ℓ_{1} Banach space with an unconditional basis which does not contain ℓ_{1}, since, as we shall show, it does not have any ℓ_{1}^{ω} spreading model.
2. A characteristic property of the dual of the space X is that we can add functionals which belong to different classes $\mathcal{A}^{r}=\bigcup_{j=1}^{\infty} A_{j}^{r}$ and get a functional in the unit ball. A similar property holds in the space constructed by W. T. Gowers [16] which does not contain c_{0}, ℓ_{1} or a reflexive subspace, and also in the example of E. Odell and Th. Schlumprecht [27] of a space X without any c_{0} or ℓ_{p} spreading model. In our case, this property does not allow a construction of a bounded sequence similar to the sequence $\left(w_{n}\right)_{n}$ which had an ℓ_{1}^{ω} spreading model in the space $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ (Proposition 3.1).

It follows from Proposition 3.3 that for every $k<\omega$, every block sequence in X has a further normalized block sequence which has an ℓ_{1}^{k} spreading model with constant $1 / 4$. The rest of this section is devoted to the proof that X does not admit any ℓ_{1}^{ω} spreading model. Assume on the contrary that there exists a sequence $\left(x_{i}\right)_{i=1}^{\infty}$ in X which has an ℓ_{1}^{ω} spreading model with constant $c>0$. We may also assume that $\left(x_{i}\right)_{i=1}^{\infty}$ is a block sequence. The next lemma shows that, by passing to a further block sequence, we may add the assumption $c=1 / 2$.

Lemma 3.5. Let $\left(x_{k}\right)_{k=1}^{\infty}$ be a normalized block sequence which has an ℓ_{1}^{ω} spreading model with constant $\delta<1$. Then, for every $\varepsilon>0$, there exists a block sequence $\left(y_{k}\right)_{k=1}^{\infty}$ of $\left(x_{k}\right)_{k=1}^{\infty}$ which has an ℓ_{1}^{ω} spreading model with constant $1-\varepsilon$.

Proof. Suppose that $\delta<1-\varepsilon$. Assume that the following property holds:
(*) There exists a strictly increasing sequence $\left(m_{k}\right)_{k=1}^{\infty}$ of integers such that for every k, if $F \in \mathcal{S}_{k}$ and $F \geq m_{k}$ then $\left\|\sum_{i \in F} \alpha_{i} x_{i}\right\| \geq$ $(1-\varepsilon) \sum_{i \in F}\left|\alpha_{i}\right|$ for all real numbers $\left(\alpha_{i}\right)_{i \in F}$.
Then it is easily seen that $\left(x_{m_{k}}\right)_{k \in \mathbb{N}}$ has an ℓ_{1}^{ω} spreading model with constant $1-\varepsilon$.

Assume now that property $(*)$ does not hold. Then there exists $k \in \mathbb{N}$ such that for every $m \in \mathbb{N}$ there exist $F \in \mathcal{S}_{k}$ with $m \leq F$ and real numbers $\left(\alpha_{j}\right)_{j \in F}$ such that

$$
\left\|\sum_{j \in F} \alpha_{j} x_{j}\right\|<(1-\varepsilon) \sum_{j \in F}\left|\alpha_{j}\right| .
$$

Then inductively we choose $k<F_{1}<F_{2}<\ldots$ (successive elements of \mathcal{S}_{k}) and real numbers $\left(\alpha_{j}\right)_{j \in F_{i}}$ such that $\left\|\sum_{j \in F_{i}} \alpha_{j} x_{j}\right\|<(1-\varepsilon) \sum_{j \in F_{i}}\left|\alpha_{j}\right|$ for every $i \in \mathbb{N}$. Set

$$
y_{i}=\frac{\sum_{j \in F_{i}} \alpha_{j} x_{j}}{\left\|\sum_{j \in F_{i}} \alpha_{j} x_{j}\right\|} \quad \text { for } i=1,2, \ldots
$$

Then the sequence $\left(y_{i}\right)_{i}$ has an ℓ_{1}^{ω} spreading model with constant $\delta /(1-\varepsilon)$.
Indeed, let $G \in \mathcal{S}_{m}$ and $G \geq m$ for some $m \in \mathbb{N}$. Then the set $\bigcup_{i \in G} F_{i}$ belongs to \mathcal{S}_{k+m} and $\bigcup_{i \in G} F_{i} \geq k+m$. Since $\left(x_{i}\right)_{i}$ has an ℓ_{1}^{ω} spreading model with constant δ, it follows that

$$
\begin{aligned}
\left\|\sum_{i \in G} \beta_{i} y_{i}\right\| & =\left\|\sum_{i \in G} \beta_{i} \frac{\sum_{j \in F_{i}} \alpha_{j} x_{j}}{\left\|\sum_{j \in F_{i}} \alpha_{j} x_{j}\right\|}\right\| \\
& \geq \delta \sum_{i \in G}\left|\beta_{i}\right| \frac{\sum_{j \in F_{i}}\left|\alpha_{j}\right|}{\left\|\sum_{j \in F_{i}} \alpha_{j} x_{j}\right\|} \geq \frac{\delta}{1-\varepsilon} \sum_{i \in G}\left|\beta_{i}\right|
\end{aligned}
$$

for all real numbers $\left(\beta_{i}\right)_{i \in G}$.
Let $n \in \mathbb{N}$ be such that $\delta /(1-\varepsilon)^{n+1} \geq 1$. Repeating the above argument at most n times we obtain the result.

Proposition 3.6. Suppose that the normalized block sequence $\vec{x}=\left(x_{k}\right)_{k}$ in X has an ℓ_{1}^{ω} spreading model with constant δ. Set

$$
\mathcal{F}_{\delta / 2}=\left\{F \in[\mathbb{N}]^{<\omega}: \exists x_{F}^{*} \in K \forall i \in F x_{F}^{*}\left(x_{i}\right) \geq \delta / 2\right\} .
$$

Then $\mathcal{F}_{\delta / 2}$ is $(\mathbb{N}, \omega, \delta / 4)$-large (see Definition 2.3).
Proof. Let $L \in[\mathbb{N}]$. We set $A=\operatorname{supp} \omega_{1}^{L} \in \mathcal{S}_{\omega}$, and $x=\omega_{1}^{L} \cdot \vec{x}=$ $\sum_{k \in A} \alpha_{k} x_{k}$, where $\left(\alpha_{k}\right)_{k}$ are nonnegative numbers and $\sum_{k \in A} \alpha_{k}=1$.

By our assumption, $\left\|\sum_{k \in A} \alpha_{k} x_{k}\right\| \geq \delta$, so there exists $x^{*} \in K$ such that $x^{*}\left(\sum_{k \in A} \alpha_{k} x_{k}\right) \geq 3 \delta / 4$. Let $F=\left\{k \in A: x^{*}\left(x_{k}\right) \geq \delta / 2\right\}$. Then, by definition, $F \in \mathcal{F}_{\delta / 2}$. We shall show that $\left\langle\omega_{1}^{L}, F\right\rangle \geq \delta / 4$, which will prove
that $\mathcal{F}_{\delta / 2}$ is $(\mathbb{N}, \omega, \delta / 4)$-large. We have

$$
\begin{aligned}
\left\langle\omega_{1}^{L}, F\right\rangle=\sum_{k \in F} \alpha_{k} & \geq \sum_{k \in F} \alpha_{k} x^{*}\left(x_{k}\right) \\
& =\sum_{k \in A} \alpha_{k} x^{*}\left(x_{k}\right)-\sum_{k \in A \backslash F} \alpha_{k} x^{*}\left(x_{k}\right) \geq \frac{3 \delta}{4}-\frac{\delta}{2}=\frac{\delta}{4}
\end{aligned}
$$

Suppose now that $\left(x_{i}\right)_{i=1}^{\infty}$ has an ℓ_{1}^{ω} spreading model in X with constant $1 / 2$. Combining Propositions 2.4 and 3.6 we find that there exists a set $N=\left\{n_{1}, n_{2}, \ldots\right\} \subseteq \mathbb{N}$ such that, for $y_{i}=x_{n_{i}}, i=1,2, \ldots$, the following holds:
(3.2) For every $F \in \mathcal{S}_{\omega}$, there exists $y_{F}^{*} \in K$ such that $y_{F}^{*}\left(y_{i}\right) \geq 1 / 4 \forall i \in F$.

Notation. For every $r=1,2, \ldots$, we set $\mathcal{A}^{r}=\bigcup_{j=1}^{\infty} A_{j}^{r} \subseteq K$. Let $r, s \in \mathbb{N}$ with $r \leq s$. We set

$$
\begin{aligned}
\mathcal{A}[r, s]=\{\phi \in K: \phi & =\sum_{i=1}^{d} f_{i}, d \in \mathbb{N}, d \leq \min \left(\bigcup_{i=1}^{d} \operatorname{supp} f_{i}\right) \text { and } \\
\forall i & \left.=1, \ldots, d, f_{i} \in \mathcal{A}^{r_{i}} \text { with } r \leq r_{1}<\ldots<r_{d} \leq s\right\}
\end{aligned}
$$

Note that $\mathcal{A}^{q} \subseteq \mathcal{A}[r, s]$ for all $r \leq q \leq s$.
Proposition 3.7. Let $j_{0} \in \mathbb{N}$ and $\left(y_{i}\right)_{i}$ be a normalized block sequence in X satisfying (3.2). Then there exist $i_{0} \in \mathbb{N}$ and $s_{0}>j_{0}$ such that for all $i>i_{0}$, there exists $\phi \in K$ with

$$
\phi \in \mathcal{A}\left[j_{0}+1, s_{0}\right] \quad \text { and } \quad \phi\left(y_{i}\right) \geq 1 / 8
$$

Before presenting the proof of the above proposition, we show how it implies that X does not admit an ℓ_{1}^{ω} spreading model.

Theorem 3.8. The space X does not admit an ℓ_{1}^{ω} spreading model.
Proof. Suppose that X admits an ℓ_{1}^{ω} spreading model. Then we can assume that for some normalized block sequence $\left(y_{i}\right)_{i=1}^{\infty}$, the conclusion of Proposition 3.7 is true. For $j_{0}=2$ there exist i_{1} and s_{1} such that for every $i>i_{1}$, there exists $\phi \in K$ with $\phi \in \mathcal{A}\left[3, s_{1}\right]$ and $\phi\left(y_{i}\right) \geq 1 / 8$. In the same way, there exist $i_{2}>i_{1}$ and $s_{2}>s_{1}$ such that for every $i>i_{2}$ there exists $\phi \in K$ with $\phi \in \mathcal{A}\left[s_{1}+1, s_{2}\right]$ and also $\phi\left(y_{i}\right) \geq 1 / 8$.

Continuing in this manner we find positive integers $s_{1}<\ldots<s_{9}$ and $i_{9} \in$ \mathbb{N} such that for all $i>i_{9}$, there exist $\phi_{1}, \ldots, \phi_{9} \in K$ with $\phi_{j} \in \mathcal{A}\left[s_{j-1}+1, s_{j}\right]$ and $\phi_{j}\left(y_{i}\right) \geq 1 / 8$ for every $j=1, \ldots, 9$. It only remains to choose $i_{0}>i_{9}$
 $j=1, \ldots, 9$, we see that $\psi_{1}+\ldots+\psi_{9} \in K$. Indeed, this is the sum of a sequence $\left(f_{i}\right)_{i=1}^{d}$ of elements of L, with $f_{i} \in \mathcal{A}^{r_{i}}$ where $r_{1}<\ldots<r_{d} \leq s_{9}$, which yields $d \leq s_{9} \leq \min \left(\bigcup_{i=1}^{d} \operatorname{supp} f_{i}\right)$.

Furthermore, $\left(\psi_{1}+\ldots+\psi_{9}\right)\left(y_{i_{0}}\right) \geq 9 / 8$, which leads to a contradiction, and the proof of the theorem is complete.

Hence it remains to prove Proposition 3.7.
Proof of Proposition 3.7. Suppose that the result is false. We may assume that $j_{0} \geq 3$. Then for all $i_{0} \in \mathbb{N}$ and any $s>j_{0}$ there exists $i>i_{0}$ such that for all $\phi \in K$, if $\phi \in \mathcal{A}\left[j_{0}+1, s\right]$ then $\phi\left(y_{i}\right)<1 / 8$.

Let $i_{1}=1$. We choose $j_{1}>j_{0}$ such that

$$
\left(\sum_{r \geq j_{1}} \theta_{r}\right)\left\|y_{i_{1}}\right\|_{\ell_{1}}<1 / 100
$$

Then there exists $i_{2}>i_{1}$ such that for all $\phi \in K$, if $\phi \in \mathcal{A}\left[j_{0}+1, j_{1}\right]$ then $\phi\left(y_{i_{2}}\right)<1 / 8$.

We choose $j_{2}>j_{1}$ such that

$$
\left(\sum_{r \geq j_{2}} \theta_{r}\right)\left\|y_{i_{2}}\right\|_{\ell_{1}}<1 / 100
$$

and then $i_{3}>i_{2}$ such that for all $\phi \in K$, if $\phi \in \mathcal{A}\left[j_{0}+1, j_{2}\right]$ then $\phi\left(y_{i_{3}}\right)<1 / 8$. Continuing in this way we construct a subsequence $\left(y_{i_{k}}\right)_{k=1}^{\infty}$ of $\left(y_{i}\right)_{i=1}^{\infty}$ and $\left(j_{k}\right)_{k=1}^{\infty} \subseteq \mathbb{N}$ with $j_{0}<j_{1}<\ldots$ with the following properties:
(P.1) For all $k \geq 2$, if $\phi \in K$ and $\phi \in \mathcal{A}\left[j_{0}+1, j_{k-1}\right]$ then $\phi\left(y_{i_{k}}\right)<1 / 8$.
(P.2) For all $k \geq 1,\left(\sum_{r \geq j_{k}} \theta_{r}\right)\left\|y_{i_{k}}\right\|_{\ell_{1}}<1 / 100$.
(P.2) implies that if $f_{i} \in \mathcal{A}^{r_{i}}, i=1, \ldots, n$, with $j_{k} \leq r_{1}<\ldots<r_{n}$, then $\left|\left(\sum_{i=1}^{n} f_{i}\right)\left(y_{i_{k}}\right)\right|<1 / 100$.

We now set

$$
l_{k}=\max \operatorname{supp} y_{i_{k}} \quad \text { for } k=1,2, \ldots
$$

and choose $\left(k_{n}\right)_{n=1}^{\infty}$ with $n_{j_{0}}+2 \leq i_{k_{1}} \leq l_{k_{1}}<\ldots \leq l_{k_{n-1}}<i_{k_{n}} \leq l_{k_{n}}<\ldots$
Let $\left(l_{k_{s}}\right)_{s \in G} \in \mathcal{S}_{n_{j_{0}}+1}$ be the support of a $\left(1 /\left(10 j_{0}\right), n_{j_{0}}+1\right)$-basic special convex combination, $\sum_{s \in G} \alpha_{s} e_{l_{k_{s}}}$, such that $\max _{s} \alpha_{s} \leq 1 / l_{k_{\min G}}^{2}$. Then $\left(i_{k_{s}}\right)_{s \in G} \in \mathcal{S}_{n_{j_{0}}+2}$ and $n_{j_{0}}+2 \leq i_{k_{1}}$, so $\left(i_{k_{s}}\right)_{s \in G} \in \mathcal{S}_{\omega}$.

This shows that there exists a $\left(1 /\left(10 j_{0}\right), n_{j_{0}}+1\right)$-s.c.c. $\sum_{k \in F} \alpha_{k} y_{i_{k}}$ of $\left(y_{i_{k}}\right)_{k}$ such that $\left\{i_{k}: k \in F\right\} \in \mathcal{S}_{\omega}$ and $\max _{k} \alpha_{k} \leq 1 / l_{\min F}^{2}$. By property (3.2) of the sequence $\left(y_{i}\right)$, we deduce that there exists $x_{F}^{*} \in K$ such that

$$
x_{F}^{*}\left(y_{i_{k}}\right) \geq 1 / 4 \quad \forall k \in F .
$$

We will show that this leads to a contradiction.
Let $F=\left\{k_{1}, \ldots, k_{n}\right\}$. There are two cases for x_{F}^{*}.
Case 1: $x_{F}^{*} \in L$. Let $x_{F}^{*} \in \mathcal{A}^{r}$. Suppose $r \leq j_{0}$. Then, by Lemma 2.7, $\left|x_{F}^{*}\left(\sum_{k \in F} \alpha_{k} y_{i_{k}}\right)\right| \leq 2 \theta_{r} \leq 1 / 50$, a contradiction. Now suppose $j_{0}<r<j_{k_{1}}$. Then, by (P.1), $x_{F}^{*}\left(y_{i_{k_{2}}}\right)<1 / 8$, a contradiction. Finally, suppose $j_{k_{1}} \leq r$. Then it follows by (P.2) that $\left|x_{F}^{*}\left(y_{i_{k_{1}}}\right)\right|<1 / 100$, a contradiction again.

CASE 2: $x_{F}^{*} \in M \backslash L$. Then $x_{F}^{*}=\sum_{q=1}^{d} f_{q}$ where $d \leq \min \left(\bigcup_{q=1}^{d} \operatorname{supp} f_{q}\right)$ and for all $q=1, \ldots, d, f_{q} \in \mathcal{A}^{r_{q}}$ where $r_{1}<\ldots<r_{d}$. We set

$$
A_{0}=\left\{q=1, \ldots, d: r_{q} \leq j_{0}\right\}, \quad A_{n}=\left\{q=1, \ldots, d: j_{k_{n-1}}<r_{q}\right\}
$$

and for $s=1, \ldots, n-1$,

$$
A_{s}=\left\{q=1, \ldots, d: j_{k_{s-1}}<r_{q} \leq j_{k_{s}}\right\}
$$

where $k_{0}=0$. Then

$$
x_{F}^{*}=\sum_{s=0}^{n-1} \sum_{q \in A_{s}} f_{q}
$$

We shall show that there are at least $2 l_{k_{1}}$ sets A_{s} which are not empty. This implies that there are at least $2 l_{k_{1}}$ different f_{q} 's, therefore $2 l_{k_{1}} \leq d$. This yields a contradiction, since $x_{F}^{*}\left(y_{i_{k_{1}}}\right) \neq 0$, and hence $d \leq \min \operatorname{supp} x_{F}^{*} \leq l_{k_{1}}$.

So, it remains to prove the following:
CLAIm. The cardinality of the set $\left\{s: A_{s} \neq \emptyset\right\}$ is greater than or equal to $2 l_{k_{1}}$.

Proof of the Claim. Consider the set $A_{0}=\left\{q=1, \ldots, d: r_{q} \leq j_{0}\right\}$. Then obviously, $\# A_{0} \leq j_{0}$. For each $q \in A_{0}, f_{q}=\theta_{r_{q}}\left(\sum_{s=1}^{p} g_{s}\right)$, where $g_{s} \in K$ for all $s=1, \ldots, p$, the family $\left(g_{s}\right)_{s=1}^{p}$ is r_{q}-admissible and $r_{q} \leq j_{0}$. For $k \in F$, we say that f_{q} splits $y_{i_{k}}$ if

$$
\operatorname{supp} g_{s} \cap \operatorname{supp} y_{i_{k}} \neq \emptyset \quad \text { for at least two different } g_{s}
$$

We set $J_{q}=\left\{k \in F: y_{i_{k}}\right.$ is split by $\left.f_{q}\right\}$ and note that $\left\{l_{k}: k \in J_{q}\right\} \in \mathcal{S}_{j_{0}}$. So, $\sum_{k \in J_{q}} \alpha_{k}<1 /\left(10 j_{0}\right)$. We now let $J=\bigcup_{q \in A_{0}} J_{q}$ be the set of indices $k \in F$ such that $y_{i_{k}}$ is split by some f_{q} with $r_{q} \leq j_{0}$. We get

$$
\sum_{k \in J} \alpha_{k} \leq \sum_{q \in A_{0}} \sum_{k \in J_{q}} \alpha_{k} \leq 1 / 10
$$

Letting now

$$
I=\left\{k \in F: y_{i_{k}} \text { is not split by any } f_{q} \text { with } r_{q} \leq j_{0}\right\}
$$

we get $\sum_{k \in I} \alpha_{k} \geq 9 / 10$. So,

$$
9 / 10 \leq \sum_{k \in I} \alpha_{k} \leq \max \alpha_{k} \cdot(\# I) \leq \frac{1}{l_{k_{1}}^{2}}(\# I)
$$

Thus $\# I \geq \frac{9}{10} l_{k_{1}}^{2}>2 l_{k_{1}}$.
We can now prove that for each $k_{s} \in I$, the set A_{s} is nonempty. Indeed, let $k_{s} \in I$. Since $y_{i_{k_{s}}}$ is not split by any f_{q} with $q \in A_{0}$,

$$
\left|\left(\sum_{q \in A_{0}} f_{q}\right)\left(y_{i_{k_{s}}}\right)\right| \leq \sum_{r_{q} \leq j_{0}} \theta_{r_{q}} \leq 1 / 100
$$

Also,

$$
\left|\left(\sum_{t=1}^{s-1} \sum_{q \in A_{t}} f_{q}\right)\left(y_{i_{k_{s}}}\right)\right| \leq \frac{1}{8} \text { by (P.1), }\left|\left(\sum_{t \geq s+1} \sum_{q \in A_{t}} f_{q}\right)\left(y_{i_{k_{s}}}\right)\right| \leq \frac{1}{100} \text { by (P.2). }
$$

Since $\left(\sum_{q=1}^{d} f_{q}\right)\left(y_{i_{k_{s}}}\right) \geq 1 / 4$ it follows that there exists $q \in A_{s}$ with $f_{q}\left(y_{i_{k_{s}}}\right)$ $\neq 0$, hence $A_{s} \neq \emptyset$.
4. Distortion of modified mixed Tsirelson spaces. The modified Tsirelson space T_{M} was introduced by W. B. Johnson [19]. Later, P. Casazza and E. Odell [13] and S. Bellenot [11] proved that T_{M} is naturally 2 -isomorphic to T. The situation is different with mixed Tsirelson spaces. The modified mixed Tsirelson spaces $T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ were introduced in [6], where it was proved that these spaces are reflexive, and totally incomparable to the original ones in the case $\lim \theta_{n}^{1 / n}=1$. In this section we prove that if we choose a sequence $\left(\theta_{n}\right)_{n}$ of reals with $\theta_{n} \searrow 0$ and $\theta_{n+1} \leq \theta_{n}^{3}$ and an appropriate subsequence $\left(\mathcal{S}_{k_{n}}\right)_{n}$ of the Schreier sequence $\left(\mathcal{S}_{n}\right)_{n}$, then the modified mixed Tsirelson space $X_{M}=T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$ is arbitrarily distortable. This is established by proving the existence of an asymptotic biorthogonal system in X_{M}.

Moreover, assuming some additional properties for the double sequence $\left(k_{n}, \theta_{n}\right)_{n}$, which we call the Gasparis conditions (Definition 4.14), we prove that every block subspace of X_{M} admits an ℓ_{1}^{ω} spreading model.

Before we give the definition of the space X_{M} let us recall the definition of the modified sequence $\left(\mathcal{S}_{n}^{M}\right)_{n}$ and state a lemma.

Lemma 4.1. For $n<\omega$ define the family \mathcal{S}_{n}^{M} inductively as follows:

$$
\begin{aligned}
& \mathcal{S}_{0}^{M}=\mathcal{S}_{0}=\{\{n\}: n \in \mathbb{N}\} \cup\{\emptyset\} . \\
& \mathcal{S}_{n+1}^{M}=\left\{\bigcup_{i=1}^{k} A_{i}: k \in \mathbb{N}, A_{i} \in \mathcal{S}_{n}^{M} \text { for } i=1, \ldots, k, A_{i} \cap A_{j}=\emptyset\right. \\
& \left.\quad \text { for } i \neq j \text { and } k \leq \min A_{1}<\ldots<\min A_{k}\right\} \cup\{\emptyset\} .
\end{aligned}
$$

Then $\mathcal{S}_{n}^{M}=\mathcal{S}_{n}$ for all n.
The proof can be found in [6, Lemma 1.2].
Definition 4.2. Let \mathcal{M} be a family of finite subsets of \mathbb{N}.
(a) A finite sequence $\left(E_{i}\right)_{i=1}^{k}$ of finite subsets of \mathbb{N} is said to be \mathcal{M} allowable if the set $\left(\min E_{i}\right)_{i=1}^{k}$ belongs to \mathcal{M} and $E_{i} \cap E_{j}=\emptyset$ for all $i, j=$ $1, \ldots, k, i \neq j$.
(b) A finite sequence $\left(x_{i}\right)_{i=1}^{k}$ of vectors in c_{00} is \mathcal{M}-allowable if the sequence $\left(\operatorname{supp} x_{i}\right)_{i=1}^{k}$ is \mathcal{M}-allowable.

We now pass to the definition of the space X_{M}. We choose a sequence $\left(m_{j}\right)_{j=1}^{\infty}$ of integers such that $m_{1}=2$ and $m_{j} \geq m_{j-1}^{3}$ for $j=2,3, \ldots$, We choose inductively a subsequence $\left(\mathcal{S}_{k_{j}}\right)_{j=1}^{\infty}$ of $\left(\mathcal{S}_{n}\right)_{n}$ as follows: We set $k_{1}=1$. Suppose that $k_{j}, j=1, \ldots, n-1$, have been chosen. Let t_{n} be such that $2^{t_{n}} \geq m_{n}^{2}$. We set $k_{n}=t_{n}\left(k_{n-1}+1\right), \mathcal{M}_{j}=\mathcal{S}_{k_{j}}$ for $j=1,2, \ldots$, and

$$
X_{M}=T_{M}\left[\left(\mathcal{M}_{j}, 1 / m_{j}\right)_{j=1}^{\infty}\right]
$$

The norm of X_{M} is defined by the following implicit equation:

$$
\|x\|=\max \left\{\|x\|_{\infty}, \sup _{j} \frac{1}{m_{j}} \sup \left\{\sum_{i=1}^{d}\left\|E_{i} x\right\|:\left(E_{i}\right)_{i=1}^{d} \text { is } \mathcal{M}_{j} \text {-allowable }\right\}\right\}
$$

We shall also make use of the following alternative definition of the norm of X_{M}. Inductively, we define a subset $K=\bigcup_{n=0}^{\infty} K^{n}$ of $B_{X_{M}^{*}}$ as follows: For $j=1,2, \ldots$, we set $K_{j}^{0}=\left\{ \pm e_{n}: n \in \mathbb{N}\right\}$. Assume that $K_{j}^{n}, j=1,2, \ldots$, have been defined. We set $K^{n}=\bigcup_{j=1}^{\infty} K_{j}^{n}$, and for $j=1,2, \ldots$,

$$
\begin{aligned}
& K_{j}^{n+1}=K_{j}^{n} \cup\left\{m_{j}^{-1}\left(f_{1}+\ldots+f_{d}\right): d \in \mathbb{N}, f_{i} \in K^{n} \text { for } i=1, \ldots, d\right. \\
&\text { and } \left.\left(f_{i}\right)_{i=1}^{d} \text { is } \mathcal{M}_{j} \text {-allowable }\right\} .
\end{aligned}
$$

Let $K=\bigcup_{n=0}^{\infty} K^{n}$. Then K is a norming set for X_{M}, that is,

$$
\|x\|=\sup _{f \in K}\langle x, f\rangle \quad \text { for } x \in X_{M}
$$

For $j=1,2, \ldots$, we set $\mathcal{A}_{j}=\bigcup_{n=1}^{\infty}\left(K_{j}^{n} \backslash K^{0}\right)$. If $f \in K \backslash K^{0}$ and we have fixed a j with $f \in \mathcal{A}_{j}$, then we write

$$
w(f)=1 / m_{j}
$$

It is not hard to see that the space X_{M} is an asymptotic ℓ_{1} Banach space and the natural basis $\left(e_{n}\right)_{n}$ is a 1-unconditional basis for X_{M}.

REMARK 4.3. All our results about this space remain valid, with the same proofs, if we replace the condition $k_{n}=t_{n}\left(k_{n-1}+1\right)$ by $k_{n} \geq t_{n}\left(k_{n-1}+1\right)$, where $2^{t_{n}} \geq m_{n}^{2}$. This remark will be used in the proof of Theorem 4.15.

In what follows, by a tree \mathcal{T} we shall mean a finite set of finite sequences of positive integers, partially ordered by the relation

$$
\alpha \prec \beta \quad \text { iff } \quad \alpha \text { is an initial segment of } \beta,
$$

and with $\{\beta: \beta \prec \alpha\} \subseteq \mathcal{T}$ for every $\alpha \in \mathcal{T}$. The elements of \mathcal{T} are called nodes. \mathcal{T} has a unique root, the empty sequence, which we denote by 0 . The length of a sequence $\alpha \in \mathcal{T}$ is denoted by $|\alpha|$. The height of \mathcal{T} is the maximum length of the maximal nodes of \mathcal{T}. If $\alpha \in \mathcal{T}$ we define $S_{\alpha}=\{\beta \in \mathcal{T}: \alpha \prec \beta$ and $|\beta|=|\alpha|+1\}$.

Definition 4.4. Let $m \in \mathbb{N}$ and $\phi \in K^{m}$. An analysis of ϕ is a subset $\left(f_{\alpha}\right)_{\alpha \in \mathcal{T}}$ of K indexed by a tree \mathcal{T} of height m such that:
(1) $\phi=f_{0}$.
(2) For every $0 \leq s \leq m$, the elements of $\left\{f_{\alpha}: \alpha \in \mathcal{T}\right.$ and $\left.|\alpha|=s\right\}$ are disjointly supported and $\bigcup_{|\alpha|=s} \operatorname{supp} f_{\alpha} \subset \operatorname{supp} \phi$.
(3) For every $\beta \in \mathcal{T}$, either $f_{\beta}=e_{k_{\beta}}$ for some $k_{\beta} \in \mathbb{N}$, if β is a maximal element of \mathcal{T}, or for some $j \in \mathbb{N}, f_{\beta}=m_{j}^{-1} \sum_{\alpha \in S_{\beta}} f_{\alpha}$, and the set $\left\{f_{\alpha}\right.$: $\left.\alpha \in S_{\beta}\right\}$ is \mathcal{M}_{j}-allowable.

It is easy to see that every $\phi \in K$ has an analysis, not necessarily unique. For example, consider $\phi=m_{j}^{-1}\left(\sum_{k \in A_{1}} e_{k}^{*}+\sum_{k \in A_{2}} m_{k}^{-1} \sum_{i \in F_{k}} e_{i}^{*}\right) \in K^{2}$, where, for each $k \in A_{2}, F_{k} \in \mathcal{S}_{k}$ and the family $\left\{\{k\}: k \in A_{1}\right\} \cup\left\{F_{k}\right.$: $\left.k \in A_{2}\right\}$ is \mathcal{S}_{j}-allowable. Then an analysis of ϕ consists of the following three levels:
$\{\phi\}, \quad\left\{e_{k}^{*}: k \in A_{1}\right\} \cup\left\{m_{k}^{-1} \sum_{i \in F_{k}} e_{i}^{*}: k \in A_{2}\right\}, \quad\left\{e_{i}^{*}: i \in \bigcup_{k \in A_{2}} F_{k}\right\}$.
Let $j \in \mathbb{N}, \varepsilon>0$, and $x=\sum_{k=1}^{n} a_{k} z_{k}$ be an $\left(\varepsilon, k_{j}\right)$-s.c.c. in X_{M} (Definition 2.6) where $\left\|z_{k}\right\|=1$ for all $k=1, \ldots, n$. Then $\|x\| \geq 1 /\left(2 m_{j}\right)$. Indeed, if $f_{k} \in B_{X_{M}^{*}}$ are chosen so that $f_{k}\left(z_{k}\right)=\left\|z_{k}\right\|=1$, $\operatorname{supp} f_{1} \subset\left(2, l_{1}\right]$, and $\operatorname{supp} f_{k} \subset\left(l_{k-1}, l_{k}\right]$ for $k=2, \ldots, n$, then the family $\left(f_{k}\right)_{k}$ is $\mathcal{S}_{k_{j}+1}=\mathcal{S}_{1}\left[\mathcal{S}_{k_{j}}\right]-$ allowable. This implies that the functional $\varphi=\left(2 m_{j}\right)^{-1} \sum_{k=1}^{n} f_{k}$ belongs to $B_{X_{M}^{*}}$, hence $\|x\| \geq \varphi(x) \geq 1 /\left(2 m_{j}\right)$.

Recall that an $\left(\varepsilon, k_{j}\right)$-s.c.c. $x=\sum_{k=1}^{n} a_{k} z_{k}$ of unit vectors $\left(z_{k}\right)_{k=1}^{n}$ is said to be seminormalized if $\|x\| \geq 1 / 2$.

The following lemma states that every block subspace Y of X contains, for every $\varepsilon>0$ and $j \geq 2$, a seminormalized $\left(\varepsilon, k_{j}\right)$-s.c.c. Its proof is completely analogous to the proof of the corresponding result proved in [5] for mixed Tsirelson spaces.

Lemma 4.5. Let $j \in \mathbb{N}, \varepsilon>0$ and let $\left(z_{k}\right)_{k=1}^{\infty}$ be a block sequence in X. There exists $n \in \mathbb{N}$ and normalized blocks $y_{k}, k=1, \ldots, n$, of the sequence $\left(z_{k}\right)_{k=1}^{\infty}$ such that a convex combination $x=\sum_{k=1}^{n} a_{k} y_{k}$ is a seminormalized $\left(\varepsilon, k_{j}\right)-s . c . c$.

Proof. We may assume that the vectors $z_{k}, k=1,2, \ldots$, are normalized. Choose an infinite block sequence $\left(x_{l}^{1}\right)_{l=1}^{\infty}$ of $\left(z_{k}\right)_{k=1}^{\infty}$ such that, for each l, $x_{l}^{1}=\sum_{k \in A_{l}} a_{k} z_{k}$ is an $\left(\varepsilon, k_{j}\right)$-s.c.c. of $\left(z_{k}\right)_{k \in A_{l}}$.

If $\left\|x_{l}^{1}\right\| \geq 1 / 2$ for some l, then we are done. If not, we set $y_{l}^{1}=x_{l}^{1} /\left\|x_{l}^{1}\right\|$ and as before, choose an infinite sequence $\left(x_{l}^{2}\right)_{l}$ of $\left(\varepsilon, k_{j}\right)$-s.c.c.'s of $\left(y_{l}^{1}\right)_{l=1}^{\infty}$.

Notice that for each l, the family $\left\{z_{k}: \operatorname{supp} z_{k} \subset \operatorname{supp} x_{l}^{2}\right\}$ is $\mathcal{S}_{2\left(k_{j}+1\right)^{-}}$ allowable (since $\mathcal{S}_{2\left(k_{j}+1\right)}=\mathcal{S}_{k_{j}+1}\left[\mathcal{S}_{k_{j}+1}\right]$), and so x_{l}^{2} is a combination of the form $x_{l}^{2}=\sum b_{k}\left(\mu_{k} z_{k}\right)$ where $\sum b_{k}=1, \mu_{k} \geq 2$, and $\left(z_{k}\right)$ is an $\mathcal{S}_{2\left(k_{j}+1\right)^{-}}$ allowable family. This gives $\left\|x_{l}^{2}\right\| \geq 2 / m_{j+1}$. If $\left\|x_{l}^{2}\right\| \geq 1 / 2$ for some l, then
we are done. If not, then $1 / m_{j+1} \leq\left\|\frac{1}{2} x_{l}^{2}\right\|<1 / 2^{2}, l=1,2, \ldots$ We set $y_{l}^{2}=x_{l}^{2} /\left\|x_{l}^{2}\right\|$ and continue as before.

Repeating the procedure t_{j+1} times (recall that the sequence $\left(t_{j}\right)_{j}$ is given in the definition of X_{M}), if we never get some $\left(\varepsilon, k_{j}\right)$-s.c.c. x_{l}^{k} with $\left\|x_{l}^{k}\right\| \geq$ $1 / 2,1 \leq k \leq t_{j+1}$, then we arrive at a $x_{l}^{t_{j+1}}$ of the form $x_{l}^{t_{j+1}}=\sum_{i \in S} \alpha_{i} \mu_{i} z_{i}$ where $\left(\operatorname{supp} z_{i}\right)_{i \in S}$ is $\mathcal{M}_{j+1}=\mathcal{S}_{t_{j+1}\left(k_{j}+1\right)}$-allowable, $\sum_{i \in S} \alpha_{i}=1$, and $\mu_{i} \geq$ $2^{t_{j+1}-1}$ for all $i \in S$. Then

$$
\frac{1}{m_{j+1}} \leq \frac{1}{2^{t_{j+1}-1}}\left\|x_{l}^{t_{j+1}}\right\|<\frac{1}{2^{t_{j+1}}}
$$

This leads to a contradiction which completes the proof.
Notation. Let $X_{(n)}=T_{M}\left[\left(\mathcal{M}_{j}, 1 / m_{j}\right)_{j=1}^{n}\right]$ and let $K_{(n)}$ be the norming set of $X_{(n)}$. We denote by $\|\cdot\|_{n}$ the norm of $X_{(n)}$ and by $\|\cdot\|_{n}^{*}$ the corresponding dual norm.

Let us briefly outline the arguments which we shall use to prove the existence of an asymptotic biorthogonal system $\left(C_{j}, \mathcal{A}_{j}\right)_{j}$ in X_{M}. For every j, the set C_{j} is the asymptotic set consisting of vectors of the form $z=y /\|y\|$, where y is a $\left(1 / m_{j}^{2}, k_{j}\right)$-rapidly increasing special convex combination (r.i.s.c.c., Definition 4.11) and $\mathcal{A}_{j}=\bigcup_{n=1}^{\infty}\left(K_{j}^{n} \backslash K^{0}\right)$.

In order to estimate the action of the different functionals of K on an $\left(\varepsilon, k_{j}\right)$-r.i.s.c.c., we reduce it to the action of analogous functionals on a certain $\left(\varepsilon, k_{j}\right)$-basic s.c.c. So, our first step is to estimate the action of the different functionals on $\left(\varepsilon, k_{j}\right)$-basic special convex combinations (Lemma 4.8).

Our next step is to prove the following useful result (Lemma 4.9), about modified mixed Tsirelson spaces $T_{M}\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$: If x is a $\left(\theta_{j}, j\right)$-s.c.c. of normalized vectors and $\left(E_{r}\right)_{r}$ is any \mathcal{S}_{i}-allowable family of sets where $i<j$, then

$$
\sum_{r}\left\|E_{r} x\right\| \leq \frac{1}{\theta_{1}}+1
$$

This lemma is crucial for our estimates. The analogous lemma for mixed Tsirelson spaces $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ was also very useful in dealing with the problem of distortion on these spaces ([2], [5], [14]).

In Lemma 4.10 we prove that if $x=\sum_{i=1}^{n} b_{i} x_{i}$ is a $\left(1 / m_{j}^{2}, k_{j}\right)$-s.c.c. of normalized vectors in X_{M} and $\phi \in K_{(j-1)}$, then $|\phi(x)| \leq 5 / m_{j}$. This result is used in the proof of Proposition 4.12 where we estimate the action of the functionals of K on a $\left(1 / m_{j}^{2}, k_{j}\right)$-r.i.s.c.c. y. We get the following bounds:

$$
|\phi(y)| \leq \begin{cases}14 /\left(m_{i} m_{j}\right) & \text { if } \phi \in \mathcal{A}_{i}, i<j \\ 8 / m_{i} & \text { if } \phi \in \mathcal{A}_{i}, i=j, j+1 \\ 8 / m_{j}^{2} & \text { if } \phi \in \mathcal{A}_{i}, i \geq j+2\end{cases}
$$

In particular, $1 /\left(4 m_{j}\right) \leq\|y\| \leq 8 / m_{j}$. These estimates imply that the sequence $\left(C_{j}, \mathcal{A}_{j}\right)_{j}$ is an asymptotic biorthogonal system.

Estimates on the basis. Before we estimate the action of the functionals on (ε, j)-basic s.c.c.'s we prove an auxiliary lemma.

Lemma 4.6. Let $n \in \mathbb{N}, \phi \in K$ and $\left(f_{\alpha}\right)_{\alpha \in \mathcal{T}}$ be an analysis of ϕ. Let

$$
F=\left\{\alpha \in \mathcal{T}: \prod_{\beta \prec \alpha} w\left(f_{\beta}\right)>1 / m_{n}^{2} \text { and } w\left(f_{\beta}\right) \geq 1 / m_{n-1} \text { for all } \beta \prec \alpha\right\}
$$

and let G be a subset of F consisting of incomparable nodes. Then the set $\left\{f_{\alpha}: \alpha \in G\right\}$ is $\mathcal{S}_{k_{n}-1}$-allowable.

Proof. We recall that from the definition of the space X_{M} we have $k_{n}=$ $t_{n}\left(k_{n-1}+1\right)$, where t_{n} is such that $2^{t_{n}} \geq m_{n}^{2}$.

Since $w(f) \leq 1 / 2$ for $f \in K \backslash K^{0}$, it follows that if $\alpha \in G$ and $|\alpha|=k$ then $1 / m_{n}^{2}<\prod_{\beta \prec \alpha} w\left(f_{\beta}\right) \leq 1 / 2^{k-1}$. Hence $2^{k-1}<m_{n}^{2} \leq 2^{t_{n}}$. Therefore, $|\alpha| \leq t_{n}$ for every $\alpha \in G$.

The result will be an immediate consequence of the following
Sublemma 4.7. Let $\phi \in K$ and $\left(f_{\alpha}\right)_{\alpha \in \mathcal{T}}$ be an analysis of ϕ. For $\alpha \in \mathcal{T}$, α not maximal, let $f_{\alpha}=m_{\alpha}^{-1} \sum_{\gamma \in S_{\alpha}} f_{\gamma}$, where the sequence $\left(f_{\gamma}\right)_{\gamma \in S_{\alpha}}$ is $\mathcal{S}_{k_{\alpha}}$-allowable. If G is a subset of \mathcal{T} consisting of incomparable nodes, then the set $\left\{f_{\alpha}: \alpha \in G\right\}$ is \mathcal{S}_{l}-allowable, where $l=\max \left\{\sum_{\beta \prec \alpha} k_{\beta}: \alpha \in G\right\}$.

Proof. By induction on $j \leq \operatorname{height}(\mathcal{T})$ we shall show that the set $A_{j}=$ $\{\alpha \in G:|\alpha| \leq j\}$ is $\mathcal{S}_{l_{j}}$-allowable, where $l_{j}=\max \left\{\sum_{\beta \prec \alpha} k_{\beta}: \alpha \in A_{j}\right\}$.

For $j=1$ this is trivial. Assume that it holds for some $j<\operatorname{height}(\mathcal{T})$. We write $A_{j+1}=\bigcup_{|\alpha|=1} G_{\alpha}$, where $G_{\alpha}=\left\{\beta \in A_{j+1}: \alpha \preceq \beta\right\}$, with some G_{α} possibly empty. It is evident that the sets G_{α} consist of pairwise incomparable nodes. Therefore, since the height of each $\mathcal{T}_{\alpha}=\{\beta \in \mathcal{T}:|\beta| \leq$ $j+1, \alpha \preceq \beta\}$ is less than or equal to j, it follows from the inductive hypothesis that each family $\left\{f_{\beta}: \beta \in G_{\alpha}\right\}$ with $|\alpha|=1$ and $G_{\alpha} \neq \emptyset$ is at most $\max \left\{\sum_{\alpha \preceq \gamma \prec \beta} k_{\gamma}: \beta \in G_{\alpha}\right\}$-allowable. Therefore $\bigcup_{|\alpha|=1}\left\{f_{\beta}: \beta \in G_{\alpha}\right\}$ is at $\operatorname{most} k_{0}+\max \left\{\sum_{\alpha \preceq \gamma \prec \beta} k_{\gamma}: \beta \in G_{\alpha},|\alpha|=1\right\}=\max \left\{\sum_{\beta \prec \alpha} k_{\beta}: \alpha \in A_{j+1}\right\}-$ allowable.

To complete the proof of the lemma, we observe that $\sum_{\beta \prec \alpha} k_{\beta} \leq t_{n} k_{n-1}$ $<k_{n}$ for every node $\alpha \in G$. .

Remark. Sublemma 4.7 is taken from [14]. Our original proof of the above lemma without the use of the sublemma was less elegant.

Lemma 4.8. Let $j \geq 2,0<\varepsilon \leq 1 / m_{j}^{2}$, and let $x=\sum_{k=1}^{m} b_{k} e_{n_{k}}$ be an $\left(\varepsilon, k_{j}\right)$-basic s.c.c. Then:
(a) For $\varphi \in \bigcup_{s=1}^{\infty} \mathcal{A}_{s}$,

$$
\left|\varphi\left(\sum_{k=1}^{m} b_{k} e_{n_{k}}\right)\right| \leq \begin{cases}1 / m_{s} & \text { if } \varphi \in \mathcal{A}_{s}, s \geq j \\ 2 /\left(m_{s} m_{j}\right) & \text { if } \varphi \in \mathcal{A}_{s}, s<j\end{cases}
$$

(b) $\left\|\sum_{k=1}^{m} b_{k} e_{n_{k}}\right\|_{j-1} \leq 2 / m_{j}^{2}$.

Proof. (a) If $s \geq j$ then the estimate is obvious. Let $s<j$ and $\phi=$ $m_{s}^{-1} \sum_{i=1}^{d} f_{i}$. We may assume that $\phi\left(e_{n_{k}}\right) \geq 0$ for all k. We set

$$
D=\left\{n_{k}: \sum_{i=1}^{d} f_{i}\left(e_{n_{k}}\right)>1 / m_{j}\right\}, \quad g_{i}=\left.f_{i}\right|_{D}, \quad i=1, \ldots, d
$$

Then $m_{s}^{-1} \sum_{i=1}^{d} g_{i} \in K_{(j-1)}$ and for every $n \in D$ we have

$$
\frac{1}{m_{s}} \sum_{i=1}^{d} g_{i}\left(e_{n}\right)>\frac{1}{m_{s}} \frac{1}{m_{j}}>\frac{1}{m_{j}^{2}}
$$

Therefore, by Lemma $4.6, D=\operatorname{supp}\left(m_{s}^{-1} \sum_{i=1}^{d} g_{i}\right) \in \mathcal{S}_{k_{j}-1}$. So

$$
\frac{1}{m_{s}} \sum_{i=1}^{d} g_{i}\left(\sum_{k=1}^{m} b_{k} e_{n_{k}}\right) \leq \sum_{n_{k} \in D} b_{k} \leq \frac{1}{m_{j}^{2}}
$$

On the other hand,

$$
\frac{1}{m_{s}} \sum_{i=1}^{d} f_{i \mid D^{\mathrm{c}}}\left(\sum_{k=1}^{m} b_{k} e_{n_{k}}\right) \leq \frac{1}{m_{s}} \frac{1}{m_{j}}
$$

Hence

$$
\phi\left(\sum_{k=1}^{m} b_{k} e_{n_{k}}\right) \leq \frac{1}{m_{s}} \frac{1}{m_{j}}+\frac{1}{m_{j}^{2}} \leq \frac{2}{m_{s} m_{j}}
$$

(b) We let $\phi \in K_{(j-1)}$ and assume again that ϕ is positive. We set $L=\left\{n_{k}: \phi\left(e_{n_{k}}\right)>1 / m_{j}^{2}\right\}$. Then $\phi_{\mid L^{\mathrm{c}}}\left(\sum_{k} b_{k} e_{n_{k}}\right) \leq 1 / m_{j}^{2}$. On the other hand, Lemma 4.6 shows that $\operatorname{supp} \phi_{\mid L} \in \mathcal{S}_{k_{j}-1}$, so $\phi_{\mid L}\left(\sum_{k} b_{k} e_{n_{k}}\right) \leq 1 / m_{j}^{2}$. Therefore, $\left|\phi\left(\sum_{k} b_{k} e_{n_{k}}\right)\right| \leq 2 / m_{j}^{2}$.

Estimates on block sequences. Our first lemma is true in any modified mixed Tsirelson space $T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$.

Lemma 4.9. Let $X=T_{M}\left[\left(\mathcal{S}_{k_{n}}, \theta_{n}\right)_{n}\right]$ be a modified mixed Tsirelson space, $j \in \mathbb{N}, 0<\varepsilon \leq \theta_{j}$, and let $\left(x_{k}\right)_{k=1}^{m}$ be a normalized block sequence in X such that $x=\sum_{k=1}^{m} b_{k} x_{k}$ is an $\left(\varepsilon, k_{j}\right)$-s.c.c. Then, for every $q<k_{j}$ and every \mathcal{S}_{q}-allowable family $\left(f_{i}\right)_{i=1}^{d}$ in $B_{X^{*}}$,

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq \frac{1}{\theta_{1}}+1
$$

Proof. We may assume that $\operatorname{supp} \phi \cap \operatorname{supp} x_{k} \neq \emptyset$ for every $1 \leq k \leq m$. Let

$$
\begin{aligned}
& A_{1}=\left\{k \in\{1, \ldots, m\}: \min \operatorname{supp} f_{i} \notin \operatorname{range}\left(x_{k}\right) \text { for all } 1 \leq i \leq d\right\} \\
& A_{2}=\{1, \ldots, m\} \backslash A_{1}
\end{aligned}
$$

Claim 1.

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k \in A_{2}} b_{k} x_{k}\right)\right| \leq \frac{\varepsilon}{\theta_{j}} \leq 1
$$

Proof of Claim 1. Let $k \in A_{2}$ and $l_{k}=\operatorname{maxsupp} x_{k}$. Then there exists at least one $1 \leq i \leq d$ such that $\min \operatorname{supp} f_{i} \in \operatorname{range}\left(x_{k}\right)$. We set

$$
i_{k}=\max \left\{i \in\{1, \ldots, d\}: \min \operatorname{supp} f_{i} \in \operatorname{range}\left(x_{k}\right)\right\}
$$

Then minsupp $f_{i_{k}} \leq l_{k}$ for $k \in A_{2}$. The correspondence $k \mapsto i_{k}, k \in A_{2}$, is one-to-one. It follows that $\left\{l_{k}: k \in A_{2}\right\} \in \mathcal{S}_{q}$, so $\sum_{k \in A_{2}} b_{k}<\varepsilon$.

On the other hand, the family $\left(f_{i}\right)_{i=1}^{d}$ is $\mathcal{S}_{q^{-}}$-allowable, so $\mathcal{S}_{k_{j}}$-allowable, and $\left\|x_{k}\right\| \leq 1$ for all k. It follows that $\left|\sum_{i=1}^{d} f_{i}\left(x_{k}\right)\right| \leq 1 / \theta_{j}$ for all $k \in A_{2}$. So

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k \in A_{2}} b_{k} x_{k}\right)\right| \leq \frac{1}{\theta_{j}} \sum_{k \in A_{2}} b_{k} \leq \frac{\varepsilon}{\theta_{j}} \leq 1
$$

Claim 2.

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k \in A_{1}} b_{k} x_{k}\right)\right| \leq \frac{1}{\theta_{1}}
$$

Proof of Claim 2. Let $k \in A_{1}$. If supp $f_{i} \cap \operatorname{supp} x_{k} \neq \emptyset$ for some $1 \leq i \leq d$, then min supp $f_{i}<\min \operatorname{supp} x_{k}$. Hence, for every $k \in A_{1}$, the set

$$
I_{k}=\left\{i \leq d: \operatorname{supp} f_{i} \cap \operatorname{supp} x_{k} \neq \emptyset\right\}
$$

has less than min supp x_{k} elements. It follows that $\left\{\left.f_{i}\right|_{\left[\min \operatorname{supp} x_{k}, \infty\right)}: i \in I_{k}\right\}$ is \mathcal{S}-allowable for every $k \in A_{1}$, and therefore $\left.\theta_{1} \sum_{i \in I_{k}} f_{i}\right|_{\left[\min \operatorname{supp} x_{k}, \infty\right)} \in$ $B_{X^{*}}$. Hence

$$
\begin{aligned}
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k \in A_{1}} b_{k} x_{k}\right)\right| & =\left|\sum_{k \in A_{1}} b_{k}\left(\sum_{i=1}^{d} f_{i}\right) x_{k}\right| \\
& \leq \sum_{k \in A_{1}} b_{k}\left|\left(\sum_{i \in I_{k}} f_{i}\right)\left(x_{k}\right)\right| \leq \frac{1}{\theta_{1}} \sum_{k \in A_{1}} b_{k} \leq \frac{1}{\theta_{1}}
\end{aligned}
$$

Combining the two estimates above we obtain

$$
\left|\sum_{i=1}^{d} f_{i}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq \frac{1}{\theta_{1}}+1
$$

Our next lemma refers to the particular space X_{M} that we consider.
Lemma 4.10. Let $j \in \mathbb{N}$ and let $\left(x_{k}\right)_{k=1}^{m}$ be a normalized block sequence in X_{M} such that $x=\sum_{k=1}^{m} b_{k} x_{k}$ is a $\left(1 / m_{j}^{2}, k_{j}\right)$-s.c.c. If $\phi \in K_{(j-1)}$ then $\left|\phi\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq 5 / m_{j}$.

Proof. Let $\left(f_{\beta}\right)_{\beta \in \mathcal{T}}$ be an analysis of ϕ. In order to estimate ϕ on $\sum_{k} b_{k} x_{k}$ we give the following definition: Let $\beta \in \mathcal{T}$, and let f_{β} be the corresponding functional. We say that f_{β} partially covers x_{k} if the following hold:
(1) $\operatorname{supp} f_{\beta} \cap \operatorname{supp} x_{k} \neq \emptyset$.
(2) $\operatorname{supp} f_{\beta} \cap \operatorname{supp} x_{j}=\emptyset$ for all $j \neq k$.
(3) If $\beta \in S_{\alpha}$ then $\operatorname{supp} f_{\alpha} \cap \operatorname{supp} x_{j} \neq \emptyset$ for some $j \neq k$.

We set

$$
\begin{aligned}
& A=\left\{\beta \in \mathcal{T}: f_{\beta} \text { partially covers some } x_{k} \text { and } \prod_{\alpha \prec \beta} w\left(f_{\alpha}\right)>1 / m_{j}^{2}\right\}, \\
& B=\left\{\beta \in \mathcal{T}: f_{\beta} \text { partially covers some } x_{k} \text { and } \prod_{\alpha \prec \beta} w\left(f_{\alpha}\right) \leq 1 / m_{j}^{2}\right\} .
\end{aligned}
$$

Note that if both f_{β} and $f_{\beta^{\prime}}$ partially cover x_{k} and $\beta \neq \beta^{\prime}$ then $\operatorname{supp} f_{\beta} \cap$ $\operatorname{supp} f_{\beta^{\prime}}=\emptyset$. Also $A \cap B=\emptyset$ and $\operatorname{supp} \phi \cap \operatorname{supp} x_{k}=\bigcup_{\beta \in A \cup B} \operatorname{supp} f_{\beta} \cap$ $\operatorname{supp} x_{k}$ for each k. We set $\phi_{A}=\phi_{\mid \bigcup_{\beta \in A}} \operatorname{supp} f_{\beta}$ and $\phi_{B}=\phi_{\mid \bigcup_{\beta \in B} \operatorname{supp} f_{\beta}}$. Note that $\phi\left(x_{k}\right)=\left(\phi_{A}+\phi_{B}\right)\left(x_{k}\right)$ for every $k=1, \ldots, m$. We denote by \mathcal{T}_{A} (resp. \mathcal{T}_{B}) the subtree of \mathcal{T} which has as maximal nodes the elements of A (resp. B).

Claim 1.

$$
\left|\phi_{B}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq \frac{1}{m_{j}} .
$$

Proof of Claim 1. Let $\beta \in B$ and let $\alpha_{\beta} \prec \beta$ be such that $\prod_{\gamma \prec \alpha_{\beta}} w\left(f_{\gamma}\right)$ $>1 / m_{j}^{2}$ and $\prod_{\gamma \preceq \alpha_{\beta}} w\left(f_{\gamma}\right) \leq 1 / m_{j}^{2}$. Note that if $\beta, \beta^{\prime} \in B$ then either $\alpha_{\beta}, \alpha_{\beta^{\prime}}$ are incomparable nodes or $\alpha_{\beta}=\alpha_{\beta^{\prime}}$. Let $\mathcal{R}=\left\{\alpha_{\beta}: \beta \in B\right\}$ be the set of such different nodes. For every $\beta \in B$ there exists $\alpha_{\beta} \in \mathcal{R}$ with $\alpha_{\beta} \prec \beta$, hence $\operatorname{supp} f_{\beta} \subset \operatorname{supp} f_{\alpha_{\beta}}$. Also, since $\phi \in K_{(j-1)}$, we have $w\left(f_{\alpha_{\beta}}\right) \geq 1 / m_{j-1}$, so

$$
\prod_{\gamma \prec \alpha_{\beta}} w\left(f_{\gamma}\right)=\frac{1}{w\left(f_{\alpha_{\beta}}\right)} \prod_{\gamma \preceq \alpha_{\beta}} w\left(f_{\gamma}\right) \leq \frac{m_{j-1}}{m_{j}^{2}} .
$$

Therefore,

$$
\begin{aligned}
\left|\phi_{B}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| & \leq \sum_{\alpha_{\beta} \in \mathcal{R}}\left(\prod_{\gamma \prec \alpha_{\beta}} w\left(f_{\gamma}\right)\right)\left|f_{\alpha_{\beta}}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \\
& \leq \frac{m_{j-1}}{m_{j}^{2}} \sum_{\alpha_{\beta} \in \mathcal{R}}\left|f_{\alpha_{\beta}}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| .
\end{aligned}
$$

By Lemma 4.6 the family $\left\{f_{\alpha_{\beta}}: \alpha_{\beta} \in \mathcal{R}\right\}$ is $\mathcal{S}_{k_{j}-1 \text {-allowable. Therefore, by }}$

Lemma 4.9,

$$
\sum_{\alpha_{\beta} \in \mathcal{R}}\left|f_{\alpha_{\beta}}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq 3
$$

We conclude that

$$
\begin{equation*}
\left|\phi_{B}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq \frac{3 m_{j-1}}{m_{j}^{2}} \leq \frac{3}{m_{j}} \tag{4.1}
\end{equation*}
$$

For $k=1, \ldots, m$, let $l_{k}=\max \operatorname{supp} x_{k}$. Then we have
Claim 2.

$$
\left|\phi_{A}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq m_{j}\left\|\sum_{k=1}^{m} b_{k} e_{l_{k}}\right\|_{j-1}
$$

Proof of Claim 2. For each $\alpha \in \mathcal{T}_{A}$, we set $h_{\alpha}=f_{\alpha} \cup_{\beta \in A} \operatorname{supp} f_{\beta}$. That is, $h_{\beta}=f_{\beta}$ for $\beta \in A$, and for $\alpha \in \mathcal{T}_{A} \backslash A$ with $f_{\alpha}=m_{q}^{-1} \sum_{\beta \in S_{\alpha}} f_{\beta}$,

$$
h_{\alpha}=\frac{1}{m_{q}} \sum_{\substack{\beta \in S_{\alpha} \\ \beta \in \mathcal{T}_{A}}} h_{\beta} .
$$

For every $\alpha \in \mathcal{T}_{A}$ we set

$$
D_{\alpha}=\left\{1 \leq k \leq m: \exists \beta \succ \alpha \text { such that } \beta \in A \text { and } f_{\beta} \text { partially covers } x_{k}\right\}
$$

Inductively we define, for every $\alpha \in \mathcal{T}_{A}$ with $D_{\alpha} \neq \emptyset$, a functional g_{α} with the following properties:
(1) $\operatorname{supp} g_{\alpha}=\left\{l_{k}: k \in D_{\alpha}\right\}$ where $l_{k}=\max \operatorname{supp} x_{k}$ for $k=1, \ldots, m$.
(2) $g_{\alpha} \in K_{(j-1)}$.
(3) $\left|h_{\alpha}\left(x_{k}\right)\right| \leq\left(\sum_{\gamma \succ \alpha, \gamma \in A}\left|f_{\gamma}\left(x_{k}\right)\right|\right) g_{\alpha}\left(e_{l_{k}}\right)$ for every $k \in D_{\alpha}$.

Assume that g_{γ} has been defined for all $\gamma \in \mathcal{T}_{A}$ with $|\gamma|=s$ and let $\alpha \in \mathcal{T}_{A}$ with $|\alpha|=s-1$. Let $h_{\alpha}=m_{q}^{-1} \sum_{\beta \in S_{\alpha}} h_{\beta}$ and suppose that $D_{\alpha} \neq \emptyset$. We set

$$
I=\left\{\beta \in S_{\alpha}: D_{\beta} \neq \emptyset\right\}, \quad R=\left\{\beta \in S_{\alpha}: \beta \in A\right\}
$$

Then $I \cap R=\emptyset$. Also, for every $\beta \in I, g_{\beta}$ has been defined. For every $1 \leq k \leq m$, we set $\Gamma_{k}=\left\{\beta \in R: f_{\beta}\right.$ partially covers $\left.x_{k}\right\}$. Then the sets Γ_{k}, $1 \leq k \leq m$, are disjoint.

Let $G=\left\{k \in D_{\alpha}: \Gamma_{k} \neq \emptyset\right\}$ be the set of all k for which x_{k} is partially covered by some $\beta \in R$. For every $k \in D_{\alpha} \backslash G$ we choose a node $\beta_{k} \in I$ such that

$$
g_{\beta_{k}}\left(e_{l_{k}}\right)=\max \left\{g_{\beta}\left(e_{l_{k}}\right): \beta \in I\right\}
$$

For every $\beta \in I$ we define $g_{\beta}^{\prime}=\left.g_{\beta}\right|_{\left\{l_{k}: k \in D_{\beta} \backslash G \text { and } \beta=\beta_{k}\right\}}$. It follows that the
functionals $g_{\beta}^{\prime}, \beta \in I$, and $e_{l_{k}}, k \in G$, are disjointly supported. We now set

$$
g_{\alpha}=\frac{1}{m_{q}}\left(\sum_{k \in G} e_{l_{k}}+\sum_{\beta \in I} g_{\beta}^{\prime}\right)
$$

We need to show that $g_{\alpha} \in K_{(j-1)}$. By the inductive hypothesis $g_{\beta}^{\prime} \in K_{(j-1)}$ for all $\beta \in I$. Also $q \leq j-1$, since $\phi \in K_{(j-1)}$.

It remains to show that the family $\left\{e_{l_{k}}: k \in G\right\} \cup\left\{g_{\beta}^{\prime}: \beta \in I\right\}$ is $\mathcal{S}_{k_{q}}$ allowable. Since $\operatorname{supp} g_{\beta}^{\prime} \subseteq\left\{l_{k}: k \in D_{\beta}\right\}$ for $\beta \in I$, we have min $\operatorname{supp} h_{\beta} \leq$ $\min \operatorname{supp} g_{\beta}^{\prime}$. Also, min $\bigcup\left\{\operatorname{supp} f_{\beta}: \beta \in \Gamma_{k}\right\} \leq l_{k}$ for $k \in G$. It follows that $\left\{l_{k}: k \in G\right\} \cup\left\{\min \operatorname{supp} g_{\beta}^{\prime}: \beta \in I\right\} \in \mathcal{S}_{k_{q}}$. This establishes property (2) for g_{α}. Property (1) is easily checked. It remains to show that property (3) holds.

Case 1: $k \in G$. Then

$$
\begin{aligned}
\left|h_{\alpha}\left(x_{k}\right)\right| & =\frac{1}{m_{q}}\left|\sum_{\beta \in \Gamma_{k}} f_{\beta}\left(x_{k}\right)+\sum_{\beta \in I} h_{\beta}\left(x_{k}\right)\right| \\
& \leq \frac{1}{m_{q}}\left(\sum_{\beta \in \Gamma_{k}}\left|f_{\beta}\left(x_{k}\right)\right|+\sum_{\beta \in I} \sum_{\substack{\gamma \succ \beta \\
\gamma \in A}}\left|f_{\gamma}\left(x_{k}\right)\right|\right) \\
& \leq \frac{1}{m_{q}}\left(\sum_{\substack{\beta \succ \alpha \\
\beta \in A}}\left|f_{\beta}\left(x_{k}\right)\right|\right) e_{l_{k}}^{*}\left(e_{l_{k}}\right)=\sum_{\substack{\beta \succ \alpha \\
\beta \in A}}\left|f_{\beta}\left(x_{k}\right)\right| g_{\alpha}\left(e_{l_{k}}\right)
\end{aligned}
$$

Case 2: $k \in D_{\alpha} \backslash G$. Then by the inductive hypothesis

$$
\begin{aligned}
\left|h_{\alpha}\left(x_{k}\right)\right| & =\frac{1}{m_{q}}\left|\sum_{\beta \in I} h_{\beta}\left(x_{k}\right)\right| \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left|h_{\beta}\left(x_{k}\right)\right| \\
& \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left(\sum_{\substack{\gamma \in A \\
\gamma \succ \beta}}\left|f_{\gamma}\left(x_{k}\right)\right| g_{\beta}\left(e_{l_{k}}\right)\right) \\
& \leq \frac{1}{m_{q}} \max _{\beta \in I} g_{\beta}\left(e_{l_{k}}\right) \sum_{\beta \in I} \sum_{\substack{\gamma \in A \\
\gamma \succ \beta}}\left|f_{\gamma}\left(x_{k}\right)\right| \\
& =\frac{1}{m_{q}} g_{\beta_{k}}^{\prime}\left(e_{l_{k}}\right) \sum_{\substack{\gamma \in A \\
\gamma \succ \alpha}}\left|f_{\gamma}\left(x_{k}\right)\right|=\left(\sum_{\substack{\gamma \in A \\
\gamma \succ \alpha}}\left|f_{\gamma}\left(x_{k}\right)\right|\right) g_{\alpha}\left(e_{l_{k}}\right)
\end{aligned}
$$

since $f_{\beta}\left(x_{k}\right)=0$ for $\beta \in R$.
This completes the proof of property (3) and the inductive construction. It follows that for every k,

$$
\left|\phi_{A}\left(x_{k}\right)\right| \leq\left(\sum_{\gamma \in A}\left|f_{\gamma}\left(x_{k}\right)\right|\right) g_{0}\left(e_{l_{k}}\right)
$$

Using Lemma 4.6 and the definition of the set A, we find that the family $\left\{f_{\gamma}: \gamma \in A\right\}$ is $\mathcal{S}_{k_{j}-1}$-allowable. It follows that $m_{j}^{-1} \sum_{\gamma \in A} \pm f_{\gamma} \in K$ for every choice of signs, so $\sum_{\gamma \in A}\left|f_{\gamma}\left(x_{k}\right)\right| \leq m_{j}$ for every k. Hence $\left|\phi_{A}\left(x_{k}\right)\right| \leq$ $m_{j} g_{0}\left(e_{l_{k}}\right)$ for all k, so

$$
\left|\phi_{A}\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq m_{j}\left\|\sum_{k=1}^{m} b_{k} e_{l_{k}}\right\|_{j-1}
$$

This completes the proof of Claim 2.
Using Lemma 4.8(b) we get $\left|\phi_{A}\left(\sum_{k=1}^{n} b_{k} x_{k}\right)\right| \leq 2 / m_{j}$. Combining this with Claim 1 we get $\left|\phi\left(\sum_{k=1}^{n} b_{k} x_{k}\right)\right| \leq 5 / m_{j}$.

Definition 4.11. Let $j \geq 2, \varepsilon>0$. An $\left(\varepsilon, k_{j}\right)$-special convex combination $\sum_{n=1}^{m} b_{n} x_{n}$ is called an $\left(\varepsilon, k_{j}\right)$-rapidly increasing special convex combination (r.i.s.c.c.) if there exist integers $\left(j_{n}\right)_{n=1}^{m}$ with $j+2<j_{1}<\ldots<j_{m}$ such that:
(1) Each x_{n} is a seminormalized $\left(1 / m_{j_{n}}^{2}, k_{j_{n}}\right)$-s.c.c.
(2) $\left\|x_{n}\right\|_{\ell_{1}} \leq m_{j_{n+1}} / m_{j_{n}}$ for all $n=1, \ldots, m-1$.

Proposition 4.12. Let $\sum_{k=1}^{m} b_{k} x_{k}$ be a $\left(1 / m_{j}^{2}, k_{j}\right)$-r.i.s.c.c. and $\phi \in K$ with $w(\phi)=1 / m_{s}$. Then

$$
\left|\phi\left(\sum_{k=1}^{m} b_{k} x_{k}\right)\right| \leq \begin{cases}14 /\left(m_{s} m_{j}\right) & \text { if } s<j \\ 8 / m_{s} & \text { if } s=j, j+1 \\ 8 / m_{j}^{2} & \text { if } j+2 \leq s\end{cases}
$$

In particular, $1 /\left(4 m_{j}\right) \leq\left\|\sum_{k=1}^{m} b_{k} x_{k}\right\| \leq 8 / m_{j}$.
Proof. Let $\left(f_{\alpha}\right)_{\alpha \in \mathcal{T}}$ be an analysis of ϕ. First we partition the support of each $x_{k}, 1 \leq k \leq m$, as follows: We set

$$
\overline{\bar{x}}_{k}=x_{k \mid \bigcup\left\{\operatorname{supp} f_{\alpha}: \alpha \in \mathcal{T}, \operatorname{supp} f_{\alpha} \cap \operatorname{supp} x_{k} \neq \emptyset \text { and } w\left(f_{\alpha}\right) \leq 1 / m_{j_{k+1}}\right\} . . . ~ . ~}
$$

Then the definition of the r.i.s.c.c. shows that

$$
\left|\phi\left(\overline{\bar{x}}_{k}\right)\right| \leq \frac{1}{m_{j_{k+1}}}\left\|x_{k}\right\|_{\ell_{1}} \leq \frac{m_{j_{k+1}}}{m_{j_{k+1}} m_{j_{k}}}=\frac{1}{m_{j_{k}}} \quad \text { for all } 1 \leq k \leq m
$$

It follows that

$$
\begin{equation*}
\left|\phi\left(\sum_{k=1}^{m} b_{k} \overline{\bar{x}}_{k}\right)\right| \leq \sum_{k} \frac{b_{k}}{m_{j_{k}}} \leq \frac{2}{m_{j_{1}}} \max _{k} b_{k} \tag{4.2}
\end{equation*}
$$

We now set $\bar{x}_{k}=x_{k}-\bar{x}_{k}$. Abusing notation we denote by x_{k} the vector \bar{x}_{k}. This means that from now on we assume the following:
$(*) \quad$ If $\operatorname{supp} x_{k} \cap \operatorname{supp} f_{\alpha} \neq \emptyset$ for some $\alpha \in \mathcal{T}$, then $w\left(f_{\alpha}\right)>1 / m_{j_{k+1}}$.
We make the following definition: Let $\alpha \in \mathcal{T}$ and $k=1, \ldots, m$. We say that f_{α} partially estimates x_{k} if:
(1) $\operatorname{supp} f_{\alpha} \cap \operatorname{supp} x_{k} \neq \emptyset$.
(2) $w\left(f_{\alpha}\right) \leq 1 / m_{j_{k}}$.
(3) $w\left(f_{\beta}\right)>1 / m_{j_{k}}$ for all $\beta \prec \alpha$.

Suppose that f_{α} partially estimates x_{k} for some $1 \leq k \leq m$. The definition of $x_{r}\left(\right.$ which actually denotes $\left.\bar{x}_{r}\right)$ shows that $\operatorname{supp} f_{\alpha} \cap \operatorname{supp} x_{r}=\emptyset$ for all $r<k$. This implies that a given functional f_{α} can partially estimate at most one x_{k}. Also, if f_{α} partially estimates x_{k} and $\beta \succ \alpha$ then f_{β} does not partially estimate any x_{r} with $r \leq k$. In particular, if f_{α} and f_{β} partially estimate the same x_{k} then $\operatorname{supp} f_{\alpha} \cap \operatorname{supp} f_{\beta}=\emptyset$.

Once more, we partition the support of each vector x_{k} as follows:

For $\beta \in \mathcal{T}$, if $\operatorname{supp} f_{\beta} \cap \operatorname{supp} x_{k}^{2} \neq \emptyset$ for some k, then $w\left(f_{\beta}\right)>1 / m_{j_{k}}$.
Indeed, suppose that $\operatorname{supp} f_{\beta} \cap \operatorname{supp} x_{k}^{2} \neq \emptyset$ and $w\left(f_{\beta}\right) \leq 1 / m_{j_{k}}$. Let γ_{0} be the minimum element of $\left\{\gamma \in \mathcal{T}: \gamma \preceq \beta\right.$ and $\left.w\left(f_{\gamma}\right) \leq 1 / m_{j_{k}}\right\}$ under \prec. Then supp $f_{\beta} \subset \operatorname{supp} f_{\gamma_{0}}$ and $f_{\gamma_{0}}$ partially estimates x_{k}. Therefore, $\operatorname{supp} f_{\beta} \cap$ $\operatorname{supp} x_{k} \subseteq \operatorname{supp} x_{k}^{1}$, which leads to a contradiction.

It follows that $\phi_{\mid \operatorname{supp} x_{k}^{2}} \in K_{\left(j_{k}-1\right)}$ and therefore, by Lemma 4.10, $\left|\phi\left(x_{k}^{2}\right)\right|$ $\leq 5 / m_{j_{k}}$ for all $1 \leq k \leq m$. Hence

$$
\begin{equation*}
\left|\phi\left(\sum_{k=1}^{m} b_{k} x_{k}^{2}\right)\right| \leq \sum_{k=1}^{m} b_{k} \frac{5}{m_{j_{k}}}<\frac{10}{m_{j_{1}}} \max _{k} b_{k} \tag{4.3}
\end{equation*}
$$

It remains to estimate ϕ on $\sum_{k} b_{k} x_{k}^{1}$. For every k with $x_{k}^{1} \neq 0$ there exists $\alpha \in \mathcal{T}$ such that f_{α} partially estimates x_{k}. We partition the set of nodes which partially estimate each x_{k} into two sets A_{k}, B_{k} as follows:

$$
\begin{aligned}
& A_{k}=\left\{\alpha \in \mathcal{T}: f_{\alpha} \text { partially estimates } x_{k} \text { and } \prod_{\beta \prec \alpha} w\left(f_{\beta}\right)>1 / m_{j_{k}}^{2}\right\}, \\
& B_{k}=\left\{\alpha \in \mathcal{T}: f_{\alpha} \text { partially estimates } x_{k} \text { and } \prod_{\beta \prec \alpha} w\left(f_{\beta}\right) \leq 1 / m_{j_{k}}^{2}\right\} .
\end{aligned}
$$

As already noted, if $\alpha \in A_{k}$ and $\beta \in B_{k}$, then $\operatorname{supp} f_{\alpha} \cap \operatorname{supp} f_{\beta}=\emptyset$. For every $k=1, \ldots, m$, we set

$$
y_{k}^{1}=x_{k \mid \bigcup\left\{\operatorname{supp} f_{\alpha}: \alpha \in A_{k}\right\}}^{1}, \quad y_{k}^{2}=x_{k}^{1}-y_{k}^{1}=x_{k \mid \bigcup\left\{\operatorname{supp} f_{\alpha}: \alpha \in B_{k}\right\}}^{1}
$$

Claim 1.

$$
\left|\phi\left(\sum_{k=1}^{m} b_{k} y_{k}^{2}\right)\right|<\frac{6}{m_{j_{1}}} \max _{k} b_{k}
$$

Proof of Claim 1. We shall estimate ϕ separately on each y_{k}^{2}, to show that $\left|\phi\left(y_{k}^{2}\right)\right| \leq 3 / m_{j_{k}}$. The proof is similar to that of Lemma 4.10.

For every $\alpha \in B_{k}$, let $R_{\alpha}=\{\beta \in \mathcal{T}: \beta \prec \alpha\}$. Choose $\beta_{\alpha} \in R_{\alpha}$ such that $\prod_{\gamma \prec \beta_{\alpha}} w\left(f_{\gamma}\right)>1 / m_{j_{k}}^{2}$ and $\prod_{\gamma \preceq \beta_{\alpha}} w\left(f_{\gamma}\right) \leq 1 / m_{j_{k}}^{2}$. Note that
since $w\left(f_{\beta_{\alpha}}\right)>1 / m_{j_{k}}$, we have $\prod_{\gamma \prec \beta_{\alpha}} w\left(f_{\gamma}\right)<1 / m_{j_{k}}$. It is easy to check that if $\alpha, \alpha^{\prime} \in B_{k}$ then either $\beta_{\alpha}=\beta_{\alpha^{\prime}}$ or $\beta_{\alpha}, \beta_{\alpha^{\prime}}$ are incomparable. Let $\mathcal{R}=\left\{\beta_{\alpha}: \alpha \in B_{k}\right\}$ be the set of all such different nodes. Since $\beta_{\alpha} \prec \alpha$ for all $\alpha \in B_{k}$, we have $\operatorname{supp} f_{\alpha} \subseteq \operatorname{supp} f_{\beta_{\alpha}}$. Therefore,

$$
\left|\phi\left(y_{k}^{2}\right)\right| \leq \sum_{\beta_{\alpha} \in \mathcal{R}}\left(\prod_{\gamma \prec \beta_{\alpha}} w\left(f_{\gamma}\right)\right)\left|f_{\beta_{\alpha}}\left(y_{k}^{2}\right)\right|
$$

By Lemma 4.6, the family $\left\{f_{\beta_{\alpha}}: \beta_{\alpha} \in \mathcal{R}\right\}$ is $\mathcal{S}_{k_{j}-1}$-allowable. Since y_{k} is a $\left(1 / m_{j_{k}}^{2}, k_{j_{k}}\right)$-s.c.c., by Lemma 4.9 we get $\sum_{\beta_{\alpha} \in R}\left|f_{\beta_{\alpha}}\left(y_{k}^{2}\right)\right| \leq 3$. So

$$
\begin{equation*}
\left|\phi\left(y_{k}^{2}\right)\right| \leq 3 \max _{\beta_{\alpha} \in R} \prod_{\gamma \prec \beta_{\alpha}} w\left(f_{\gamma}\right) \leq \frac{3}{m_{j_{k}}} \tag{4.4}
\end{equation*}
$$

Claim 2.

$$
\left|\phi\left(\sum_{k=1}^{m} b_{k} y_{k}^{1}\right)\right| \leq \begin{cases}6 / m_{j}^{2} & \text { if } \phi \in \mathcal{A}_{s}, s \geq j+2 \tag{4.5}\\ 6 / m_{s} & \text { if } \phi \in \mathcal{A}_{s}, s=j, j+1 \\ 12 /\left(m_{s} m_{j}\right) & \text { if } \phi \in \mathcal{A}_{s}, s<j\end{cases}
$$

Proof of Claim 2. For $k=1, \ldots, m$, we let $l_{k}=\max \operatorname{supp} x_{k}$. For $\alpha \in \mathcal{T}$, we set
$D_{\alpha}=\left\{1 \leq k \leq m: \exists \beta \succeq \alpha\right.$ such that f_{β} partially estimates x_{k} and $\left.\beta \in A_{k}\right\}$.
For every $k=1, \ldots, m$, we set $T_{k}(\alpha)=\left\{\beta \succeq \alpha: \beta \in A_{k}\right\}$. Inductively, for every $\alpha \in \mathcal{T}$ with $D_{\alpha} \neq \emptyset$, we define a functional g_{α} with the following properties:
(1) $g_{\alpha} \in \operatorname{co}(K)$.
(2) $\operatorname{supp} g_{\alpha}=\left\{l_{k}: k \in D_{\alpha}\right\}$.
(3) For every $k \in D_{\alpha}$,

$$
\left|f_{\alpha}\left(y_{k}^{1}\right)\right| \leq\left(2 \sum_{\beta \in T_{k}(\alpha)}\left|f_{\beta}\left(y_{k}^{1}\right)\right|\right) g_{\alpha}\left(e_{l_{k}}\right)
$$

(4) Either $w\left(g_{\alpha}\right)=w\left(f_{\alpha}\right)$ or g_{α} is of the form $g_{\alpha}=\frac{1}{2}\left(e_{l_{k}}+g_{\alpha}^{\prime}\right)$ where $w\left(g_{\alpha}^{\prime}\right)=w\left(f_{\alpha}\right)$.

Assume that g_{γ} has been defined for $\gamma \in \mathcal{T}$ with $|\gamma| \geq s+1$ and $D_{\gamma} \neq \emptyset$. Let $\alpha \in \mathcal{T}$ with $|\alpha|=s$ be such that $D_{\alpha} \neq \emptyset$ and let $f_{\alpha}=m_{q}^{-1} \sum_{\beta \in S_{\alpha}} f_{\beta}$. We distinguish two cases.

CASE 1: f_{α} partially estimates some $x_{k_{0}}$. Let $I=\left\{\beta \in S_{\alpha}: D_{\beta} \neq \emptyset\right\}$. Then, as we have noted, no $k \leq k_{0}$ is in $\bigcup_{\beta \in I} D_{\beta}$. Let $k>k_{0}$ with $k \in D_{\alpha}$. By the inductive hypothesis,

$$
\left|f_{\alpha}\left(y_{k}^{1}\right)\right| \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left|f_{\beta}\left(y_{k}^{1}\right)\right| \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left(2 \sum_{\gamma \in T_{k}(\beta)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right|\right) g_{\beta}\left(e_{l_{k}}\right)
$$

For every $k>k_{0}$ with $k \in D_{\alpha}$ we choose $\beta_{k} \in I$ such that $g_{\beta_{k}}\left(e_{l_{k}}\right)=$ $\max _{\beta \in I} g_{\beta}\left(e_{l_{k}}\right)$. For every $\beta \in I$ we set $g_{\beta}^{\prime}=g_{\beta \mid\left\{l_{k}: k \in D_{\beta} \text { and } \beta=\beta_{k}\right\}}$.

Then, for $k>k_{0}, k \in D_{\alpha}$,

$$
\begin{align*}
\left|f_{\alpha}\left(y_{k}^{1}\right)\right| & \leq \frac{1}{m_{q}} g_{\beta_{k}}^{\prime}\left(e_{l_{k}}\right) 2 \sum_{\beta \in I} \sum_{\gamma \in T_{k}(\beta)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right| \tag{4.6}\\
& =\frac{1}{m_{q}}\left(2 \sum_{\gamma \in T_{k}(\alpha)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right|\right) g_{\beta_{k}}^{\prime}\left(e_{l_{k}}\right)
\end{align*}
$$

It is clear that the functionals $e_{l_{k_{0}}}, g_{\beta}^{\prime}, \beta \in I$, are disjointly supported. Also since $\left\{l_{k}: k=1, \ldots, m\right\} \in \mathcal{S}_{k_{j}}$ and $\operatorname{supp} g_{\beta}^{\prime} \subseteq\left\{l_{k}: k=1, \ldots, m\right\}$ for all $\beta \in I$, it is clear that the family $\left\{g_{\beta}^{\prime}: \beta \in I\right\}$ is $\mathcal{S}_{k_{j}}$-allowable.

Since f_{α} partially estimates $x_{k_{0}}$, we have $1 / m_{q}=w\left(f_{\alpha}\right) \leq 1 / m_{j_{k_{0}}}$, so $q \geq j_{k_{0}}>j+1$. It follows that the family $\left\{g_{\beta}^{\prime}: \beta \in I\right\}$ is \mathcal{S}_{q-1}-allowable.

We define

$$
g_{\alpha}=\frac{1}{2}\left(e_{l_{k_{0}}}+\frac{1}{m_{q-1}} \sum_{\beta \in I} g_{\beta}^{\prime}\right)
$$

Then $g_{\alpha} \in \operatorname{co}(K)$ and for every $k \in D_{\alpha}$,

$$
\left|f_{\alpha}\left(y_{k}^{1}\right)\right| \leq 2\left(\sum_{\gamma \in T_{k}(\alpha)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right|\right) g_{\alpha}\left(e_{l_{k}}\right)
$$

Case 2: f_{α} does not partially estimate any x_{k}. Let $I=\left\{\beta \in S_{\alpha}\right.$: $\left.D_{\beta} \neq \emptyset\right\}$. We repeat the procedure of Case 1: For every $k \in D_{\alpha}=\bigcup_{\beta \in I} D_{\beta}$, we choose $\beta_{k} \in I$ such that $g_{\beta_{k}}\left(e_{l_{k}}\right)=\max _{\beta \in I} g_{\beta}\left(e_{l_{k}}\right)$. For every $\beta \in I$ we set $g_{\beta}^{\prime}=g_{\beta \mid\left\{l_{k}: k \in D_{\beta}\right.}$ and $\left.\beta=\beta_{k}\right\}$. Then for every $k \in D_{\alpha}$, by the inductive hypothesis,

$$
\begin{aligned}
\left|f_{\alpha}\left(y_{k}^{1}\right)\right| & \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left|f_{\beta}\left(y_{k}^{1}\right)\right| \leq \frac{1}{m_{q}} \sum_{\beta \in I}\left(2 \sum_{\gamma \in T_{k}(\beta)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right|\right) g_{\beta}\left(e_{l_{k}}\right) \\
& \leq \frac{1}{m_{q}} g_{\beta_{k}}^{\prime}\left(e_{l_{k}}\right)\left(2 \sum_{\gamma \in T_{k}(\alpha)}\left|f_{\gamma}\left(y_{k}^{1}\right)\right|\right)
\end{aligned}
$$

The functionals $g_{\beta}^{\prime}, \beta \in I$, are disjointly supported. Also, since minsupp f_{β} $\leq \min \operatorname{supp} g_{\beta} \leq \min \operatorname{supp} g_{\beta}^{\prime}$, the family $\left\{g_{\beta}^{\prime}: \beta \in I\right\}$ is $\mathcal{S}_{k_{q}}$-allowable. We define $g_{\alpha}=m_{q}^{-1} \sum_{\beta \in I} g_{\beta}^{\prime}$. It is easy to verify properties (1)-(4). This completes the inductive construction.

For the functional $\phi=f_{0}$ we get, for $k=1, \ldots, m$,

$$
\left|\phi\left(y_{k}^{1}\right)\right| \leq 2 \sum_{\beta \in A_{k}}\left|f_{\beta}\left(x_{k}\right)\right| g_{0}\left(e_{l_{k}}\right)
$$

The family $\left\{f_{\beta}: \beta \in A_{k}\right\}$ satisfies the assumptions of Lemma 4.6 with $n=j_{k}$. Therefore, it is $\mathcal{S}_{k_{j_{k}}-1}$-allowable. It follows from Lemma 4.9 that
$\sum_{\beta \in A_{k}}\left|f_{\beta}\left(x_{k}\right)\right| \leq 3$. We conclude that

$$
\left|\phi\left(\sum_{k=1}^{m} b_{k} y_{k}^{1}\right)\right| \leq 6 g_{0}\left(\sum_{k=1}^{m} b_{k} e_{l_{k}}\right)
$$

By the form of g_{0}, using Lemma 4.8, we get

$$
\left|\phi\left(\sum_{k=1}^{m} b_{k} y_{k}^{1}\right)\right| \leq \begin{cases}3 \beta_{k_{0}}+3 / m_{s-1} \leq 6 / m_{j}^{2} & \text { if } \phi \in \mathcal{A}_{s}, s \geq j+2 \\ 6 / m_{s} & \text { if } \phi \in \mathcal{A}_{s}, s=j, j+1 \\ 12 /\left(m_{s} m_{j}\right) & \text { if } \phi \in \mathcal{A}_{s}, s<j\end{cases}
$$

This completes the proof of Claim 2.
Combining Claims 1, 2 and relations (4.2), (4.3) we get the desired estimate.

Let $C_{j}=\left\{z /\|z\|: z\right.$ is a $\left(1 / m_{j}^{2}, k_{j}\right)$-r.i.s.c.c. $\}$ for $j \in \mathbb{N}$. Then Lemma 4.5 implies that each C_{j} is asymptotic, i.e., $S_{Y} \cap C_{j} \neq \emptyset$ for every block subspace Y of X_{M}. Let

$$
\mathcal{A}_{j}=\left\{f=\frac{1}{m_{j}} \sum_{r=1}^{d} f_{r}: f_{r} \in K \text { for all } r \text { and }\left(\operatorname{supp} f_{r}\right)_{r=1}^{d} \text { is } \mathcal{S}_{k_{j}} \text {-allowable }\right\}
$$

From the definition, it follows that $\mathcal{A}_{j} \subset B_{X_{M}^{*}}$.
ThEOREM 4.13. The sequence $\left(C_{j}, \mathcal{A}_{j}\right)_{j}$ is an asymptotic biorthogonal system in X_{M}. In particular, the space X_{M} is arbitrarily distortable.

Proof. For every $j \in \mathbb{N}$ let $\varepsilon_{j}=56 / m_{j}$. The sequence $\left(\varepsilon_{j}\right)_{j}$ strictly decreases to 0 . Since the sets C_{j} are asymptotic and $\mathcal{A}_{j} \subset B_{X_{M}^{*}}$ for all j, it suffices to prove that
(1) $\sup _{f \in \mathcal{A}_{j}} f(y) \geq 1 / 32$ for every $y \in C_{j}$,
(2) $|f(y)| \leq \varepsilon_{\min \{i, r\}}$ for all $i \neq r, f \in \mathcal{A}_{i}$ and $y \in C_{r}$.

To prove (1), let $z=\sum_{k=1}^{n} b_{k} x_{k}$ be a $\left(1 / m_{j}^{2}, k_{j}\right)$-r.i.s.c.c. and $y=z /\|z\|$. Then, by Proposition $4.12,\|z\| \leq 8 / m_{j}$. For every $k=2, \ldots, n$, we can choose $f_{k} \in K$ with $f_{k}\left(x_{k}\right) \geq 1 / 3$ and $\operatorname{supp} f_{k} \subset\left(l_{k-1}, l_{k}\right]$. Then the family $\left(f_{k}\right)_{k=2}^{n}$ is $\mathcal{S}_{k_{j}}$-allowable, so $\phi=m_{j}^{-1} \sum_{k=2}^{n} f_{k} \in \mathcal{A}_{j}$ and

$$
\phi(z) \geq \frac{1}{m_{j}} \frac{1}{3} \sum_{k=2}^{n} b_{k} \geq \frac{1}{4 m_{j}}
$$

It follows that

$$
\phi(y) \geq \frac{m_{j}}{8} \frac{1}{4 m_{j}}=\frac{1}{32}
$$

To prove (2), let $y=z /\|z\| \in C_{r}$ and $f \in \mathcal{A}_{i}$. We distinguish two cases.
CASE 1: $i<r$. Then Proposition 4.12 shows that $|f(z)| \leq 14 /\left(m_{i} m_{r}\right)$, since z is a $\left(1 / m_{r}^{2}, k_{r}\right)$-r.i.s.c.c. Dividing by $\|z\|$ we get $|f(z /\|z\|)| \leq 56 / m_{i}=$ $\varepsilon_{i}=\varepsilon_{\min \{r, i\}}$.

Case 2: $i>r$. Then Proposition 4.12 yields $|f(z)| \leq 8 / m_{r}^{2}$. Dividing by $\|z\|$ we get $|f(z /\|z\|)| \leq 32 / m_{r}<\varepsilon_{\min \{r, i\}}$.

We now prove that if the sequence $\left(k_{i}, m_{i}\right)_{i}$ satisfies certain additional conditions, then every block subspace of $T_{M}\left[\left(\mathcal{S}_{k_{i}}, 1 / m_{i}\right)_{i}\right]$ admits an ℓ_{1}^{ω} spreading model.

Definition 4.14. Let $\left(m_{i}\right),\left(k_{i}\right),\left(t_{i}\right)$ be strictly increasing sequences of positive integers satisfying the following Gasparis conditions:
(1) $m_{1}=2$, and there exists an increasing sequence $\left(s_{i}\right)_{i=1}^{\infty}$ of positive integers, with $s_{1}>2$, so that $m_{i}=\prod_{j<i} m_{j}^{s_{j}}$ for every $i \geq 2$.
(2) $t_{1}>4$ and $2^{t_{i}} \geq m_{i}^{2}$ for every $i \geq 1$.
(3) $t_{i}\left(r_{i}+1\right)<k_{i}$ for every $i \geq 1$, where $\left(r_{i}\right)$ is defined as follows: $r_{1}=1$ and for every $i \geq 2$,

$$
r_{i}=\max \left\{\sum_{j<i} \alpha_{j} k_{j}: \forall j<i, \alpha_{j} \in \mathbb{N} \cup\{0\} \text { and } \prod_{j<i} m_{j}^{\alpha_{j}}<m_{i}^{3}\right\}
$$

We set $Y_{M}=T_{M}\left[\left(\mathcal{S}_{k_{i}}, 1 / m_{i}\right)_{i}\right]$.
The above conditions appeared in an early version of [15], where it was proved that the dual X^{*} of the "conditional version" X of the mixed Tsirelson space $T\left[\left(\mathcal{S}_{k_{i}}, 1 / m_{i}\right)_{i}\right]$ admits a c_{0}^{ω} spreading model in every subspace.

The sequence $\left(m_{i}, k_{i}, t_{i}\right)_{i}$ satisfies $k_{i} \geq t_{i}\left(k_{i-1}+1\right)$ and $2^{t_{i}} \geq m_{i}^{2}$ for all i, and this ensures that all the results of this section also hold for the space Y_{M}; in particular, Y_{M} is arbitrarily distortable (see Remark 4.3). In order to show that every subspace admits an ℓ_{1}^{ω} spreading model, we shall work with $\left(1 / m_{i}^{2}, p_{i}\right)$-r.i.s.c.c.'s, where $p_{i}=\sum_{j<i} s_{j} k_{j}$, instead of $\left(1 / m_{i}^{2}, k_{i}\right)$-r.i.s.c.c.'s that we used for the distortion. We shall show the following.

THEOREM 4.15. Every block subspace of Y_{M} admits an ℓ_{1}^{ω} spreading model with constant $c \geq 1 / 64$.

We shall need the following arithmetical lemma from [15].
Lemma 4.16. Assume that $\left(\alpha_{j}\right)_{j=0}^{i-1}$ are positive integers satisfying $\prod_{j<i} m_{j}^{\alpha_{j}}<m_{i}$. Then $\sum_{j<i} \alpha_{j} k_{j}<\sum_{j<i} s_{j} k_{j}$.

Proof of Theorem 4.15. First we shall construct a sequence having an ℓ_{1}^{ω} spreading model starting from the basis $\left(e_{i}\right)_{i}$, and next we shall use the estimates on rapidly increasing sequences to deduce the existence of an ℓ_{1}^{ω} spreading model in every block subspace of Y_{M}.

For every $i \in \mathbb{N}$, we set $p_{i}=\sum_{j<i} s_{j} k_{j}$.
Lemma 4.17. Let $i \geq 2$ and $x=\sum_{k \in F} \beta_{k} e_{k}$ be a $\left(1 / m_{i}^{2}, p_{i}\right)$-basic special convex combination. Then $1 / m_{i} \leq\|x\| \leq 2 / m_{i}$.

Proof. The lower estimate is obvious, since $p_{i} \leq k_{i}$. For the upper estimate, let $\phi \in K$. If $w(\phi)=1 / m_{r} \leq 1 / m_{i}$ it follows immediately that $|\phi(x)| \leq 1 / m_{i}$. If $w(\phi)>1 / m_{i}$, let $D=\left\{k \in \operatorname{supp} x:\left|\phi\left(e_{k}\right)\right|>1 / m_{i}\right\}$. Then $\left|\phi_{\mid D^{\mathrm{c}}}(x)\right| \leq 1 / m_{i}$.

CLAIM. $\operatorname{supp} \phi_{\mid D} \in \mathcal{S}_{p_{i}-1}$.
Once we prove the Claim, it follows that $\left|\phi_{\mid D}(x)\right| \leq 1 / m_{i}^{2}$, and this completes the proof.

Proof of the Claim. Let $\left(f_{\alpha}\right)_{\alpha \in \mathcal{T}}$ be an analysis of ϕ. Sublemma 4.7 shows that the set $\left\{f_{\alpha}: \alpha\right.$ a terminal node $\}=\left\{e_{l_{\alpha}}: \alpha\right.$ a terminal node $\}$ is at most

$$
\ell=\max \left\{\sum_{\beta \prec \alpha} k_{\beta}: \alpha \text { a terminal node }\right\} \text {-allowable. }
$$

For each terminal node α of $\mathcal{T}, \sum_{\beta \prec \alpha} k_{\beta}$ is of the form $\sum_{j<i} \varrho_{j} k_{j}, \varrho_{j} \in$ $\mathbb{N} \cup\{0\}(j<i)$, and

$$
\frac{1}{m_{i}}<\phi\left(e_{l_{\alpha}}\right) \leq \prod_{\beta \prec \alpha} \frac{1}{m_{\beta}}=\prod_{j<i} \frac{1}{m_{j}^{\varrho_{j}}}
$$

It follows from Lemma 4.16 that $\sum_{j<i} \varrho_{j} k_{j}<\sum_{j<i} s_{j} k_{j}=p_{i}$. Therefore $\operatorname{supp} \phi_{\mid D}$ is at most $\mathcal{S}_{p_{i}-1 \text {-allowable, and the proof of the Claim is complete. }}$

The Gasparis conditions imply the following key property of the space Y_{M}. A $\left(1 / m_{i}^{2}, p_{i}\right)$-basic special convex combination, $x=\sum_{k \in F} b_{k} e_{k}$, can be normed by a functional x^{*} which belongs to various different classes \mathcal{A}_{j}.

Indeed, the functional $x^{*}=m_{i}^{-1} \sum_{k \in F} e_{k}^{*}$, which obviously belongs to \mathcal{A}_{i}, can also be written, for every $j<i$, in the form $x^{*}=m_{j}^{-1} \sum_{s \in G} f_{s}$ where the family $\left(f_{s}\right)_{s \in G}$ is $\mathcal{S}_{p_{j}}$-admissible. This is a consequence of the relations $m_{i}=\prod_{j<i} m_{j}^{s_{j}}$ and $p_{i}=\sum_{j<i} s_{j} k_{j}$, and the fact that $\mathcal{S}_{n}\left[\mathcal{S}_{m}\right]=\mathcal{S}_{n+m}$ for every $n, m \in \mathbb{N}$.

Let $\left(y_{i}\right)_{i=1}^{\infty}$ be a block sequence such that $y_{i}=\frac{1}{2} m_{i} x_{i}$ for $i=1,2, \ldots$, where $x_{i}=\sum_{l \in F_{i}} \alpha_{l} e_{l}$ is a $\left(1 / m_{i}^{2}, p_{i}\right)$-basic special convex combination. Then $1 / 2 \leq\left\|y_{i}\right\| \leq 1$. We claim that the sequence $\left(y_{i}\right)_{i}$ has an ℓ_{1}^{ω} spreading model with constant $1 / 2$.

Indeed, let $F \in \mathcal{S}_{r}$ with $r \leq \min F$. Then $\left(y_{i}\right)_{i \in F}$ is \mathcal{S}_{r}-admissible. For each $k \in F$, we consider the norming functional of $x_{k}, x_{k}^{*}=m_{k}^{-1} \sum_{l \in F_{k}} e_{l}^{*}=$ $m_{r}^{-1} \sum_{i \in G_{k}} f_{i}$, where $\left(f_{i}\right)_{i \in G_{k}}$ is $\mathcal{S}_{p_{r}}$-admissible. Then the family $\left\{f_{i}: i \in\right.$ $\left.\bigcup_{k \in F} G_{k}\right\}$ is $\mathcal{S}_{r}\left[\mathcal{S}_{p_{r}}\right]=\mathcal{S}_{r+p_{r}}$-admissible. Since $r+p_{r}<k_{r}$, it follows that the functional $f=m_{r}^{-1} \sum_{k \in F} \sum_{i \in G_{k}} f_{i}$ belongs to the norming set of Y_{M}. Hence

$$
f\left(\sum_{k \in F} b_{k} y_{k}\right)=\sum_{k \in F} \frac{1}{m_{r}} \sum_{i \in G_{k}} f_{i}\left(b_{k} y_{k}\right) \geq \frac{1}{2} \sum_{k \in F} b_{k}
$$

Let now Z be a block subspace of Y_{M} and $\left(y_{i}\right)_{i \in \mathbb{N}}$ be a rapidly increasing sequence of $\left(1 / m_{n_{i}}^{2}, k_{n_{i}}\right)$-seminormalized s.c.c.'s in Z. Inductively we choose a block sequence $\left(z_{k}\right)$ such that for every $k, z_{k}=\sum_{j \in F_{k}} b_{j} y_{j}$ is a $\left(1 / m_{k}^{2}, p_{k}\right)$ rapidly increasing special convex combination of the sequence $\left(y_{i}\right)$. Quoting step by step the proof of Proposition 4.12 , and using Lemma 4.17 for the estimate of the norm of a $\left(1 / m_{k}^{2}, p_{k}\right)$-basic s.c.c., we get $1 /\left(4 m_{k}\right) \leq\left\|z_{k}\right\| \leq$ $14 / m_{k}$.

We set $y_{k}=\left(m_{k} / 14\right) z_{k}, k \in \mathbb{N}$. Using the previous estimates, in the same manner as above we conclude that the sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$ has an ℓ_{1}^{ω} spreading model with constant $c \geq 1 / 64$.

Remarks 4.18. 1. It is not clear whether in the general mixed Tsirelson space $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ with $\theta_{m+n} \geq \theta_{n} \theta_{m}$, one can find normalized functionals which belong simultaneously to various different classes \mathcal{A}_{j}, as it happens when the Gasparis conditions are satisfied.
2. It is easy to see that if a block sequence $\left(y_{i}\right)_{i}$ in a Banach space has a c_{0}^{ξ} spreading model, then any sequence biorthogonal to it in the dual space has an ℓ_{1}^{ξ} spreading model. The dual of this statement is not always true. For example, consider the sequence $\left(w^{n}\right)_{n}=\left(\sum_{k=1}^{n} x_{k}^{n}\right)_{n}$ in the space $T\left[\left(\mathcal{S}_{n}, \theta_{n}\right)_{n}\right]$ which appeared in the proof of Proposition 3.1. Recall that $x_{k}^{n}=y_{k}^{n} /\left\|y_{k}^{n}\right\|$ and $y_{k}^{n}=\sum_{i \in F_{k}^{n}} b_{i} z_{i}$ is an $\left(\varepsilon_{k}^{n}, j_{1}+\ldots+j_{k}\right)$-r.i.s.c.c. for every $k \leq n$ and $n \in \mathbb{N}$. As proved in Proposition 3.1, $\left(w^{n}\right)_{n}$ has an ℓ_{1}^{ω} spreading model. Let $\left(z_{i}^{*}\right)_{i}$ be a normalized sequence in the dual with $z_{i}^{*}\left(z_{i}\right) \geq 1 / 2$ and $\operatorname{supp} z_{i}^{*} \subseteq \operatorname{supp} z_{i}$. Then, for fixed k_{0}, the sequence of functionals $w_{n, k_{0}}^{*}=$ $\theta_{j_{1}+\ldots+j_{k_{0}}+1} \sum_{i \in F_{k_{0}}^{n}} z_{i}^{*}$ is almost biorthogonal to $\left(w^{n}\right)_{n}$ (recall that $\left\|y_{k}^{n}\right\| \approx$ $\left.\theta_{j_{1}+\ldots+j_{k_{0}}}\right)$. However, $\left(w_{n, k_{0}}^{*}\right)_{n}$ fails to have a c_{0}^{ω} spreading model in the dual space. Indeed, for $r \in \mathbb{N}$, let $y=\sum_{n \in F} \lambda_{n} y_{k_{0}}^{n}=\sum_{n \in F} \lambda_{n} \sum_{i \in F_{k_{0}}^{n}} b_{i} z_{i}$ be an $\left(\varepsilon, r+j_{1}+\ldots+j_{k_{0}}\right)$-r.i.s.c.c. of $\left(z_{i}\right)$. Then, by [6, Proposition 1.15], $\|y\| \approx$ $\theta_{r+j_{1}+\ldots+j_{k_{0}}}$. It follows that $\sum_{n \in F} w_{n, k_{0}}^{*}(y /\|y\|) \approx \theta_{j_{1}+\ldots+j_{k_{0}+1}} / \theta_{r+j_{1}+\ldots+j_{k_{0}}}$, so $\left\|\sum_{n \in F} y_{n, k_{0}}^{*}\right\|$ tends to infinity with r.

References

[1] D. E. Alspach and S. A. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).
[2] G. Androulakis and E. Odell, Distorting mixed Tsirelson spaces, Israel J. Math. 109 (1999), 125-149.
[3] G. Androulakis, E. Odell, Th. Schlumprecht and N. Tomczak-Jaegermann, On the structure of the spreading models of a Banach space, preprint.
[4] G. Androulakis and Th. Schlumprecht, Strictly singular, non-compact operators exist on the space of Gowers-Maurey, J. London Math. Soc. (2) 64 (2001), 655-677.
[5] S. A. Argyros and I. Deliyanni, Examples of asymptotic ℓ_{1} Banach spaces, Trans. Amer. Math. Soc. 349 (1997), 973-995.
[6] S. A. Argyros, I. Deliyanni, D. N. Kutzarova and A. Manoussakis, Modified mixed Tsirelson spaces, J. Funct. Anal. 159 (1998), 43-109.
[7] S. A. Argyros and V. Felouzis, Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc. 13 (2000), 243-294.
[8] S. A. Argyros and I. Gasparis, Unconditional structures of weakly null sequences, Trans. Amer. Math. Soc. 353 (2001), 2019-2058.
[9] S. A. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, Israel J. Math. 107 (1998), 157-193.
[10] S. A. Argyros and A. Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, preprint.
[11] S. Bellenot, Tsirelson superspaces and ℓ_{p}, J. Funct. Anal. 69 (1986), 207-228.
[12] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc., 2000.
[13] P. G. Casazza and E. Odell, Tsirelson's space and minimal subspaces, in: Longhorn Notes, Univ. of Texas, 1982-1983, 61-72.
[14] I. Gasparis, A continuum of totally incomparable hereditarily indecomposable Banach spaces, Studia Math. 51 (2002), 277-298.
[15] -, Strictly singular non-compact operators on hereditarily indecomposable Banach spaces, Proc. Amer. Math. Soc., to appear.
[16] W. T. Gowers, A space not containing c_{0}, ℓ_{1} or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407-420.
[17] -, A remark about the scalar-plus-compact problem, in: Convex Geometric Analysis, Math. Sci. Res. Inst. Publ. 34, Cambridge Univ. Press, 1998, 111-115.
[18] R. C. James, Uniformly nonsquare Banach spaces, Ann. of Math. (2) 80 (1964), 542-550.
[19] W. B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205.
[20] D. N. Kutzarova and P. K. Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000), 2059-2068.
[21] A. Manoussakis, On the structure of a certain class of mixed Tsirelson spaces, Positivity 5 (2001), 193-238.
[22] -, Some remarks on spreading models and mixed Tsirelson spaces, Proc. Amer. Math. Soc., to appear.
[23] B. Maurey, A remark about distortion, in: Oper. Theory Adv. Appl. 77, Birkhäuser, 1995, 131-142.
[24] V. D. Milman, Geometric theory of Banach spaces II. Geometry of the unit sphere, Russian Math. Surveys 26 (1971), 79-163 (transl. from Russian).
[25] V. D. Milman and N. Tomczak-Jaegermann, Asymptotic ℓ_{p} spaces and bounded distortions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 173-196.
[26] E. Odell and Th. Schlumprecht, The distortion problem, Acta Math. 173 (1994), 259-281.
[27] -, -, On the richness of the set of p's in Krivine's theorem, in: Oper. Theory Adv. Appl. 77, Birkhäuser, 1995, 177-198.
[28] -, -, Distortion and asymptotic structure, in: Handbook of the Geometry of Banach Spaces, Vol. 2, W. B. Johnson and J. Lindenstrauss (eds.), Elsevier, Amsterdam, to appear.
[29] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to ℓ_{1} and distortion in asymptotic ℓ_{1} spaces, J. Funct. Anal. 150 (1997), 101-145.
[30] A. Pełczyński and H. Rosenthal, Localization techniques in L_{p} spaces, Studia Math. 52 (1975), 263-289.
[31] Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81-95.
[32] N. Tomczak-Jaegermann, Banach spaces of type p have arbitrarily distortable subspaces, Geom. Funct. Anal. 6 (1996), 1075-1082.
[33] B. S. Tsirelson, Not every Banach space contains ℓ_{p} or c_{0}, Funct. Anal. Appl. 8 (1974), 138-141.

Department of Mathematics
National Technical University of Athens
Athens, Greece
Department of Mathematics
University of Crete
Heraklion, Crete, Greece
E-mail: sargyros@math.ntua.gr
E-mail: deligia@math.uoc.gr
Department of Sciences
Technical University of Crete
Chania, Crete, Greece
E-mail: amanouss@science.tuc.gr

Received June 19, 2001
Revised version February 10, 2003

