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Best constants for some operators
associated with the Fourier and Hilbert transforms

by

B. Hollenbeck (Emporia, KS), N. J. Kalton (Columbia, MO)
and I. E. Verbitsky (Columbia, MO)

Abstract. We determine the norm in Lp(R+), 1 < p <∞, of the operator I−FsFc,
where Fc and Fs are respectively the cosine and sine Fourier transforms on the positive
real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S.
Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane.

We also obtain the Lp-norms of the operators aI + bH, where H is the Hilbert trans-
form (conjugate function operator) on the circle or real line, for arbitrary real a, b. Best
constants in other related inequalities are found.

In a more general framework, we present an alternative proof of the important theorem
of Cole relating best constant inequalities involving the Hilbert transform and the exis-
tence of subharmonic minorants, which extends to several variables and plurisubharmonic
minorants.

1. Introduction. Let Fc and Fs denote respectively the cosine and sine
Fourier transforms on the positive real axis R+ = (0,∞):

Fcu(x) =

√
2
π

�

R+

u(t) cos tx dt, Fsu(x) =

√
2
π

�

R+

u(t) sin tx dt.

Both Fc and Fs are unitary, self-adjoint operators on L2(R+).
The so-called re-expansion operator is defined by Π = FsFc, and its

adjoint by Π∗ = FcFs. A direct calculation yields

‖I −Π‖L2(R+) = ‖I −Π∗‖L2(R+) = ‖Fc − Fs‖L2(R+) =
√

2.

It is not difficult to see that Π can be extended to a bounded operator on
Lp(R+) for 1 < p <∞.

One of the motivations for the present paper is to answer the question,
stated by M. S. Birman as Problem 1 in [Bir], on the exact value of the
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operator norm ‖I−Π‖Lp(R+), 1 < p <∞. Along with other problems posed
in [Bir], it has its origin in scattering by unbounded obstacles in the plane.
In particular, a periodic analogue of I−FsFc serves as the scattering matrix
for diffraction by a semi-infinite screen (see [I1], [I2]).

The re-expansion operator Π = FsFc appears naturally in the following
model problem considered in [Bir].

For a pair H0, H of self-adjoint operators on Hilbert space, the wave
operators W± are defined by

W±(H,H0) = lim
t→±∞

eitHe−itH0 ,

where the limit is understood in the sense of strong operator convergence.
Now let H0 and H denote the operator −d2/dx2 on R+ with the bound-

ary conditions u′(0) = 0 and u(0) = 0, respectively. Then, as shown in
[Bir],

W±(H,H0) = ±iΠ.
Re-expansion operators also arise in polar decompositions of classical

differential operators, and other problems of mathematical physics.
To extend Π and Π∗ to bounded operators on Lp(R+), 1 < p < ∞,

notice that they can be defined as singular integral operators:

Πu(x) =
1
π

p.v.
�

R+

2xu(t)
x2 − t2 dt, Π∗u(x) =

1
π

p.v.
�

R+

2tu(t)
t2 − x2 dt, x ∈ R+.

This follows by looking at the restrictions of the operator HRΣ to the sub-
spaces Lpodd(R) and Lpeven(R) consisting of odd and even functions respec-
tively. Here Σ is the multiplication by signx, and HR is the Hilbert transform
on the real line defined by

HRu(x) =
1
π

p.v.
�

R

u(t)
x− t dt, x ∈ R.

In other words, FsFc = H +H1, and FcFs = −H +H1, where

Hu(x) =
1
π

p.v.
�

R+

u(t)
x− t dt, H1u(x) =

1
π

�

R+

u(t)
x+ t

dt, x ∈ R+,

are the Hilbert transforms on R+ with kernels 1
π(x−y) and 1

π(x+y) respec-

tively. (Sometimes we will use the notation HR+ in place of H to distinguish
it from the Hilbert transform HR on the real line.)

It follows from the theory of singular integral operators that the spectrum
of Π in Lp(R+), say in the case p ≥ 2, is the arc of the circle

∣∣z − cot πp
∣∣ =

csc π
p with the endpoints at ±i which lies in the right half-plane (see [GK2]).
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Moreover, one can show (Sec. 6) that

‖Π‖Lp(R+) = cot
π

2p∗
, p∗ = max(p, p′),

where p′ = p/(p− 1). Note that ‖Π‖Lp(R+) coincides with the norm of the
Hilbert transform on the real line determined by Gohberg and Krupnik
[GK1] for p = 2n (n = 2, 3, . . .), and later by Pichorides [Pi] and Cole (see
[G]) for all 1 < p <∞.

However, computing ‖I − Π‖Lp(R+) is substantially more difficult, and
requires new ideas. We establish below the following formula which answers
Birman’s question:

(1.1) ‖I − FsFc‖Lp(R+) = ‖I − FcFs‖Lp(R+) = Ap,

where the constant Ap is defined by

(1.2) Ap =
√

2 max
0≤θ≤2π

[∣∣cos
(
θ − π

4

)∣∣p +
∣∣cos

(
θ − π

4 + π
p

)∣∣p

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p
]1/p

for all 1 < p < ∞. In particular, it is easy to see that A2 =
√

2, A4 =√
4 + 2

√
5, and Ap = Ap′ (the latter is verified using duality).

The proof of the main inequality,

(1.3) ‖Fsf − Fcf‖Lp(R+) ≤ Ap‖Fcf‖Lp(R+),

is based on the following estimate obtained in Sec. 4 in a more general
setting:

(1.4) |x− y|p ≤ Bp|x|p −G(x, y), (x, y) ∈ R2,

where Bp = App, and G(x, y) is a subharmonic minorant for

Φ(x, y) = Bp|x|p − |x− y|p

in the plane such that G(0, 0) = 0. We actually give an explicit construction
for the maximal subharmonic minorant of Φ(x, y), and at the same time
show that the constant Bp in the above inequality is sharp.

One of the properties of G used in the proof is
∂G

∂y
(x, 0) = apx|x|p−2, ap ≥ 0.

If p ≥ 2 then actually ap = p, which yields a slightly stronger inequality:

(1.5) ‖Fcf − Fsf‖pLp(R+) + ‖Lf‖pLp(R+) ≤ App‖Fcf‖pLp(R+),

where

Lf(y) =

√
2
π

∞�

0

f(t)e−ty dt, y ≥ 0,

is the Laplace transform.
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Notice that a similar problem concerning the norms ‖I + FsFc‖Lp(R+)
and ‖I + FcFs‖Lp(R+) demonstrates a certain lack of symmetry. As we will
show in Sec. 6,

(1.6) ‖I + FsFc‖Lp(R+) = Ap, p ≥ 3,

but on the other hand,

(1.7) ‖I + FsFc‖Lp(R+) = 1 + tan
π

2p
> Ap, 1 < p ≤ 2.

We also find the norm of the operator aI + bHR in Lp(R) for a, b ∈ R.
The following lower estimate for ‖aI + bHR‖Lp(R), which was believed to be
sharp for all a, b ∈ C, is given in [GK2]:

‖aI + bHR‖Lp(R) ≥
(
|b|2 cot2 π

p
+
( |a− ib| − |a+ ib|

2

)2)1/2

(1.8)

+
(
|b|2 cot2 π

p
+
( |a− ib|+ |a+ ib|

2

)2)1/2

.

In the case a = 0, b = 1, this estimate is indeed sharp since the right-hand
side of the preceding inequality coincides with ‖HR‖Lp(R) = cot π

2p∗ ([Pi],
[G]). Recently, it was shown in [HV] that equality holds in (1.8) for a = 1,
b = i as well. This gives the norm of the Riesz projection P+ = 1

2 (I + iHR)
which maps Lp(R) onto the Hardy space Hp(R); equivalently,

(1.9) ‖I + iHR‖Lp(R) = 2 csc
π

p
.

Unfortunately, in general (1.8) is not sharp. For a, b ∈ R, we will show that
the actual norm is given by the following formula:

‖aI + bHR‖Lp(R)

=
√
a2 + b2 max

0≤θ≤2π

[ |cos(θ + θ0)|p +
∣∣cos

(
θ + θ0 + π

p

)∣∣p

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p
]1/p

where θ0 = arctan b
a . As a corollary, we obtain a uniform estimate for the

norms of (cos θ)I + (sin θ)H (see Theorem 5.6 below):

max
0≤θ≤2π

‖(cos θ)I + (sin θ)HR‖Lp(R) = cot
π

2p∗
.

We observe that the above formula for ‖aI + bHR‖Lp(R) can be restated as

(1.10) ‖aI + bHR‖Lp(R) = ‖aI + bh‖lp2 ,
where the operator h is defined by the 2× 2 matrix

h =
(

cot πp − csc π
p

csc π
p − cot πp

)

on the space lp2, and ‖aI + bh‖lp2 is the corresponding operator norm.
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These results, together with other related facts, are established in Sec-
tions 4 and 5. They are derived from a new criterion of the existence of a
subharmonic minorant for a p-homogeneous function in the complex plane.
The proof of this criterion in Sec. 3 is based on a convexity argument,
and makes use of the Phragmén–Lindelöf-type theorems for subharmonic
functions, and theory of p-trigonometrically convex functions [L1], [L2]. It
extends and clarifies some earlier results of [E1] and [V].

More general inequalities of this type are discussed in Sec. 5. Here, we
draw attention to Theorem 5.3 and Proposition 5.4 where, for example, the
estimate

‖(I + itHT)u‖p ≤
(

1 + t2 tan2 π

2p

)1/2

‖u‖p, u ∈ Lp(T),

for 1 < p < 2 is shown to hold if
√

1− p/3 ≤ t < ∞ but not to hold for
every t > 0. (Here u is assumed to be real-valued.) In fact, in Theorem 5.5 we
find a critical value τ(p) such that this sharp inequality holds for t ≥ τ(p),
but fails if 0 < t < τ(p). The fact that τ(p) is a root of a certain nonlinear
equation emphasizes that best constant problems of this type can become
very complicated. Another example is a solution to Birman’s problem given
in Sec. 6.

Before giving the proofs of these results, we present in Sec. 2 an alter-
native proof of a theorem of Cole [G] to the effect that if F is an upper
semicontinuous real-valued function on C, the validity of an inequality of
the type

2π�

0

F ◦ f(eiθ)
dθ

2π
≥ 0

for all polynomials f with f(0) real is equivalent to the existence of a sub-
harmonic minorant G for F with G(z) ≥ 0 for z real. This result is not
strictly needed for the remainder of the paper and the reader may there-
fore omit this section. It does, however, underscore the importance of the
problem of finding subharmonic minorants. The proof we give extends eas-
ily to several variables and plurisubharmonic minorants (it is actually based
on an argument for a related result in quasi-Banach spaces [Ka]) (1). Note
that plurisubharmonic minorants were used in [HV] to determine the best
constant for the Riesz projection.

Other best constant inequalities involving the Hilbert and Fourier trans-
forms, and references to the literature can be found in, e.g., [Ba], [Be], [Bur],
[E1], [E2], [ESS], [G], [GK2], [HV], [K], [Li], [Pe], [Pi].

(1) After this paper was initially submitted for publication we learned that another
proof for several variables was obtained in [Po] in a different context.
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We wish to thank the referee for a thorough reading of the manuscript
and numerous remarks that improved the exposition.

2. Cole’s theorem revisited. In this section we give a discussion of
a theorem of Cole, which appeared (with a sketched proof) in [G]. We will
give a different and more elementary proof, which extends easily to several
variables.

Theorem 2.1. Suppose F : C → [−∞,∞) is an upper semicontinuous
function and E is a nonempty subset of C. Then in order that we have the
inequality

(2.1)
2π�

0

F ◦ f(eiθ)
dθ

2π
≥ 0

whenever f is a polynomial with f(0) ∈ E, it is necessary and sufficient
that there exists a subharmonic function G with G(z) ≤ F (z) for z ∈ C and
G(z) ≥ 0 for z ∈ E.

The proof of Theorem 2.1 depends on the following lemma, which for
continuous F is a special case of Lemma 3.1 of [Ka]:

Lemma 2.2. Suppose F : C → [−∞,∞) is upper semicontinuous and
f, g are polynomials. Then

(2.2) lim sup
n→∞

2π�

0

F (f(eiθ) + einθg(eiθ))
dθ

2π

≤
2π�

0

2π�

0

F (f(eiθ) + eiφg(eiθ))
dφ

2π
dθ

2π
.

Proof. Using a standard approximation argument it is easy to see that
(2.2) follows immediately from the same statement for continuous functions.
We thus suppose F is continuous: we will show

(2.3) lim
n→∞

2π�

0

F (f(eiθ) + einθg(eiθ))
dθ

2π

=
2π�

0

2π�

0

F (f(eiθ) + eiφg(eiθ))
dφ

2π
dθ

2π
.

It suffices by a density argument to show this for functions of the form
F (z) = zrzs where r, s = 0, 1, . . . We have

F (f + zng) =
r∑

j=0

s∑

k=0

znjznk
(
r

j

)(
s

k

)
fr−jfs−kgjgk.
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By the Riemann–Lebesgue Lemma the left-hand side of (2.3) coincides with

min(r,s)∑

j=0

(
r

j

)(
s

j

) 2π�

0

f(eiθ)r−jf(eiθ)
s−j |g(eiθ)|2j dθ

2π
.

However similar reasoning shows that this coincides with the right-hand side
of (2.3).

Proof of Theorem 2.1. We will repeatedly use the fact that an upper
semicontinuous function is bounded above on any compact set. We need
only show that (2.1) implies the existence of G. First we show that if r > 0
and F satisfies (2.1) then

F1(z) = min
(
F (z),

2π�

0

F (z + reiθ)
dθ

2π

)

is also upper semicontinuous and satisfies (2.1). Upper semicontinuity is
clear. Now suppose f, g are polynomials with f(0) ∈ E. If n > 0 then

2π�

0

F (f(eiθ) + einθg(eiθ))
dθ

2π
≥ 0.

Letting n→∞ and using Lemma 2.2 yields

2π�

0

2π�

0

F (f(eiθ) + eiφg(eiθ))
dφ

2π
dθ

2π
≥ 0.

Clearly this implies

2π�

0

2π�

0

F (f(eiθ) + eiφ|g(eiθ)|) dφ
2π

dθ

2π
≥ 0.

Let B be a Borel subset of T. Choose polynomials gn so that |gn| ≤ r on
T and

lim
n→∞

|gn(eiθ)| = rχB(eiθ) a.e.

(This can be achieved, for example, by finding a sequence of outer functions
hn ∈ H∞ with ‖hn‖∞ ≤ r and such that |hn| → rχB a.e.; then approximate
each hn by polynomials.) Then, letting n → ∞ (using Fatou’s Lemma and
upper semicontinuity), we obtain

2π�

0

2π�

0

F (f(eiθ) + reiφχB(eiθ))
dφ

2π
dθ

2π
≥ 0.
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Let B = {θ : F1(f(eiθ)) < F (f(eiθ))}. Then the above inequality gives
2π�

0

F1 ◦ f(eiθ)
dθ

2π
≥ 0.

This proves our first claim.
Now let (rn) be a sequence of positive rationals in which each positive

rational is repeated infinitely many times. Define F0 = F and then

Fn(z) = min
(
Fn−1(z),

2π�

0

Fn−1(z + rne
iθ)

dθ

2π

)
.

Then each Fn is upper semicontinuous and if G(z) = infn Fn(z) then Fn(z) ↓
G(z) ∈ [−∞,∞) everywhere. By induction, using the previous claim we
have, if f(0) ∈ E,

2π�

0

Fn ◦ f(eiθ)
dθ

2π
≥ 0

for every n and hence by Fatou’s Lemma
2π�

0

G ◦ f(eiθ)
dθ

2π
≥ 0.

This implies G(z) ≥ 0 on E, and in particular G is not identically −∞. To
show it is subharmonic we note that if r > 0 is rational,

2π�

0

G(z + reiθ)
dθ

2π
= lim
n: rn=r

2π�

0

Fn−1(z + reiθ)
dθ

2π
≥ lim
n: rn=r

Fn(z) = G(z).

If r is irrational we derive
2π�

0

G(z + reiθ)
dθ

2π
≥ G(z)

by taking limits (again using upper semicontinuity). This concludes the
proof.

Remarks. Let us note that the construction in the proof of the the-
orem gives a maximal subharmonic minorant. This implies that if F is
p-homogeneous when p > 0 (i.e. F (tz) = tpF (z) when t > 0) then the sub-
harmonic minorant can also be supposed to be p-homogeneous. (If G(z) is a
subharmonic minorant of F then F (z) ≥ supt>0 t

−pG(tz) by p-homogeneity
of F . Since the right-hand side is subharmonic it follows that G(z) =
supt>0 t

−pG(tz), and hence G is p-homogeneous provided it is a maximal
subharmonic minorant.)

Note also that the same argument but using Lemma 3.1 of [Ka] gives a
similar result for plurisubharmonic minorants:
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Theorem 2.3. Let F : Cn → [−∞,∞) be an upper semicontinuous
function, and let E be a nonempty subset of Cn. In order that for every
n-tuple (f1, . . . , fn) of polynomials with (f1(0), . . . , fn(0)) ∈ E we have

(2.4)
2π�

0

F (f1(eiθ), . . . , fn(eiθ))
dθ

2π
≥ 0

it is necessary and sufficient that there is a plurisubharmonic function G :
Cn → [−∞,∞) with G ≤ F and G(z1, . . . , zn) ≥ 0 for (z1, . . . , zn) ∈ E.

Proof. We sketch the details of the proof that (2.4) shows the existence
of a plurisubharmonic minorant. In this case we let Γ be a dense countable
subset of Cn and then let ((w(m)

1 , w
(m)
2 , . . . , w

(m)
n ), rm)m∈N be a sequence in

Γ × Q+ such that each pair ((w1, . . . , wn), r) with (w1, . . . , wn) ∈ Γ and
r ∈ Q+ is repeated infinitely often. Define F0 = F and then inductively

Fm(z) = min
(
Fm−1(z),

2π�

0

Fm−1(z1 + rme
iθw

(m)
1 , . . . , zn + rne

iθw(m)
n )

dθ

2π

)
.

The same argument now shows that limm→∞ Fm(z) = G(z) is plurisubhar-
monic and satisfies G(z1, . . . , zn) ≥ 0 for (z1, . . . , zn) ∈ E; however one must
use Lemma 3.1 of [Ka] in place of Lemma 2.2.

Remark. After the initial preparation of the paper, we learned that a
similar result was obtained by Poletsky [Po] by a somewhat different method.

3. Existence of a subharmonic minorant. In this section we study
conditions under which a continuous p-homogeneous function admits a sub-
harmonic minorant. This is greatly assisted by the theory of trigonometri-
cally convex functions, which we develop first.

Suppose I ⊂ R is an open interval. We shall say that a function f : I → R
is trigonometrically convex if whenever x < t < y and y − x < π then

(3.1) f(t) ≤ f(x) sin(y − t) + f(y) sin(t− x)
sin(y − x)

.

We say f is trigonometrically concave if −f is trigonometrically convex. It
is easily seen that a function is both trigonometrically convex and trigono-
metrically concave if and only if it is of the form f(x) = A cosx + B sinx;
we will refer to functions of this type as sinusoidal functions. Note also that
if f(x) is trigonometrically convex then so is f(−x).

The theory of trigonometrically convex functions is developed in [L1],
[L2]. We here develop what we need, although we suspect much of it is
already well known to experts.
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Lemma 3.1. Suppose f is trigonometrically convex on I. Then for every
x ∈ I the left and right derivatives

f ′+(x) = lim
y→x+

f(y)− f(x)
y − x , f ′−(x) = lim

y→x−
f(y)− f(x)

y − x
exist and satisfy

−∞ < f ′−(x) ≤ f ′+(x) <∞.
Furthermore if |x− y| ≤ π then

(3.2) f(y) ≥ f(x) cos(y − x) + a sin(y − x)

whenever f ′−(x) ≤ a ≤ f ′+(x).

Proof. Suppose x < t < y where x, y ∈ I and y − x < π. Then

f(t)− f(x)
2 sin

(
1
2 (t− x)

) ≤ f(y) cos
(

1
2 (t− x)

)
− f(x) cos

(
y − 1

2 (t+ x)
)

sin(y − x)

by (3.1). Taking limits as t→ x+ we have

lim sup
t→x+

f(t)− f(x)
t− x ≤ f(y)− f(x) cos(y − x)

sin(y − x)
.

Taking limits as y → x+ we see that

lim sup
t→x+

f(t)− f(x)
t− x ≤ lim inf

y→x+

f(y)− f(x)
y − x <∞.

This shows that f ′+(x) exists and f ′+(x) < ∞. We further deduce that if
y > x with y − x < π then

f(y) ≥ f(x) cos(y − x) + f ′+(x) sin(y − x).

We note then by symmetry that f ′−(x) exists, f ′−(x) > −∞ and if y < x
with x− y < π then

f(y) ≥ f(x) cos(y − x) + f ′−(x) sin(y − x).

To complete the proof we need only show that f ′−(x) ≤ f ′+(x). However if
0 < h < π

2 and x± h ∈ I then

f(x) ≤ f(x+ h) + f(x− h)
2 cosh

so that f ′−(x) ≤ f ′+(x).

Notice that the argument yields the following:

Lemma 3.2. Suppose f is continuous on [α, β] and trigonometrically
convex on (α, β). Then f ′+(α) exists, f ′+(α)<∞ and f(x)≥f(α) cos(x−α)
+ f ′+(α) sin(x− α) for x ≤ α+ π.

The following is given as a problem in [L2].
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Proposition 3.3 [L2, p. 56]. Suppose f : (α, β) → R is a continuous
function and p > 0 is such that β − α < 2pπ. Define F (z) for z = reiθ

where α < pθ < β by F (z) = rpf(pθ). Then F is subharmonic if and only
if f is trigonometrically convex.

Proof. Suppose F is subharmonic. If α < s < t < β with t− s < π then
let

h(x) =
f(s) sin(t− x) + f(t) sin(x− s)

sin(t− s)
and then note that F (reiθ) − rph(pθ) is subharmonic and vanishes on the
rays θ = s/p and θ = t/p. By the Phragmén–Lindelöf principle F (reiθ) −
rph(pθ) ≤ 0 if s ≤ pθ ≤ t.

Conversely assume f is trigonometrically convex and that α < pθ0 < β.
Let z0 = r0e

iθ0 . Then let a = f ′+(pθ0). We have, for |θ − θ0| small enough,

f(pθ0) cos p(θ − θ0) + a sin p(θ − θ0) ≤ f(pθ).

Now define

H(reiθ) = rp(f(pθ0) cos p(θ − θ0) + a sin p(θ − θ0))

for α < pθ < β. Then H is harmonic and H(z0) = F (z0). Now, if % is small
enough,

F (z0) = H(z0) =
2π�

0

H(z0 + %eiθ)
dθ

2π
≤

2π�

0

F (z0 + %eiθ)
dθ

2π

whence F is subharmonic.

Proposition 3.4. (1) If I ⊂ R is an open interval and x, x + π ∈ I,
then f(x) + f(x+ π) ≥ 0 if f is trigonometrically convex on I, and f(x) +
f(x+ π) ≤ 0 if f is trigonometrically concave on I.

(2) Suppose f is continuous on [0, π] and satisfies f(0)+f(π) = 0. Then
if f is trigonometrically convex or trigonometrically concave on (0, π) it
follows that f is a sinusoidal function.

(3) Suppose f is continuous on [0, π] and satisfies f(0) + f(π) = 0. If
there exists 0 < σ < π such that f is trigonometrically convex on (0, σ)
and trigonometrically concave on (σ, π) then f ′+(0) + f ′−(π) ≤ 0. If f ′+(0) +
f ′−(π) = 0 then f is a sinusoidal function.

Proof. (1) It is enough to consider trigonometrically convex f . Then by
(3.2) with y = x+ π it follows that f(x+ π) ≥ −f(x).

(2) Suppose f is trigonometrically convex on (0, π) and continuous on
[0, π]. By Lemma 3.2, f ′+(0) exists and f(t) ≥ f(0) cos t + f ′+(0) sin t for
0 < t < π. On the other hand, letting y → π− in (3.1), one gets, for



248 B. Hollenbeck et al.

0 < x < t < π,

f(t) ≤ f(x) + f(π) cosx
sinx

sin t− f(π) cos t.

If f(0) + f(π) = 0, then letting x → 0+ in the preceding inequality, one
obtains the upper estimate f(t) ≤ f(0) cos t + f ′+(0) sin t. Thus f(t) is a
sinusoidal function on (0, π).

(3) We observe that

f(0) cosσ + f ′+(0) sinσ ≤ f(σ) ≤ −f(π) cosσ − f ′−(π) sinσ.

In the case f ′+(0) + f ′−(π) = 0 we note that f(σ) = f(0) cosσ + f ′+(0) sinσ.
It follows from (3.1) that for 0 < x < σ we have

f(x) ≤ f(0) cosx+ f ′+(0) sinx.

In view of Lemma 3.2 this implies f(x) = f(0) cosx + f ′+(0) sinx for 0 <
x < σ and a similar argument applies to σ < x < π.

In the next theorem a sector is a subset of the complex plane of the
form S = {reiθ : r > 0, α < θ < β} where the angular opening of S,
angS = β − α, satisfies 0 < angS < 2π. The complementary sector S ′ is
the interior of C \ S. We call a function F : C → R p-homogeneous (p > 0)
if F (az) = apF (z) for a > 0.

Theorem 3.5. Suppose p > 1/2, p 6= 1, and F is a p-homogeneous
continuous function on C. Suppose there is a sector S so that F is sub-
harmonic on S and superharmonic on the complementary sector S′. Sup-
pose further there is no nontrivial sector on which F is harmonic. Sup-
pose that F (z) + F (eiπ/pz) ≥ 0 for all z, and there exists z0 6= 0 so that
F (z0) + F (eiπ/pz0) = 0. Then there is a continuous p-homogeneous subhar-
monic function G with G(z) ≤ F (z) for all z ∈ C.

Remark. It will be clear from the proof that angS ′ < π
p .

Proof. We can suppose that there is z0 with |z0| = 1 and F (z0) +
F (eiπ/pz0) = 0. Let z0 = eit0 and z1 = ei(t0+π/p).

We may write F (reit) = rpf(pt) where f is a 2pπ-periodic function on R.
By Proposition 3.3, f is then trigonometrically convex on any interval I so
that eix/p ∈ S for x ∈ I and trigonometrically concave on any interval I so
that eix/p ∈ S′ for x ∈ I.

We begin by arguing that it is impossible that both z0, z1 belong to S′.
Indeed, if so then F (z) + F (eiπ/pz) is superharmonic on a nontrivial sector
containing z0. Equivalently g(x) = f(x) + f(x+ π) ≥ 0 is trigonometrically
concave on an interval (pt0−δ, pt0+δ) where δ > 0. Since g(t) has a minimum
at x = pt0, for |τ | < δ we have

0 = 2(cos τ)g(pt0) ≥ g(pt0 − τ) + g(pt0 + τ)
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so that g ≡ 0 on (pt0 − δ, pt0 + δ). Since both f(x) and f(x + π) are trig-
onometrically concave in this interval and f(x) + f(x + π) ≡ 0, we con-
clude that both are also trigonometrically convex, and hence sinusoidal by
Proposition 3.4(2). This contradicts our assumptions on F (which becomes
harmonic on some sector).

Next we argue that the arc A =
{
eit : t0 < t < t0 + π

p

}
cannot be

contained in either S or S′. This follows immediately from Proposition 3.4(2)
since f is then either trigonometrically convex or trigonometrically concave
on (pt0, pt0 + π).

Note that since g has a minimum at pt0 we have

f ′−(pt0) + f ′−(pt0 + π) ≤ 0,(3.3)

f ′+(pt0) + f ′+(pt0 + π) ≥ 0.(3.4)

We will next argue that it is impossible for either z0 or z1 to fall in the
sector S′. Let us suppose z1 ∈ S′; the other case is similar and may be
reduced to this case by considering F (z). Then z0 cannot be in S′ and so
α ≤ t0 < β < t0 + π

p < α+ 2π. Now by Proposition 3.4(3) we have

(3.5) f ′+(pt0) + f ′−(pt0 + π) ≤ 0,

and the fact that z1 ∈ S′ entails that f is trigonometrically concave in
a neighborhood of pt0 + π, so f ′−(pt0 + π) ≥ f ′+(pt0 + π) by Lemma 3.1.
Combined with (3.4) this yields

f ′+(pt0) + f ′−(pt0 + π) = 0.

Hence by Proposition 3.4(3), f is sinusoidal on (pt0, pt0 + π) contrary to
assumption.

Thus neither z0 nor z1 belongs to S′, and A is not contained in one
sector. So at least one of the two points is contained inside S. Again we can
suppose z0 ∈ S. Hence we can suppose α < t0 < β < α+ 2π ≤ t0 + π

p .
Now let

h(x) = f(pt0) cos(x− pt0) + f ′+(pt0) sin(x− pt0).

Then by Lemma 3.1 we have h(x) ≤ f(x) on a neighborhood of pt0. Also
since by Proposition 3.4(3), f ′+(pt0)+f ′−(pt0 +π) ≤ 0 and f is trigonometri-
cally convex on (pt0 + π, pt0 + π + δ) for some δ > 0 we have h(x) ≤ f(x)
for pt0 + π ≤ x < pt0 + π + δ.

Now note that by Lemma 3.2 (or by the Phragmén–Lindelöf theorem)
h(x) ≤ f(x) for pt0 ≤ x ≤ pβ and for pα + 2pπ ≤ x ≤ pt0 + π. Since
f(x) − h(x) is trigonometrically concave for pβ < x < pα + 2pπ, and is
positive in the adjacent intervals, it cannot change sign on (pβ, pα + 2pπ),
again by the Phragmén–Lindelöf theorem. This means h(x) ≤ f(x) for all x
in a neighborhood of [pt0, pt0 + π].
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Let T =
{
reiθ : r > 0, t0 < θ < t0 + π

p

}
and define H(reiθ) = rph(pθ)

for t0 < θ < t0 + π
p . Note that T contains the sector S′. Let

G(z) =
{
H(z) if z ∈ T ,

F (z) if z 6∈ T .

Clearly G(z) ≤ F (z) for all z ∈ C, and G is subharmonic on both T and its
complementary sector T ′. Since h(x) ≤ f(x) in a neighborhood of both pt0
and pt0 + π it is easy to see that G is then subharmonic on C \ 0. Finally
this implies that G(z) +G(eiπ/pz) ≥ 0 ([L2]) for all z and so by integrating

2π�

0

G(reiθ)
dθ

2π
≥ 0, r > 0.

Hence G is subharmonic on C.

Corollary 3.6. (1) Under the conditions of Theorem 3.5 there is a
unique z0 with |z0| = 1 and F (z0) + F (eiπ/pz0) = 0.

(2) If , in addition, F (z) = F (z) for all z ∈ C then z0 = e−iπ/(2p) or
z0 = −e−iπ/(2p).

Proof. From Proposition 3.4 (or the Phragmén–Lindelöf principle) it is
clear that if F (z0) + F (eiπ/pz0) = 0 then any subharmonic minorant G is
harmonic on the sector bounded by the rays through z0 and eiπ/pz0. The
minorant G constructed in the proof of Theorem 3.5 is harmonic on exactly
one sector of angle π

p . This proves (1). For (2) we observe that the uniqueness

of z0 implies that z0 = eiπ/pz0.

We shall use the following version of this theorem:

Theorem 3.7. Suppose p > 1, p 6= 2, and F is a symmetric p-homo-
geneous continuous function on C. Suppose there are sectors S, T with
angS + ang T = π so that F is subharmonic on S ∪ (−S) and superhar-
monic on T ∪ (−T ). Suppose further there is no nontrivial sector on which
F is harmonic. Suppose that F (z) + F (eiπ/pz) ≥ 0 for all z, and there ex-
ists z0 6= 0 so that F (z0) + F (eiπ/pz0) = 0. Then there is a continuous
p-homogeneous subharmonic function G with G(z) ≤ F (z) for all z ∈ C.

Proof. Define F̃ (z) = F (z1/2) (this definition is unambiguous). Then
F̃ is p/2-homogeneous and satisfies the hypotheses of Theorem 3.5. Hence
there is a p/2-homogeneous subharmonic function G̃ with G̃(z) ≤ F̃ (z).
Define G(z) = G̃(z2) and the theorem follows.

Corollary 3.8. Suppose, under the conditions of Theorem 3.7, we also
have F (z) = F (z) for z ∈ C. Then either

F (e−iπ/(2p)) + F (eiπ/(2p)) = 0,
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or
F (ei(π/2−π/(2p))) + F (ei(π/2+π/(2p))) = 0.

Proof. This follows immediately from Corollary 3.6.

4. The norm of aI+ bH. Let us denote the identity operator by I, the
Hilbert transform on the unit circle T by H = HT, and define

(4.1) Bp = max
x∈R
|ax− b+ (bx+ a) tan γ|p + |ax− b− (bx+ a) tan γ|p

|x+ tan γ|p + |x− tan γ|p
where γ = π

2p .
Note that this is consistent with the formula (see (1.10))

Bp = ‖aI + bHR‖pLp(R) = ‖aI + bh‖p
lp2

discussed in the Introduction since Bp can be defined equivalently by

(4.2) Bp = (a2 + b2)p/2 max
0≤θ≤2π

|cos(θ + θ0)|p +
∣∣cos

(
θ + θ0 + π

p

)∣∣p

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p ,

where tan θ0 = b/a. This can be seen by letting x = cot
(
θ + π

2p

)
.

Theorem 4.1. Let f ∈ Lp(T) for 1 < p < ∞ be a real-valued function.
Then for any a, b ∈ R,

(4.3) ‖(aI + bHT)f‖pLp(T) ≤ Bp‖f‖
p
Lp(T)

where the constant , Bp, is sharp. In other words, ‖aI + bHT‖Lp(T) = B
1/p
p .

It is well known that for real a, b the operator norms of aI + bHT in the
real and complex Lp spaces coincide.

Proof. If p = 2 then clearly

‖aI + bHT‖2L2(T) = a2 + b2 = B2,

and so we can assume p 6= 2. We proceed with the following lemma.

Lemma 4.2. Let Bp be given by (4.1). Then there exists a subharmonic
function G(z) such that

(4.4) |aRe z + b Im z|p ≤ Bp|Re z|p −G(z).

Proof. Since the case b = 0 is trivial we assume b 6= 0. Clearly, letting
Φ(z) = Bp|Re z|p − |aRe z + b Im z|p gives a function of the form Φ(reit) =
rpφ(t), where φ(t) = Bp|cos t|p−|a cos t+b sin t|p. Note that φ(t) is π-periodic
and continuously differentiable. One can readily see that (4.2) implies

(4.5) min
0≤t≤2π

[φ(t) + φ(t+ π/p)] = 0.
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To determine where Φ(z) is subharmonic or superharmonic, we observe
that ∆Φ ≥ 0 is equivalent to

(4.6) Bp|Re z|p−2 ≥ (a2 + b2)|aRe z + b Im z|p−2.

So in order for Φ(z) to be subharmonic, the following must be true:

(4.7) |a+ b tan t|p−2 ≤ Bp
a2 + b2

.

Therefore we see that for p 6= 2 there will indeed be exactly two separate
“double sectors” where Φ(z) is subharmonic, and superharmonic in their
complement, and we can use Theorem 3.7 to conclude that Φ has a subhar-
monic minorant. Thus the lemma is proved.

We also need the following observation.

Lemma 4.3. Let G(z) be the subharmonic minorant found in the proof
of Lemma 4.2. Then G(x) ≥ 0 for all x ∈ R.

Proof. Let Φ(z) = Bp|Re z|p − |aRe z + b Im z|p, and let G(z) be the
subharmonic minorant. As in the proof of Lemma 4.2 we may assume b 6= 0.

Notice that Φ(x) ≥ 0 for real x. This follows from the definition of Bp;
in particular, from (4.1) where x = 0 we have

Bp ≥
|a tan γ − b|p + |a tan γ + b|p

2|tan γ|p =
|a|p
2

(|1− c|p + |1 + c|p),

where c = b
a tan γ . By the convexity of xp it follows that

|1 + c|p + |1− c|p ≥ 2

for p ≥ 1. Thus, we can conclude that Bp ≥ |a|p, and hence

Φ(x) = Bp|x|p − |ax|p ≥ 0

for all x ∈ R.
To show that G(x) ≥ 0 for real x, suppose first p > 2. Then we argue

that G(x) = Φ(x) if x ∈ R. To prove this statement, we set S = {z :
G(z) 6= Φ(z)}. Observe from the construction of the minorant in the proof
of Theorem 3.7 that S is contained in a double sector which has an angle
of opening π

p . It is clear from (4.7) that the imaginary axis is contained in
a double sector where Φ(z) (z 6= 0) is superharmonic, and hence it lies in S.
If S is to contain the real axis as well, then its angle of opening must be at
least π

2 . Since p > 2, we have a contradiction.
Now suppose 1 < p < 2, and hence π

2 < π
p < π. Notice that on the

imaginary axis

G(ix) ≤ Φ(ix) = −|bx|p < 0, x 6= 0,
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provided b 6= 0. If G(x) ≤ 0 for some x 6= 0 on the real axis as well then
by the Phragmén–Lindelöf theorem (or simply by (3.1) and Lemma 3.1)
G(z) < 0 either in the right or left half-plane. This contradicts the inequality
G(z)+G(zeiπ/p) ≥ 0 which holds for every z since G(z) is subharmonic and
p-homogeneous in C.

Our next step is to use Lemma 4.2 and replace z with h(z) = u(z)+iv(z),
where h(z) is analytic in the unit disc D. Here u(z) and v(z) are the harmonic
extensions to D of the functions f and f̃=HTf respectively, so that v(0)=0,
and h = f + if̃ ∈ Hp(T). Then (4.4) becomes

(4.8) |au(z) + bv(z)|p ≤ Bp|u(z)|p −G(h(z)),

where z ∈ D. Note that since h is analytic, G ◦ h is still subharmonic in D.
Because v(0) = 0, we can apply Lemma 4.3 and observe that G(h(0)) ≥ 0.
So we can let z = reiθ, 0 < r < 1, and integrate both sides of (4.8) over
0 ≤ θ ≤ 2π. Using the sub-mean-value property for G◦h, and letting r → 1,
we conclude that

(4.9) ‖af + bf̃‖pLp(T) ≤ Bp‖f‖
p
Lp(T),

which proves (4.3).
To see that the constant, Bp, is sharp, we need to show

(4.10) ‖aI + bHT‖pLp(T) ≥ Bp.

Recall the function used in [Pi],

gγ(z) =
(

1 + z

1− z

)2γ/π

, gγ(0) = 1,

where γ < π
2p and 1 < p < 2. It has the property that

(4.11) Im gγ(eiθ) =
{

tan γRe gγ(eiθ) if 0 < θ < π,

− tan γ Re gγ(eiθ) if −π < θ < 0.

So consider a function of the form fγ = αRe gγ + β Im gγ , where α, β ∈ R.
Notice that f̃γ = HTfγ = α Im gγ−βRe gγ +β and so for fixed α, β we have

‖aI + bHT‖Lp(T) ≥
‖afγ + bf̃γ‖Lp(T)

‖fγ‖Lp(T)

≥
( �
T |(aα− bβ) Re gγ(eiθ) + (aβ + bα) Im gγ(eiθ)|p dθ2π�

T |aRe gγ(eiθ) + b Im gγ(eiθ)|p dθ2π

)1/p

− |bβ|
‖fγ‖Lp(T)

.



254 B. Hollenbeck et al.

We can use (4.11) and the fact that Re gγ(eiθ) = cos γ
∣∣cot θ2

∣∣2γ/π is an
even function to rewrite the right-hand side of the above as
( |aα− bβ + (aβ + bα) tan γ|p + |aα− bβ − (aβ + bα) tan γ|p

|α+ β tan γ|p + |α− β tan γ|p
)1/p

− |bβ|
‖fγ‖Lp(T)

.

If we let γ → π
2p then the second term in the preceding expression tends to

zero. Thus,

‖aI + bHT‖Lp(T)

≥ max
α,β∈R

( |aα− bβ + (aβ + bα) tan γ′|p + |aα− bβ − (aβ + bα) tan γ′|p
|α+ β tan γ′|p + |α− β tan γ′|p

)1/p

,

where γ′ = π
2p .

Letting x = α/β, we see that (4.10) holds and therefore the constant is
sharp for 1 < p < 2. For 2 < p <∞, one can employ a similar argument by
instead using the function gγ(z) = i

(
1+z
1−z
)2γ/π

.

We also have the following corollary.

Corollary 4.4. Let f ∈ Lp(R) for 1 < p < ∞ be a real-valued func-
tion. Then for any a, b ∈ R,

(4.12) ‖(aI + bHR)f‖pLp(R) ≤ Bp‖f‖
p
Lp(R),

where the sharp constant , Bp, is given by (4.1). Equivalently , the operator
norm is given by ‖aI + bHR‖Lp(R) = B

1/p
p .

Proof. Inequality (4.12) can be shown by using a standard argument
known as “blowing up the circle”. This idea, due to A. Zygmund [Z, Chapter
XVI, Theorem 3.8], involves a reduction to the periodic case, followed by an
application of Theorem 4.1. For examples of this argument, see Theorem 3.1
in [HV] or Proposition 3.5 in [BG].

We can show Bp is sharp by reduction to the case of the circle using
transference. For instance, Theorem 3.8 in [BG] where µ1 = a − ib, µ2 =
a+ ib, and µ = a, combined with our Theorem 4.1, yields

‖aI + bHR‖Lp(R) ≥ ‖aI + bHT‖Lp(T) = B1/p
p .

5. Related inequalities. In this section we give some other appli-
cations of Theorem 3.7, which illustrate its possible uses. Let us suppose
1 < p <∞ and u ∈ Lp(T); let v = HTu and f = u+ iv, where u and v are
real-valued. In particular we study best constant inequalities which involve
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the Lp-norm of Φt(u+ iv), where

Φt(z) = (x2 + t2y2)1/2, z = x+ iy ∈ C, t ≥ 0.

We shall say u has mean zero if
� 2π
0 u(eiθ) dθ = 0. Note that v always has

mean zero.

Theorem 5.1. Let 1 < p <∞, and p∗ = max(p, p′). If t ≥ 1 then

(5.1) ‖(u2 + t2v2)1/2‖p ≤
(

sin2 π

2p∗
+ t2 cos2 π

2p∗

)1/2

‖f‖p.

If 0 < t ≤ 1 then

(5.2)
(

sin2 π

2p∗
+ t2 cos2 π

2p∗

)1/2

‖f‖p ≤ ‖(u2 + t2v2)1/2‖p.

If we additionally suppose u has mean zero, then if t ≥ 1,

(5.3)
(

cos2 π

2p∗
+ t2 sin2 π

2p∗

)1/2

‖f‖p ≤ ‖(u2 + t2v2)1/2‖p

and if 0 < t < 1,

(5.4) ‖(u2 + t2v2)1/2‖p ≤
(

cos2 π

2p∗
+ t2 sin2 π

2p∗

)1/2

‖f‖p.

In each case the constant is sharp.

Proof. Let us first note that the given constants are sharp by a slight
variation of the argument in Theorem 4.1. Define, as before,

gγ(z) =
(

1 + z

1− z

)2γ/π

.

Then gγ ∈ Hp provided 2γp < π. Let fγ = gγ − 1 ∈ Hp
0 and uγ = Re fγ ,

vγ = Im fγ . Now suppose 0 ≤ t0, t1 <∞. If 2γp < π we deduce from (4.11)
that

|‖(u2
γ + t2jv

2
γ)1/2‖p − (cos2 γ + t2j sin2 γ)1/2‖gγ‖p| ≤ 1.

Hence since ‖gγ‖p →∞ as γ → π
2p it follows that

lim
γ→π/(2p)

‖(u2
γ + t21v

2
γ)1/2‖p

‖(u2
γ + t20v

2
γ)1/2‖p

=

(
cos2 π

2p + t21 sin2 π
2p

)1/2
(
cos2 π

2p + t20 sin2 π
2p

)1/2 .

This equation, combined with a similar equation derived from ifγ (thus
interchanging the roles of uγ and vγ) quickly shows that each constant in
Theorem 5.1 is sharp even when u has mean zero.

We now turn to the proof of (5.1)–(5.4). We will write z = x + iy for
z ∈ C. We now suppose 1 < p < ∞ (with p 6= 2) and 0 < t < ∞ are fixed.
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Recall that Φt(z) = (x2 + t2y2)1/2 where z = x+ iy. We set

F+(z) = Φt(z)p − c|z|p, z ∈ C,
where

c =
1
2

min
−π<θ≤π

(Φt(ei(θ+π/p))p + Φt(eiθ)p),

and
F−(z) = d|z|p − Φt(z)p, z ∈ C,

where

d =
1
2

max
−π≤θ≤π

(Φt(ei(θ+π/p))p + Φt(eiθ)p).

We shall show that the conditions of Theorem 3.7 are met for both F+

and F−. By the symmetry conditions on F = F+, F− it is only necessary
to show that ∆F (eiθ) changes sign at most once in the first quadrant. Note
that by construction we have

min
|z|=1

(F (z) + F (eiπ/pz)) = 0.

We thus calculate:

(5.5) ∆Φt(x+iy)p = p(1+t2)Φt(x+iy)p−2+p(p−2)(x2+t4y2)Φt(x+iy)p−4.

Hence

(5.6) ∆Φt(z)p = p(p− 1)(1 + t2)Φt(z)p−2 − p(p− 2)t2|z|2Φt(z)p−4.

We next show that for any choice of a it follows that ∆(Φpt − a|z|p)
vanishes on at most one ray in the first quadrant. In fact if λ(z) = Φt(z)/|z|
then by (5.6),

∆(Φt(z)p − aΦ1(z)p) = |z|p−2(p(p− 1)(1 + t2)λp−2 − p(p− 2)t2λp−4 − p2a),

and λ(z) lies in the interval [t, 1] or [1, t]. Now the function

ϕ(λ) = p(p− 1)(1 + t2)λp−2 − p(p− 2)t2λp−4 − p2a

vanishes at most once in this interval since ϕ′(λ) vanishes (for λ > 0) only
when

λ2 =
(p− 4)t2

(p− 1)(1 + t2)
, λ2 < min(1, t2).

It follows that if F = F+ or F = F−, then∆F vanishes on at most one ray in
the first quadrant. Since for some z0 6= 0 we have F (z0e

iπ/p)+F (z0) = 0 this
implies it vanishes on exactly one ray (if it is subharmonic or superharmonic
then it must be harmonic on some sector of angle π

p by Propositions 3.3
and 3.4(2)). Now Theorem 3.7 can be applied and F admits a continuous
p-homogeneous subharmonic minorant G. Furthermore an application of
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Corollary 3.8 shows that

c =
(

cos2 π

2p∗
+ t2 sin2 π

2p∗

)p/2
, d =

(
sin2 π

2p∗
+ t2 cos2 π

2p∗

)p/2
, t ≥ 1,

and

c =
(

sin2 π

2p∗
+ t2 cos2 π

2p∗

)p/2
, d =

(
cos2 π

2p∗
+ t2 sin2 π

2p∗

)p/2
,

0 < t < 1.

In either case F = F+ or F = F− we have G(0) = 0 by homogeneity.
We check conditions for G(x) ≥ 0 if x ∈ R.

First assume that t ≥ 1 and

F (z) = F−(z) =
(

sin2 π

2p∗
+ t2 cos2 π

2p∗

)p/2
|z|p − (x2 + t2y2)p/2.

We split into two cases. If p > 2 then G(1) = F (1) and so G(1) ≥ 0.
If p < 2 then G is harmonic on the sector − π

2p < arg z < π
2p and of

the form G(reiθ) = Arp cos pθ by the construction of G in the proof of
Theorem 3.5. Next, G(eiθ) = F (eiθ) for θ > π

2p and this is nonpositive for
π
2p < θ < π

2p + δ for suitable δ > 0. Then since G is p-homogeneous and

subharmonic, G(eiθ) + G(ei(θ+π/p)) ≥ 0 by Propositions 3.3 and 3.4(1), so
G(eiθ) ≥ 0 for − π

2p < θ < − π
2p + δ. But this implies A > 0 and so G(1) > 0.

Thus if t ≥ 1 we have G(x) ≥ 0 for 1 < p <∞.
Note that if 0 < t < 1 and

F (z) = F−(z) =
(

cos2 π

2p∗
+ t2 sin2 π

2p∗

)p/2
|z|p − (x2 + t2y2)p/2,

then F (1) < 0 and so G(1) < 0.
If F = F+ we similarly deduce that G(1) ≥ 0 only when 0 < t ≤ 1.
The remainder of the argument is standard. Define f for |z| < 1 by

f(z) =
∑
n≥0 f̂(n)zn where f̂(0) is real. Then G ◦ f is subharmonic and

hence

0 ≤
2π�

0

G(f(reiθ))
dθ

2π
, 0 < r < 1.

Thus
2π�

0

F (f(reiθ))
dθ

2π
≥ 0

and letting r → 1 we will obtain (5.1), (5.2), (5.3) or (5.4) according to the
choice of F+ or F− and p.
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Before giving our next application, let us note that the following theorem
is an easy application of the known estimate for the Hilbert transform [Pi]:

Theorem 5.2. If 2 ≤ p <∞ and 0 < t <∞ then

(5.7) ‖(u2 + t2v2)1/2‖p ≤
(

1 + t2 cot2 π

2p

)1/2

‖u‖p.

If 1 < p ≤ 2 and 0 < t <∞ then if u has mean zero,

(5.8)
(

1 + t2 cot2 π

2p

)1/2

‖u‖p ≤ ‖(u2 + t2v2)‖p.

Proof. For (5.7) note that if p/2 ≥ 1 then

‖(u2 + t2v2)1/2‖p ≤ (‖u‖2p + t2‖v‖2p)1/2

by Minkowski’s inequality, and the estimate ‖v‖p ≤ cot π
2p ‖u‖p completes

the proof. For (5.8) if p/2 ≤ 1 we have instead

‖(u2 + t2v2)1/2‖p ≥ (‖u‖2p + t2‖v‖2p)1/2

and ‖v‖p ≥ cot π
2p ‖u‖p since u has mean zero.

We will now consider the reverse inequalities to those of Theorem 5.2.

Theorem 5.3. Suppose either that 0 < t < ∞ and 3 ≤ p < ∞, or that√
1− p/3 ≤ t <∞ and 2 < p < 3. Then if u has mean zero,

(5.9)
(

1 + t2 tan2 π

2p

)1/2

‖u‖p ≤ ‖(u2 + t2v2)1/2‖p.

If 1 < p < 2 and
√

1− p/3 ≤ t <∞ then for any u,

(5.10) ‖(u2 + t2v2)1/2‖p ≤
(

1 + t2 tan2 π

2p

)1/2

‖u‖p.

In each case the constant is sharp.

We remark that Theorems 5.2 and 5.3 may be interpreted as saying that

‖I + itHT‖Lp(T) =
(

1 + t2 cot2 π

2p∗

)1/2

if p ≥ 2 or if t ≥ 1, but it must then be remembered that I + itHT is
considered as a hybrid operator from the real space Lp(T) to the complex
space Lp(T).

Proof. The proof that the inequalities are sharp is essentially the same
as in Theorem 5.1.
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The proof is very similar to that of Theorem 5.1. We assume p 6= 2. In
this case we define

c = min
−π≤θ<π

Φt(eiθ)p + Φt(ei(θ+π/p))p

Φ0(eiθ)p + Φ0(ei(θ+π/p))p
,

d = max
−π≤θ<π

Φt(eiθ)p + Φt(ei(θ+π/p))p

Φ0(eiθ)p + Φ0(ei(θ+π/p))p
.

Let
F+(z) = Φt(z)p − c|x|p, F−(z) = d|x|p − Φt(z)p.

In place of (5.6) we use

(5.11) ∆Φt(z)p = p(1 + (p− 1)t2)Φt(z)p−2−p(p− 2)(t2 − 1)|x|2Φt(z)p−4.

For x 6= 0 let us introduce λ(z) = Φt(z)/|x| = (1 + t2y2/x2)1/2. Now for
any choice of a ∈ R,

∆(Φt(z)p − aΦ0(z)p)

= |x|p−2(p(1 + (p− 1)t2)λp−2 − p(p− 2)(t2 − 1)λp−4 − p(p− 1)a).

Let

ϕ(λ) = p(1+(p−1)t2)λp−2−p(p−2)(t2−1)λp−4−p(p−1)a, 1 ≤ λ <∞.
We show ϕ(λ) vanishes at most once in (1,∞). In fact

ϕ′(λ) = p(p− 2)((1 + (p− 1)t2)λp−3 − (p− 4)(t2 − 1)λp−5)

vanishes only when

1− λ2 =
p+ 3(t2 − 1)
1 + (p− 1)t2

.

Thus if p ≥ 3 or if t ≥
√

1− p/3 then ϕ′ can have no zeros in (1,∞) (for any
choice of a) and so ∆F vanishes on at most one ray in the positive quadrant
for F = F+ or F = F−. This means we can apply Theorem 3.7 to produce
a continuous p-homogeneous subharmonic minorant G.

Let us consider the case 2 < p <∞ and F = F+. In this case

c =
(

1 + t2 tan2 π

2p

)p/2

by Corollary 3.8. Since G(0) = 0 by homogeneity, we obtain (5.9) by the
standard arguments.

Next we consider 1 < p < 2 and F = F−. Then

d =
(

1 + t2 tan2 π

2p

)p/2

by Corollary 3.8 and G is then of the form G(reiθ) = Arp cos pθ if − π
2p <

θ < π
2p by the construction of G in the proof of Theorem 3.5. In this case



260 B. Hollenbeck et al.

F (eiθ) = G(eiθ) is negative for π
2p < θ < π

2p + δ for some δ > 0 and so, since
G is subharmonic and p-homogeneous, G(eiθ) > 0 for − π

2p < θ < − π
2p + δ,

i.e. A > 0. Hence G is positive on the real axis. Then (5.10) follows.

We now discuss the extent to which Theorem 5.3 can hope to be im-
proved. It is in fact clear that in the case 1 < p < 3 the inequalities hold
for some t with t <

√
1− p/3. More precisely one can show, with a little

more work, that the inequalities hold if t ≥ τ where τ = τ(p) is the largest
positive root of

1 +
t2

p− 1
=
(

1 + t2 tan2 π

2p

)p/2
.

Here τ(p) is in general less than
√

1− p/3. However these estimates are not
best possible. The problem of determining the best possible value of τ is
more delicate, and will be addressed below. We first show however that the
inequalities in Theorem 5.3 do not hold for all t > 0 when 1 < p < 3, p 6= 2.

Proposition 5.4. (1) Suppose 1 < p < 2; then there exists t0(p) > 0
such that the inequality

(5.12) ‖(u2 + t2v2)1/2‖p ≤
(

1 + t2 tan2 π

2p

)1/2

‖u‖p

fails if 0 < t < t0.
(2) Suppose 2 < p < 3; then there exists t0(p) > 0 such that the inequality

(5.13) ‖(u2 + t2v2)1/2‖p ≥
(

1 + t2 tan2 π

2p

)1/2

‖u‖p

fails if 0 < t < t0.

Proof. We will need a simple trigonometric inequality. Note that the
function

h(θ) = (π − θ) cos θ − (π − 2θ)

is convex on the interval π
3 ≤ θ ≤ π and that h

(
π
3

)
= h

(
π
2

)
= 0 and

h(π) > 0. Hence

h(θ) < 0 if
π

3
< θ <

π

2
,

h(θ) > 0 if
π

2
< θ < π.

If we put θ = π
p then these inequalities become

(p− 1) cos
π

p
< p− 2 if 2 < p < 3,

(p− 1) cos
π

p
> p− 2 if 1 < p < 2.
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Hence
2(p− 1) cos2 π

2p
< 2p− 3 if 2 < p < 3,

2(p− 1) cos2 π

2p
> 2p− 3 if 1 < p < 2.

Finally this implies

(2p− 3) tan2 π

2p
< 1 if 1 < p < 2,(5.14)

(2p− 3) tan2 π

2p
> 1 if 2 < p < 3.(5.15)

We now turn to the two cases.

(1) We argue that if (5.12) holds for a particular choice of t then

F (z) =
(

1 + t2 tan2 π

2p

)p/2
Φ0(z)p − Φt(z)p

has the property that ∆F (eiπ/(2p)) ≥ 0. This follows directly from Cole’s
theorem, Theorem 2.1, and the fact that F (z) = F (z), since the existence
of a subharmonic minorant implies that for all z,

(5.16) F (e−iπ/(2p)z) + F (eiπ/(2p)z) ≥ 0.

However, we can also obtain (5.16) directly, avoiding the use of Cole’s theo-
rem by considering the functions gγ and fγ as in the proof of Theorem 5.1,
but using eiθfγ for all 0 ≤ θ < 2π. Then if F (z) = rpf(θ), we have
f
(
π
2p

)
= 0, and (5.16) implies that f

(
θ − π

2p

)
+ f

(
θ + π

2p

)
has a minimum

at θ = 0. Since f is an even function it follows that f ′′
(
π
2p

)
≥ 0, and using

the fact that f
(
π
2p

)
= 0 we deduce that ∆F (eiπ/(2p)) ≥ 0.

Now, if we assume ∆F (eiπ/(2p)) ≥ 0 then by (5.11),

(p− 1)λ4 − (1 + (p− 1)t2)λ2 − (p− 2)(1− t2) ≥ 0

where λ =
(
1 + t2 tan2 π

2p

)1/2
. This in turn implies

(p− 1)
(

tan4 π

2p
− tan2 π

2p

)
t4 +

(
(2p− 3) tan2 π

2p
− 1
)
t2 ≥ 0.

If this holds for arbitrarily small t we have

(2p− 3) tan2 π

2p
≥ 1.

This is false by (5.14).

(2) The calculations are similar but signs are reversed. We conclude in
this case that the validity of (5.13) for arbitarily small t implies that

(2p− 3) tan2 π

2p
≤ 1.

Apply (5.15).
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We now calculate the critical value τ = τ(p) for (5.12).

Theorem 5.5. Let 1 < p < 2, and let τ(p) be the unique positive root
of the equation

(5.17)
(

1 + t2 tan2 π

2p

)1−p/2
= 1 + t2 tan2 π

2p

(
1−

cosp−1 π
2p

sin π
2p

)
.

Then

(5.18) ‖(u2 + t2v2)1/2‖p ≤
(

1 + t2 tan2 π

2p

)1/2

‖u‖p

holds for τ(p) ≤ t ≤ 1, but fails for 0 < t < τ(p).

Proof. Let

(5.19) β = 1−
cosp−1 π

2p

sin π
2p

, µ =
(

1 + t2 tan2 π

2p

)1/2

.

We need an elementary inequality,

(5.20) 0 < β < 1− p/2, 1 < p < 2,

which will follow from the analysis below. Then the function

(5.21) ψ(µ) = µ2−p − 1− β(µ2 − 1), 1 ≤ µ <∞,
is concave on (1,∞) since ψ′′(µ) = −(2− p)(p− 1)µ−p − 2β < 0, and has a
maximum at µ0 where

(5.22) µp0 =
2− p
2β

> 1.

Since ψ(1) = 0, there is a unique root µ1 > 1 of the equation ψ(µ) = 0, so
that µ1 > µ0 > 1. Consequently, (5.17) has only one positive root t = τ(p).
To show that τ(p) < 1, notice that if t = 1 then µ = 1/cos π

2p , and the
following elementary estimate holds:

ψ(µ) = cosp−2 π

2p
− 1− β tan2 π

2p
=

cosp−1 π
2p

(
cos π

2p + sin π
2p

)
− 1

cos2 π
2p

< 0.

This yields τ(p) < 1. Again, a direct analytic proof of the preceding inequal-
ity is tedious, but we will show below that actually τ(p) <

√
1− p/3 < 1.

Let d =
(
1 + t2 tan2 π

2p

)p/2
. Notice that the function

ϕ(λ) = p(1+(p−1)t2)λp−2−p(p−2)(t2−1)λp−4−p(p−1)d, 1 ≤ λ <∞,
vanishes at most twice in (1,∞). This follows from the fact already used
above that

ϕ′(λ) = p(p− 2)((1 + (p− 1)t2)λp−3 − (p− 4)(t2 − 1)λp−5)
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vanishes only at λ = λ0 where

λ2
0 =

(4− p)(1− t2)
1 + (p− 1)t2

,

and limλ→∞ ϕ(λ) = −p(p − 1)d < 0. Note that λ0 ∈ (1,∞) if and only if
0 < t <

√
1− p/3, and in this case ϕ′(λ) > 0 for 1 < λ < λ0, and ϕ′(λ) < 0

for λ0 < λ <∞.
If F (z) = dΦ0(z)p − Φt(z)p, then (see the formula after (5.11))

∆F (z) = −|x|p−2ϕ(λ(z)), λ(z) =
(

1 +
t2y2

x2

)1/2

.

Hence by the discussion above ∆F (z) vanishes at most on two rays in the
positive quadrant.

If ∆F (z) vanishes at most on one ray in the positive quadrant, then
(5.18) follows by the same argument as in the proof of Theorem 5.3.

Thus it remains to consider the case where ∆F (z) vanishes exactly on
two distinct rays arg z = θ1 and arg z = θ2 such that 0 < θ1 < θ2 <

π
2 . This

may happen only if 0 < t <
√

1− p/3 when we necessarily have ϕ(1) =
pt2 − p(p− 1)(d− 1) < 0, and so 0 < t < min(

√
(p− 1)(d− 1),

√
1− p/3).

Hence, for z in the positive quadrant, we assume that F (z) is superhar-
monic in the sector θ1 < arg z < θ2 <

π
2 , and is subharmonic outside.

We next define a p-homogeneous function G(reiθ) = rpg(θ), where g is
even and π-periodic on R, so that G(reiθ) = Arp cos pθ for |θ| ≤ π

2p , and
G(reiθ) = F (reiθ) for π

2p < |θ| ≤ π
2 . Here

(5.23) A = cosp−3 π

2p
sin

π

2p

(
1 + t2 tan2 π

2p

)p/2−1

t2

is found from the equation A = 1
pf
′(− π

2p

)
, where

f(θ) = F (eiθ) = d|cos θ|p − (cos2 θ + t2 sin2 θ)p/2.

This guarantees that F −G ∈ C1(C).
Clearly, equation (5.17) can be rewritten in the form A = d− 1.
We now prove that if A ≤ d−1, then the function G constructed above is

a subharmonic minorant of F . Let Φ(z) = F (z)−G(z). Clearly, Φ(z) = Φ(z).
Notice that Φ vanishes on the rays arg z = ± π

2p , and is nonnegative on the
real axis.

As was explained above, it suffices to consider the case where F is su-
perharmonic in 0 < θ1 < arg z < θ2 <

π
2 . We claim that actually

(5.24) 0 < θ1 < θ2 <
π

2p
.

Otherwise one of the following two cases holds.
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(1) If π
2p ≤ θ1, then F , and consequently Φ, is subharmonic in the sector

S =
{
z ∈ C : |arg z| < π

2p

}
.

Hence Φ(reiθ) = rpφ(pθ) where φ(θ) is trigonometrically convex on (−π
2 ,

π
2 ),

and φ(±π2 ) = 0. Then by Proposition 3.4(2), φ is sinusoidal, and by Propo-
sition 3.3, Φ is harmonic in S, which is false.

(2) If θ1 <
π
2p ≤ θ2, then φ(θ) is trigonometrically convex when |θ| < pθ1,

and trigonometrically concave when pθ1 < |θ| < π
2 . The rest of the argument

can be completed as in the proof of Proposition 3.4(3) using additionally
the fact that φ is an even function.

Alternatively, we argue that φ(±π2 ) = 0, φ′(±π2 ) = 0, and ∆Φ(e±iπ/2p)
= φ′′(±π2 ) + p2φ(±π2 ) ≤ 0 in the distributional sense. It follows that φ(θ)
has a maximum at ±π2 , and so φ(θ) < 0 in some neighborhood of θ = ±π

2 .
Thus Φ(z) is negative in some neighborhood of the rays arg z = ± π

2p , but is
positive on the positive real axis. Hence Φ(z) must vanish also on the rays
arg z = ±θ̃ where θ̃ ∈

(
0, π2p

)
. If θ̃ ≤ θ1, then Φ must be subharmonic and

nonnegative in a sector

S′ = {z ∈ C : |arg z| < θ̃},
where angS′ < π

p , which contradicts the Phragmén–Lindelöf principle.

Similarly, if θ̃ ∈
(
θ1,

π
2p

)
, then Φ is superharmonic and nonpositive in a

sector

S′′ =
{
z ∈ C : θ̃ < arg z <

π

2p

}
,

where angS′′ < π
p , which again violates the Phragmén–Lindelöf principle.

This proves (5.24), and consequently the fact that G is subharmonic in C.
We now prove Φ ≥ 0 for z ∈ S. Note that Φ(1) = F (1) − G(1) > 0

by (5.23), and Φ(z) = Φ(z). Hence Φ(z) cannot change sign in S. Otherwise
there exists a subsector of S where Φ is either subharmonic and nonnegative,
or superharmonic and nonpositive, which violates the Phragmén–Lindelöf
principle again. This completes the proof that G is a subharmonic minorant
of F , which is nonnegative on the real axis, in case A ≤ d − 1, and thus
(5.18) holds in this case.

It is worth noting that, conversely, whenever F has a p-homogeneous
subharmonic minorant G nonnegative on the real line it follows that A ≤
d−1. In fact, as was shown in the proof of Theorem 5.3, G(reiθ) = Arp cos pθ
for |θ| ≤ π

2p , where A is a positive constant. To verify that A is given by
(5.23), note that g(θ) = G(eiθ) is even, and g(θ/p) is trigonometrically
convex. Hence by Lemma 3.1, g(θ) ≥ A cos pθ if θ ∈

(
− π

2p − δ,− π
2p + δ

)
for
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some δ > 0. Thus F (reiθ) ≥ G(reiθ) ≥ Arp cos pθ in the sector

Sδ =
{
z :
∣∣∣∣arg z +

π

2p

∣∣∣∣ < δ

}
.

Since F (reiθ) − Arp cos pθ is nonnegative in Sδ, and vanishes on arg z =
− π

2p , it follows that F (eiθ) − A cos pθ has a minimum at θ = − π
2p . Hence

A = 1
pf
′(− π

2p

)
, where f(θ) = F (eiθ), which coincides with (5.23). Thus

d− 1 = F (1) ≥ G(1) = A.
We remark that in the special case t = 1 clearly A ≤ d − 1 since F

has a subharmonic minorant nonnegative on the real line as was shown in
Theorem 5.3. This is equivalent to the estimate

(
1 + tan2 π

2p

)1−p/2
≤ 1 + tan2 π

2p
β,

where β is defined in (5.19). In particular β > 0 as was claimed above.
In fact 0 < β < 1 − p/2 since in the case β ≥ 1 − p/2 it follows that

the concave function ψ defined by (5.21) is decreasing on (1,∞) and so
A ≤ d−1 for every t > 0. This contradicts Proposition 5.4 where it is shown
that F does not have a subharmonic minorant nonnegative on the real axis
if 0 < t < t0. Thus the equation ψ(µ) = 0 has a unique root µ0 > 1.
Consequently, the inequality A ≤ d − 1 is equivalent to t ≥ τ(p), where
the critical value τ(p) coincides with the unique positive root of (5.17). If
0 < t < τ(p) then A > d − 1 and hence F does not have a subharmonic
minorant nonnegative on the real axis. Then by Cole’s theorem (5.18) fails.
It remains to notice that 0 < τ(p) <

√
1− p/3 < 1 by Proposition 5.4.

We conclude this section with a uniform estimate for the norm of the
operator (cos t)I + (sin t)H mentioned in the Introduction.

Theorem 5.6. Let 1 < p <∞. Then

(5.25) max
0≤t≤2π

‖(cos t)I + (sin t)HR‖Lp(R) = cot
π

2p∗
.

Proof. By Corollary 4.4,

max
0≤t≤2π

‖(cos t)I + (sin t)HR‖pLp(R)

= max
0≤t≤2π
0≤θ≤2π

|cos(θ + t)|p +
∣∣cos

(
θ + t+ π

p

)∣∣p

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p

=
max

0≤t≤2π

(
|cos t|p +

∣∣cos
(
t+ π

p

)∣∣p)

min
0≤θ≤2π

(
|cos θ|p +

∣∣cos
(
θ + π

p

)∣∣p) = λpµp,
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where

λp = max
0≤t≤2π

(
|cos t|p +

∣∣∣∣cos
(
t+

π

p

)∣∣∣∣
p)
,

µ−1
p = min

0≤θ≤2π

(
|cos θ|p +

∣∣∣∣cos
(
θ +

π

p

)∣∣∣∣
p)
.

It is not difficult to show directly that

λp = 2 cosp
π

2p∗
, µ−1

p = 2 sinp
π

2p∗
.

However it is easier to verify this using the proof of Theorem 5.3 where it
was shown that, in the case t = 1,

c = max
0≤θ≤2π

2

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p =
1

sinp π
2p∗

is the best constant in the inequality

‖(u2 + v2)1/2‖pp ≤ c‖u‖pp,
and

d =
1
2

max
0≤t≤2π

(
|cos t|p +

∣∣∣∣cos
(
t+

π

p

)∣∣∣∣
p)

= cosp
π

2p∗

is the best constant in the inequality

‖u‖pp ≤ d‖(u2 + v2)1/2‖pp
for u with mean zero. Since λp = 2d and µp = c/2, it follows that λpµp =
cotp π

2p∗ .

6. The norm of I −Π. Let us define the re-expansion operator, Π =
FsFc, where Fs and Fc are the sine and cosine Fourier transforms on the
positive real axis R+ = (0,∞):

Fcf(x) =

√
2
π

�

R+

f(t) cos tx dt, Fsf(x) =

√
2
π

�

R+

f(t) sin tx dt.

We will also need the complex Fourier transform in the upper half-plane,

Ff(z) =

√
2
π

∞�

0

f(t)eizt dt, z = x+ iy, y ≥ 0,

and the Laplace transform,

Lf(y) =

√
2
π

∞�

0

f(t)e−yt dt, y ≥ 0.
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In the field of scattering theory it is of interest to examine the operator
I−Π. Using Theorem 4.1, we will compute the exact value of ‖I−Π‖Lp(R+)
for 1 < p <∞.

We denote by Lp(R+, x
α), α > −1, the space of measurable functions f

on R+ such that

‖f‖pLp(R+,xα) =
�

R+

|f(x)|pxα dx <∞.

As was mentioned in the Introduction,

(6.1) Πf(x) =
1
π

p.v.
�

R+

2xf(t)
x2 − t2 dt,

from which it follows that Π = HR+ +H1, where

(6.2) HR+f(x) =
1
π

p.v.
�

R+

f(t)
x− t dt, H1f(x) =

1
π

�

R+

f(t)
x+ t

dt.

Note that H1 = 1
2L2. The formal adjoint operator Π∗ = FcFs is given by

(6.3) Π∗f(x) = − 1
π

p.v.
�

R+

2tf(t)
x2 − t2 dt.

We first consider the case p = 2.

Lemma 6.1. Let f be a real-valued function in L2(R+). Then

(6.4) ‖Fcf ± Fsf‖2L2(R+) = 2‖f‖2L2(R+) ± ‖Lf‖2L2(R+),

and

(6.5) ‖I −Π‖L2(R+) =
√

2, ‖I +Π‖L2(R+) = 2.

Proof. Clearly,

‖Fcf ± Fsf‖2L2(R+) = ‖Fcf‖2L2(R+) + ‖Fsf‖2L2(R+) ± 2〈Fcf,Fsf〉
= 2‖f‖2L2(R+) ± 2〈Fcf,Fsf〉.

Next, we notice that 〈HR+f, f〉 = 0, and 〈H1f, f〉 = 1
2‖Lf‖2L2(R+), and

hence, by (6.1) and (6.2),

〈Fcf,Fsf〉 = 〈HR+f, f〉+ 〈H1f, f〉 = 1
2‖Lf‖2L2(R+) ≥ 0.

From this we have

‖(I −Π)f‖2L2(R+) = ‖Fsf − Fcf‖2L2(R+) ≤ 2‖f‖2L2(R+),

‖(I +Π)f‖2L2(R+) = ‖Fsf + Fcf‖2L2(R+) ≤ 4‖f‖2L2(R+).

This proves ‖I−Π‖L2(R+) ≤
√

2, and ‖I+Π‖L2(R+) ≤ 2. The lower estimates
follow, for instance, from the fact that the spectrum of Π in L2(R+) is the
semicircle {z : |z| = 1, Re z ≥ 0} (see [Bir]). Hence, the corresponding
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spectral radii are %(I − Π) =
√

2 and %(I + Π) = 2, which completes the
proof of (6.5).

We now discuss a connection with some inequalities in Lp(R+) with
weights.

Lemma 6.2. Let 1 < p <∞, and p′ = p/(p− 1). Then

‖I ±Π‖Lp(R+) = ‖I ±HR+‖Lp(R+,x(p−1)/2)(6.6)

= ‖I ∓HR+‖Lp(R+,x(p−3)/2)

= ‖I ∓HR+‖Lp′ (R+,x−1/2),

‖I ±Π∗‖Lp(R+) = ‖I ∓HR+‖Lp(R+,x−1/2) = ‖I ±HR+‖Lp(R+,xp−3/2)(6.7)

= ‖I ±HR+‖Lp′ (R+,x(p′−1)/2).

Proof. Define the isometry J : Lp(R+)→ Lp(R+, x
(p−1)/2) by

Jg(x) = 2−1/px−1/2g(
√
x).

Then J−1 : Lp(R+, x
(p−1)/2)→ Lp(R+), where

J−1g(t) = 21/ptg(t2).

A substitution u = x2, v = t2 in (6.1) shows that Π = J−1HR+J , which
yields

‖I ±Π‖Lp(R+) = ‖I ±HR+‖Lp(R+,x(p−1)/2).

From this by duality

‖I ±Π‖Lp(R+) = ‖I ∓HR+‖Lp′ (R+,x−1/2).

Similarly, one verifies

‖I ±Π∗‖Lp(R+) = ‖I ∓HR+‖Lp(R+,x−1/2) = ‖I ±HR+‖Lp′ (R+,x(p′−1)/2).

Also, using the change of variables u = 1/x, v = 1/t in the first equation of
(6.2), it is easy to see that

‖I ±HR+‖Lp(R+,x(p−1)/2) = ‖I ∓HR+‖Lp(R+,x(p−3)/2),

‖I ±HR+‖Lp(R+,x−1/2) = ‖I ∓HR+‖Lp(R+,xp−3/2).

We next give lower estimates of ‖I ± Π‖Lp(R+) and ‖I ± Π∗‖Lp(R+) in
terms of the unweighted norms of I ±HR+ .

Lemma 6.3. Let 1 < p <∞. Then

‖I ±Π‖Lp(R+) ≥ ‖I ±HR+‖Lp(R+) = Ap,(6.8)

‖I ±Π∗‖Lp(R+) ≥ ‖I ±HR+‖Lp(R+) = Ap.(6.9)

Here Ap = Ap′ = ‖I ±HR‖Lp(R) is defined by (1.2).
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Proof. We first note that

(6.10) ‖I ±HR+‖Lp(R+) = ‖I ±HR‖Lp(R).

This is a consequence of a more general fact that, if a ∈ L∞(R), then
the Fourier multiplier operator Maf = (af̂)∨, defined initially on Lp(R) ∩
L2(R), is bounded on Lp(R) if and only if the Wiener–Hopf operator Wa =
χR+MaχR+ is bounded on Lp(R+), and the corresponding operator norms
coincide:

(6.11) ‖Ma‖Lp(R) = ‖Wa‖Lp(R+).

(See, e.g., [GK2], [St].) Another well known result on Fourier multipliers,

‖Ma‖Lp(R) = ‖Ma‖Lp(R),

in the special case a(ξ) = 1± i sign ξ yields

(6.12) ‖I +HR‖Lp(R) = ‖I −HR‖Lp(R).

By Corollary 4.4 with a = 1 and b = ±1, this gives ‖I ± HR‖Lp(R) = Ap.
Since by duality

‖I ±HR‖Lp(R) = ‖I ∓HR‖Lp′ (R),

it follows that Ap = Ap′ , which is also not difficult to prove directly.
It remains to prove the lower estimates

(6.13)
‖I ±Π‖Lp(R+) ≥ ‖I ±HR+‖Lp(R+),

‖I ±Π∗‖Lp(R+) ≥ ‖I ±HR+‖Lp(R+).

By (6.2), I ±Π = I ± (HR+ +H1), where H1 is a Hankel operator with
the kernel 1

π(x+t) .
Denote by Us, s ≥ 0, the shift operator: Usf(t) = 0 if 0 ≤ t ≤ s, and

Usf(t) = f(t − s) if t ≥ s on Lp(R+), and by U−s the backward shift
U−sf(t) = f(t+s). Then obviously, U−sWaUs = Wa for every Wiener–Hopf
operatorWa with symbol a on R, while U−sHbUs = U−2sHb for every Hankel
operator Hb with symbol b (see [N]). Hence

‖Wa +Hb‖Lp(R+) ≥ ‖U−s(Wa +Hb)Us‖Lp(R+) = ‖Wa + U−2sHa‖Lp(R+).

Letting s→∞ and using the fact that U−s → 0 in strong operator topology
in Lp(R+), we obtain

(6.14) ‖Wa +Hb‖Lp(R+) ≥ ‖Wa‖Lp(R+)

for any Wiener–Hopf operator Wa and Hankel operator Hb bounded on
Lp(R+). Applying the preceding estimate with Wa = I ± HR+ and Hb =
±H1, we obtain (6.13).

In the next lemma, we show how to find the norms ‖Π‖Lp(R+) for 1 <
p < ∞, and ‖I + Π‖Lp(R+) for p ≤ 2, which is essentially a consequence of
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the known results (cf. [GK2]). We also give a new formula for ‖I+Π‖Lp(R+)
in the case p ≥ 3.

Lemma 6.4. Let p∗ = max(p, p′). Then the following statements hold :

‖Π‖Lp(R+) = ‖Π∗‖Lp(R+) = cot
π

2p∗
, 1 < p <∞.(6.15)

‖I +Π‖Lp(R+) = 1 + tan
π

2p
, 1 < p ≤ 2,(6.16)

‖I +Π∗‖Lp(R+) = 1 + cot
π

2p
2 ≤ p <∞,(6.17)

‖I +Π‖Lp(R+) = Ap, 3 ≤ p <∞,(6.18)

‖I +Π∗‖Lp(R+) = Ap, 1 < p ≤ 3/2,(6.19)

where Ap is defined by (1.2).

Proof. Let a(ξ) = −i sign ξ. Then Wa = HR+ and Ha = H1. From (6.14)
it follows that

‖Π‖Lp(R+) = ‖HR+ +H1‖Lp(R+) ≥ ‖HR+‖Lp(R+).

Using (6.11) and the well known expression for the norm of the Hilbert
transform, we get

‖HR+‖Lp(R+) = ‖HR‖Lp(R) = cot
π

2p∗
.

To prove the upper estimate, let f̃(x) = f(x) if x ≥ 0, and f̃(x) = f(−x) if
x < 0. Then

‖Πf‖pLp(R+) =
1
2
‖HRf̃‖pLp(R) ≤ cotp

π

2p∗
‖f‖pLp(R+).

Hence, ‖Π‖Lp(R+) = cot π
2p∗ , and by duality the same formula gives the

norm of Π∗. This proves (6.15).
Now we prove (6.16) and (6.17). Let 1 < p ≤ 2. The upper estimate

‖I +Π‖Lp(R+) ≤ 1 + ‖Π‖Lp(R+) = 1 + tan
π

2p

follows from (6.15). To prove the lower estimate, we use some facts from the
spectral theory of singular integral operators. Recall that, as was shown in
the proof of Lemma 6.2, I + Π = J−1(I −HR+)J , where J is an isometry
from Lp(R+) onto Lp(R+, x

(p−1)/2). Hence the spectrum of I+Π in Lp(R+)
coincides with that of I +HR+ in Lp(R+, x

(p−1)/2).
For 1 < p ≤ 2, the latter is known to be the larger arc of the circle∣∣∣∣z − 1 + cot

π

p

∣∣∣∣ = csc
π

p

in the complex plane with the endpoints at 1 ± i. (The easiest way to see
this is to map R+ to R using an exponential substitution, and notice that
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I+HR+ on Lp(R+, x
(p−1)/2) is transformed to a Fourier multiplier on Lp(R)

which takes values exactly on the arc described above. See details in [GK2,
Sec. 9.7].)

Hence, the spectral radius of I +Π in Lp(R+) for 1 < p ≤ 2 is given by

%(I +Π) = 1− cot
π

p
+ csc

π

p
= 1 + tan

π

2p
.

This yields the lower estimate

‖I +Π‖Lp(R+) ≥ %(I +Π) = 1 + tan
π

2p
.

This proves (6.16). The corresponding result for ‖I+Π∗‖Lp(R+) for 2≤p<∞
follows by duality, which proves (6.17).

To prove (6.18) and (6.19), notice that by Lemma 6.3,

‖I +Π‖Lp(R+) ≥ ‖I +HR+‖Lp(R+) = Ap.

On the other hand, by Lemma 6.2,

‖I +Π‖Lp(R+) = ‖I +HR+‖Lp(R+,x(p−1)/2).

Using the change of variables u = 1/x, v = 1/t as in the proof of Lemma 6.2,
we obtain

Ap = ‖I ±HR+‖Lp(R+) = ‖I ∓HR+‖Lp(R+,xp−2).

Now let p ≥ 3. Then 0 < (p − 1)/2 ≤ p − 2, and by interpolation in Lp

with a change of weights,

‖I +HR+‖Lp(R+,x(p−1)/2) ≤ ‖I +HR+‖1−tLp(R+)‖I +HR+‖tLp(R+,xp−2) = Ap,

where t = p−1
2(p−2) ∈ (0, 1), which proves the upper estimate.

Hence ‖I + Π‖Lp(R+) = Ap for p ≥ 3, i.e. (6.18) holds, while duality
yields ‖I +Π∗‖Lp(R+) = Ap for 1 < p ≤ 3/2. This proves (6.19).

We are now in a position to prove the main theorem.

Theorem 6.5. Let 1 < p < ∞, and let Π be the re-expansion operator
defined above. Then

(6.20) ‖I −Π‖Lp(R+) = ‖I −Π∗‖Lp(R+) = Ap,

where

(6.21) Ap =
√

2 max
0≤θ≤2π

[∣∣cos
(
θ − π

4

)∣∣p +
∣∣cos

(
θ − π

4 + π
p

)∣∣p

|cos θ|p +
∣∣cos

(
θ + π

p

)∣∣p
]1/p

.

Proof. By Lemma 6.3,

(6.22) ‖I −Π‖Lp(R+) ≥ Ap, ‖I −Π∗‖Lp(R+) ≥ Ap.
It remains to prove the upper estimate

(6.23) ‖I −Π‖Lp(R+) ≤ Ap,
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since a similar inequality for I − Π∗ follows by duality, and the equation
Ap = Ap′ (see Lemma 6.3).

Recall that Π = FsFc, F2
s = I, and F2

c = I. Let Bp = App. Clearly,
(6.23) is equivalent to the estimate

(6.24) ‖Fcf −Fsf‖pLp(R+) ≤ Bp‖Fcf‖pLp(R+).

Here we assume that f = Fcg, where g ∈ C∞0 (R+); then the complex Fourier
transform Ff(z) obviously satisfies the estimates

(6.25) |Ff(z)| ≤ c

1 + |z| , |(Ff)′(z)| ≤ c

1 + |z|2 ,

which suffices to justify Green’s formula for the positive quadrant used be-
low.

We first consider a simpler case p ≥ 2. We will need the inequality

(6.26) |x− y|p ≤ Bp|x|p −G(x, y),

where G(x, y) is the subharmonic minorant for the function

(6.27) Φ(x, y) = Bp|x|p − |x− y|p

constructed in Lemma 4.2.
Let

u(x, y) = ReFf(z) =

√
2
π

∞�

0

f(t) cos tx e−yt dt;

v(x, y) = ImFf(z) =

√
2
π

∞�

0

f(t) sin tx e−yt dt.

Then, clearly,

∂u

∂x
(x, y) = −

√
2
π

∞�

0

tf(t) sin tx e−yt dt;

∂v

∂x
(x, y) =

√
2
π

∞�

0

tf(t) cos tx e−yt dt.

In particular, we will need the following relations:

(6.28)
u(x, 0) = Fcf(x), v(x, 0) = Fsf(x),

u(0, y) = Lf(y), v(0, y) = 0,

and

(6.29)

∂u

∂x
(0, y) = 0,

∂v

∂x
(0, y) = −d(Lf)

dy
(y) =

√
2
π

∞�

0

tf(t)e−yt dt.
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Putting u(x, 0) and v(x, 0) in place of x and y in (6.26), and integrating
over R+, we obtain
�

R+

|Fcf(x)−Fsf(x)|p dx ≤ Bp
�

R+

|Fcf(x)|p dx−
�

R+

G(u(x, 0), v(x, 0)) dx.

We need only prove

(6.30)
�

R+

G(u(x, 0), v(x, 0)) dx ≥ 0.

To this end, we use Green’s theorem for the quarter-plane D={(x, y) :x≥0,
y ≥ 0}, which gives

�

R+

G(u(x, 0), v(x, 0)) dx =
���

D

y∆G(u(x, y), v(x, y)) dx dy(6.31)

+
∞�

0

y
∂G(u(x, y), v(x, y))

∂x

∣∣∣∣
x=0

dy.

(In a similar situation, for the Hilbert transform on the real line, Green’s
theorem for the upper half-plane is applied in [E2].)

The above formula is easily justified using estimates (6.25) together with

|G(z)| ≤ C|z|p, |∂G(z)| ≤ C|z|p−1.

Note that the integrals over the positive real and imaginary axes in (6.31) are
absolutely convergent, and the double integral is nonnegative since G◦F(z)
is subharmonic in the upper half-plane.

Let us show that the second integral on the right-hand side of (6.31) is
nonnegative as well. Notice that

∂G(u(x, y), v(x, y))
∂x

∣∣∣∣
x=0

=
∂G

∂x
(u(0, y), v(0, y))

∂u

∂x
(0, y) +

∂G

∂y
(u(0, y), v(0, y))

∂v

∂x
(0, y).

Using (6.28) and (6.29), we see that the first term on the right-hand side of
the preceding equation vanishes, and

∂G(u(x, y), v(x, y))
∂x

∣∣∣∣
x=0

= −∂G
∂y

(Lf(y), 0)
d(Lf)
dy

(y).

Thus,
∞�

0

y
∂G((u(x, y), v(x, y))

∂x

∣∣∣∣
x=0

dy = −
∞�

0

y
∂G

∂y
(Lf(y), 0)

d(Lf)
dy

(y) dy.

As was established in the proof of Lemma 4.3, for p ≥ 2, the function
Φ defined by (6.27) coincides with its subharmonic minorant constructed
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above: G(x, y) = Φ(x, y) in some double sector containing the real axis.
Hence

∂G

∂y
(x, 0) =

∂Φ

∂y
(x, 0) = px|x|p−2.

From this using integration by parts we obtain
∞�

0

y
∂G(u(x, y), v(x, y))

∂x

∣∣∣∣
x=0

dy

= −p
∞�

0

yLf(y)|Lf(y)|p−2 d(Lf)
dy

(y) dy =
∞�

0

|Lf(y)|p dy ≥ 0,

which yields (6.30) for p ≥ 2.

We now prove an analogous inequality which involves the adjoint oper-
ator Π∗ = FcFs:

(6.32) ‖I −Π∗‖Lp(R+) ≤ B1/p
p , p ≥ 2,

or equivalently,

(6.33) ‖Fcf − Fsf‖pLp(R+) ≤ Bp‖Fsf‖pLp(R+), p ≥ 2.

We set H(x, y) = G(y, x), where G is the subharmonic function used in
(6.26). Then

(6.34) |x− y|p ≤ Bp|y|p −H(x, y), p ≥ 2.

Obviously, H(x, y) is a subharmonic minorant for

(6.35) Ψ(x, y) = Bp|y|p − |x− y|p.
However,

∆Ψ(x, y) = p(p− 1)(Bp|y|p−2 − 2|x− y|p−2),

from which it is easily seen that Ψ(x, y) is superharmonic in a double sector
S containing the real axis. Consequently, by the construction of the subhar-
monic minorant in the proof of Theorem 3.7, H(x, y) is harmonic in S, and
H(x, y) < Ψ(x, y) there.

We proceed using the fact that, in polar coordinates, H can be expressed
in the form

H(reit) = rph(t), −π ≤ t ≤ π,
where h(t) is π-periodic since Ψ(x, y) = Ψ(−x,−y).

Our next step is to show that (6.33) holds provided h′(0) ≥ 0. Arguing
as above, we get
�

R+

|Fcf(x)−Fsf(x)|p dx ≤ Bp
�

R+

|Fsf(x)|p dx−
�

R+

H(u(x, 0), v(x, 0)) dx,
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where by Green’s theorem
�

R+

H(u(x, 0), v(x, 0)) dx

=
���

D

y∆H(u(x, y), v(x, y)) dx dy−
∞�

0

y
∂H

∂y
(Lf(y), 0)

d(Lf)
dy

(y) dy.

Since H(u(x, y), v(x, y)) is subharmonic, it remains to verify the inequal-
ity

(6.36)
∞�

0

y
∂H

∂y
(Lf(y), 0)

d(Lf)
dy

(y) dy ≤ 0.

Clearly,

∂H

∂y
=
∂H

∂r
sin t+

1
r

∂H

∂t
cos t = rp−1(h′(t) cos t+ ph(t) sin t),

and using the fact that by π-periodicity h′(±π) = h′(0), we obtain

∂H

∂y
(reit) =

{
rp−1h′(0) if t = 0,

−rp−1h′(0) if t = ±π.

In other words, on the real axis

∂H

∂y
(x, 0) = x|x|p−2h′(0).

From this, using integration by parts as above, we conclude that
∞�

0

y
∂H

∂y
(Lf(y), 0)

d(Lf)
dy

(y) dy

= h′(0)
∞�

0

yLf(y)|Lf(y)|p−2 d(Lf)
dy

(y) dy = −h
′(0)
p

∞�

0

|Lf(y)|p dy.

Thus, (6.36) holds provided h′(0) ≥ 0.
We now prove in a rather indirect way that indeed h′(0) ≥ 0. (This is

easily verified numerically, but a direct analytical proof seems to be tedious.)
Observe that an analogous argument applied to ‖I +Π∗‖Lp(R+) in place of
‖I −Π∗‖Lp(R+) would boil down to the inequality

(6.37) |x+ y|p ≤ Bp|y|p −H(x,−y), p ≥ 2,

which follows by changing z to z in (6.34). In other words, one has to replace
h(−t) with h(t), and consequently change h′(0) ≥ 0 to h′(0) ≤ 0.

The latter assumption, as was demonstrated above, would lead to the
inequality

‖I +Π∗‖Lp(R+) ≤ Ap = B1/p
p .
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However, this contradicts Lemma 6.4 where it was shown using spectral
theory that

‖I +Π∗‖Lp(R+) = 1 + cot
π

2p
, p ≥ 2.

It remains to notice that

(6.38) 1 + cot
π

2p
> Ap, p ≥ 2.

This inequality can be deduced from the following lemma which must be
well known and whose proof we include for the sake of completeness.

Lemma 6.6. Suppose T is a linear bounded operator on a uniformly con-
vex Banach space X. If ‖I + T‖X = 1 + ‖T‖X then ‖T‖X ∈ σ(T ) where
σ(T ) denotes the spectrum of X.

Proof. If ‖I + T‖X = 1 + ‖T‖X then clearly ‖I + tT‖X = 1 + t‖T‖X for
every t > 0, so without loss of generality we may assume that ‖T‖X = 1.

If X is uniformly convex then the modulus of convexity δX(ε) is positive
for every 0 < ε ≤ 2, where δX(ε) is defined by (see [LT, Sec. 1.e])

δX(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}.
Since ‖I + T‖X = 2, we can choose α > 0 so that α < 2δX(ε), and find

x ∈ X such that ‖x‖ = 1 and ‖x + Tx‖ ≥ 2 − α. Then letting y = Tx, so
that ‖y‖ ≤ 1, we deduce that ‖x− Tx‖ < ε, since otherwise

α/2 < δX(ε) ≤ 1− ‖x+ Tx‖/2,
which contradicts the estimate ‖x + Tx‖ ≥ 2 − α. Thus, for an arbitrarily
small ε > 0 there exists x ∈ X such that ‖x‖ = 1 and ‖x − Tx‖ < ε, so
1 ∈ σ(T ).

Now by Theorem 4.1,Ap = ‖I+HR‖Lp(R) and 1+cot π
2p = 1+‖HR‖Lp(R),

so by Lemma 6.6, 1 + cot π
2p = Ap would imply ‖HR‖Lp(R) ∈ σ(HR). How-

ever, σ(HR) = {±i} on Lp(R), 1 < p <∞, which proves that (6.38) holds.
The proof of (6.36) is complete. This proves (6.33), and hence (6.20) for

p ≥ 2, while the case 1 < p ≤ 2 follows by duality.
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