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Calkin algebras for Banach spaces with finitely
decomposable quotients

by

MANUEL GONZALEZ and JosE M. HERRERA (Santander)

Abstract. For a Banach space X such that all quotients only admit direct decom-
positions with a number of summands smaller than or equal to n, we show that every
operator 7" on X can be identified with an n X n scalar matrix modulo the strictly cosin-
gular operators SC(X). More precisely, we obtain an algebra isomorphism from the Calkin
algebra L(X)/SC(X) onto a subalgebra of the algebra of n x n scalar matrices which is
triangularizable when X is indecomposable. From this fact we get some information on
the class of all semi-Fredholm operators on X and on the essential spectrum of an operator
acting on X.

1. Introduction. A Banach space is indecomposable if each comple-
mented subspace of X is finite-dimensional or finite-codimensional. Gow-
ers and Maurey [7] constructed a Banach space Xgy which is hereditarily
indecomposable, i.e., every subspace of Xqgy is indecomposable. This ex-
ample gives a negative answer to several long-standing open problems; for
example, Xgn contains no unconditional basic sequences. We refer to [1, 8]
for other examples of hereditarily indecomposable spaces. We say that a
Banach space is n-decomposable if it can be written as a direct sum of n
infinite-dimensional closed subspaces.

Here we study the structure of the Calkin algebra L(X)/SC(X), where
SC(X) stands for the strictly cosingular operators on an (infinite-dimen-
sional) Banach space X which has n-decomposable quotients but has no
(n+1)-decomposable quotients. We denote by QD,, the class of such spaces
and we call the class QD the quotient indecomposable spaces. The space
XaMm is quotient indecomposable [3]. If the dual space X™* is hereditarily
decomposable, then X is quotient indecomposable. Moreover, the product
of n copies of QD; spaces is a QD,, space [6, Theorem 1]. However, these
examples do not exhaust the class QD,, (see Remark 3.3(c)).
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We show that for each complex space X € QD,,, there exists an algebra
isomorphism from L(X)/SC(X) onto a subalgebra of the algebra M, (C)
of n x n scalar matrices. Since the class (X ) of Fredholm operators on X
coincides with the class of those T' € L(X) such that the corresponding
class in L(X)/SC(X) is invertible, we identify ¢(X) with the set of all in-
vertible elements of a subalgebra of M, (C) and we prove that the essential
spectrum of an operator T' € L(X) coincides with the spectrum of an n x n
matrix.

We also show that a complex Banach space is n-decomposable if and
only if there is an operator T' on it whose essential spectrum admits a par-
tition into n non-empty compact subsets. Applying this result to the case
where X is an indecomposable Q) D,, space, we deduce that the Calkin alge-
bra L(X)/SC(X) can be identified with a subalgebra of the algebra of all
upper triangular n X n matrices with constant diagonal.

For this purpose, we study the quotient spaces L(X,Y)/SC(X,Y’) when
X € @D, and Y € QQD,,. First we consider the case in which X and Y
are products of QD1 spaces. Then we apply the results to the general case.
Whenever Y € Q) D,, is isomorphic to a quotient of X € QD,, we show that
L(X,Y)/SC(X,Y) can be identified with a subspace of the space of m x n
scalar matrices. From this result we obtain a representation of the Calkin
algebra L(X)/SC(X) for X a Q)D,, space.

Some of the results and ideas behind this paper are a dual version of the
results of Ferenczi [2], who considers hereditarily indecomposable spaces and
strictly singular operators. However, our development is more closely related
to operator theory. In this way our proofs are shorter and our presentation
is more transparent. Moreover, we obtain a representation of L(X)/SC(X)
as an algebra of matrices, which gives additional information on the Calkin
algebra. We observe that our scheme could be applied to the case considered
in [2], improving in this way the results contained there.

Along the paper X,Y, Z, ... will denote Banach spaces over the field
of real or complex numbers. All statements are valid in both cases unless
explicitly mentioned otherwise. X* will stand for the dual space of X and
L(X,Y) for the (continuous linear) operators from X into Y. We set L(X) =
L(X,X), and I is the identity map. Given operators S € L(Z,X) and
T € L(Z,Y), we define their product S xT € L(Z, X xY) by (SxT)(z) :=
(S(2), T(2)).

Subspaces will always be closed and infinite-dimensional, and quotients
will be infinite-dimensional. We denote the quotient map from a Banach
space X onto a quotient Y by Qy .

Given subsets A C X, B C X*, we denote by AL, | B, their respective
annihilators in X* and X.
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2. Quasi-maximal quotients. In this section we describe the quasi-
maximal quotients of a Banach space. We also give some results that we will
need later.

DEFINITION 2.1. We say that a quotient Y of X is quasi-mazimal if
there is no quotient Z of X such that Qy x @z is surjective.

We say that the space X is quotient indecomposable if no quotient of X
can be written as the direct sum of two subspaces.

Clearly, X is quotient indecomposable if and only if every quotient of X
is quasi-maximal.

DEFINITION 2.2. An operator T € L(X,Y) is said to be strictly cosingu-
lar, T € SC(X,Y), if there is no quotient Z of Y so that Q7T is surjective.

An operator T € L(X,Y) is said to be lower semi-Fredholm, T €
&_(X,Y), if R(T) is closed and Y/R(T') is finite-dimensional.

The following two results will be useful.

PRrOPOSITION 2.3 [5, Corollary 1]. Suppose that 'Y is quotient indecom-
posable. Then for every X,

L(X,Y)=0_(X,Y)USC(X,Y).

LEMMA 2.4. Let M and N be subspaces of X. Suppose that M + N is
infinite-codimensional. Let 0 < & < 1. Then there exists a compact operator
K € L(X) with ||K|| < € such that

(a) I+ K induces an isomorphism from a quotient of X/N onto a quotient
of X/M,

(b) I+ K* induces an isomorphism from a weak* closed subspace of M~
into N*.

Proof. If M + N is closed, then (M + N)* is a weak* closed subspace
contained in both M+ and N+, and X/(M + N) is a quotient of both X /M
and X/N. Thus, we get the result by setting K = 0.

Suppose that M + N is not closed; then M+ + N+ is also not closed [10,
Theorem 1V.4.8]. In particular, M+ + N is not a direct sum. Thus

(1) inf{|[f —gll: fe M, ge Nt | f] =gl =1} =0.
By (1) we can find f; € M+, g € N+ such that ||fi]| = ||g1]| = 1 and

|| fi—g1]l < &/22. Then we choose z1 € X such that ||z1| < 2 and f(x1) = 1.
Assume that we have selected f; € M -+ gi €N + and z; € X such that

g
Ifill = Nlgill =1, filzj) =655, Nl 1fi = aill < 55

fori,j < n.Weset F,, = span{x1,...,x,} and G,, = span{f1, ..., fn}. Then
X=F,% .G, X' =Fladg,
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Let P, be the projection on X with Ker P, = F,, and R(P,) = | G,,. Note
that (M+F,)+N is not closed. Again by (1) we can choose f,, 11 € (M+F,)*
and gn+1 € N+ such that || fi1] = [|gns1] = 1 and

9
[fn1 = gnsall < 2| B

We take yp4+1 € X such that ||y,+1|| < 2 and fri1(yn+1) = 1, and set
Zn+1 = Pp(yny1). Clearly fnii(x;) = dpq14 for i =1,...,n+ 1. Moreover,

€
|Zns1ll 1 frs1 — gnsall < DYESE

We define an operator K: X — X by K(x) = > .02 (9n — fn)(2)zs. Note
that || K| < >07 llgn — full ||zn|| < €. Therefore I + K is an isomorphism
on X.

Set My = (,—, Ker f,, and Ny = (),~, Ker g,,. Then we have M C M
and N C Ny, so MOL C M+ and NOl C N-+. Tt is not difficult to check
that (I + K)*fn = gn, whence Ker f,, = (I + K)(Kerg,). Since I + K is
bijective, (I+K) (N, Kerg,) = (o~ ([+K)(Ker g,) and (I+K)Ny = Mp.
Therefore I + K induces an isomorphism from X/Ny onto X/Mj, so part
(a) follows. Moreover (I + K)*Mg = Ng- and part (b) follows as well. =

DEFINITION 2.5. Let Y and Z be quotients of X. We say that Y and Z
are (I + K)-isomorphic if there is an operator K: X — X such that [ + K
induces an isomorphism from Y onto Z.

PROPOSITION 2.6. Let Y and Z be quotients of X and let € > 0. Sup-
pose that there is mo quotient W of Z such that the map Qy X Qw 1is
surjective. Then'Y and Z have (I + K )-isomorphic quotients with || K| < e.
This is the case, in particular, when 'Y s quasi-maximal.

Proof. Let Y = X/M and Z = X/N. By the hypothesis, for any infinite-
codimensional subspace L of X such that L O N, we have M + L # X. Thus
M + N is infinite-codimensional and Lemma 2.4 applies.

COROLLARY 2.7. Let X be a quotient indecomposable space and let Y
and Z be quotients of X. ThenY has a quotient isomorphic to a quotient

of Z.
PROPOSITION 2.8. Let Y be a quasi-maximal quotient of X.

(a) An operator S € L(Z,X) is strictly cosingular if and only if QyS
1s. Therefore

dim L(Z, X)/SC(Z,X) < dim L(Z,Y)/SC(Z,Y).

(b) For each T € L(X,Z) there is a quotient Z1 of Z and T1: Y — Z;
such that Qz,T — T1Qy is strictly cosingular.
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Proof. (a)If S: Z — X is not strictly cosingular, then we have a quotient
X1 of X such that Qx, S is surjective. As Y is a quasi-maximal quotient,
Proposition 2.6 applies so that there exist K € L(X) with || K|| < 1/2 and
(I + K)-isomorphic quotients Y7 of Y and Z; of X;. Let U € L(Y1,Z;) be
the isomorphism induced by I + K and let ) denote the quotient map from
Y onto Y;. Since ||K|| < 1/2, I + K is an isomorphism. Thus QQy S =
U'Qz (I + K)S is surjective and QyS is not strictly cosingular. For the
second part, it is enough to observe that the correspondence [S] — [Qy S]
defines a one-to-one map from L(Z, X)/SC(Z,X) into L(Z,Y)/SC(Z,Y).

(b) Let T € L(X, Z). If T is strictly cosingular, then we take Z; = Z and
T1 = 0. Suppose that T is not strictly cosingular. Then there is a quotient
W of Z such that Qw1 is surjective. Now Y is a quasi-maximal quotient, so
Proposition 2.6 applies to Qw1 and Qy, and we get quotients Y7 of Y and
Z1 of W, a compact operator K: X — X and an isomorphism ¢: Y1 — Z7 so
that Qz,T(I + K) = ¢Qy,. Let ¢ denote the quotient map from Y onto Y;.
Set T1 = ¢q. Then QZlT —TQy = —QZlTK S SC(X, Zl). u

3. Operators on fundamental ) D,, spaces. Recall that X and Y are
quotient incomparable if no quotient of X is isomorphic to a quotient of Y,
and X is said to be n-decomposable if X = X1 @ ... D X, with Xq,..., X,
subspaces of X.

DEFINITION 3.1. We say that a Banach space X is a QD, space,
X € @QD,, if X has an n-decomposable quotient, but it has no (n + 1)-
decomposable quotient.

We say that X is quotient indecomposable if it is a QD1 space.

DEFINITION 3.2. A @D, space X is fundamental if it is a product X =
[T, X; of quotient indecomposable spaces such that, for every ¢, j=1,...,n,
either X; = X, or X;, X; are quotient incomparable.

For a fundamental @D, space X = []"_; X; including exactly k different
factors, we define the characteristic of X as

X(X) = (n,...,ng),
where ny < ... < ng are the times that each space appears in the product,
arranged in increasing order.

REMARK 3.3. (a) The definition of a fundamental ) D,, space looks very
restrictive, since we require some spaces to be equal, not just isomorphic.
However, it will allow us to simplify some arguments.

(b) Tt follows readily from the definition that X € @D, if and only if it
has a quasi-maximal quotient isomorphic to a fundamental QQD,, space.

(¢) The product of n quotient indecomposable spaces is a QD,, space [6,
Theorem 1]. However, these products do not exhaust the class of all @D,
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spaces: for each n there exists a hereditarily indecomposable space X which
is a QD,, space.

Indeed, it was proved by Ferenczi [3, Appendix] that for each n € N,
there exist complex spaces X7, ..., X, such that every quotient of each X;
is hereditarily indecomposable, and a subspace Z of X; x ... x X,, so that

BN X1 x...x X,
X=——
Z

is hereditarily indecomposable. Moreover, X has a quotient which is n-
decomposable. Thus X is a QD,, space.

Let X = H?Zl X; € @D, and Y = [[",Y; € @D,, be fundamental
spaces and let ¥: X — Y be an operator. We will identify ¥ with the m xn
matrix (¥;;), where ¥;;: X; — Yj is the ith coordinate of the restriction of ¥
to X;. The operator ¥ is strictly cosingular if and only if every ¥;; is strictly
cosingular; in this case we will say that (¥;;) is a strictly cosingular matriz.
In the case n = m, we say that ¥ is diagonal when ¥;; = 0 for i # j.

We denote by Mx y the set of all m xn scalar matrices A = (ai;) € My n,
such that a;; = 0 when X; and Y; are quotient incomparable. Sometimes
we will write M, ,,(C) to emphasize that we are considering the field of
complex numbers.

If x(X) = (n1,...,ng), then it is clear that

dimM)@X :n%—i-...—i-nz.

Given a product space X = H?:l X; and a permutation o of {1,...,n}
such that X, = X; for every i, we denote by V, the operator defined
by Vo(x1,...,%0) = (To1), -+ To(n)), and we say that V, is an allowable

permutation of the factors of X.
If A € My,;, we denote by (A|0) € My, pt+q the matrix whose first p
columns are those of A and the rest of the entries are 0.

PROPOSITION 3.4. Let X =[[;_; X; € QD and Y =[[[Z, Y; € QDyy,
be fundamental spaces. Suppose that Y is isomorphic to a quotient of X.
Then there exists a quotient Z of Y which is a fundamental QD,, space
and a surjective operator from X onto Z with matriz (D|0)V,, where D is

an m X m diagonal surjective matriz and V, is an allowable permutation of
the factors of X.

Proof. Let ¥ = (¥;;): X — Y be a surjective operator, where ¥;; €
L(X;,Y;). Clearly, for each i there is at least one j so that ¥;; is not strictly
cosingular. Hence ¥;; is lower semi-Fredholm, by Proposition 2.3. Thus, if
we pass to a finite-codimensional subspace of Y;, which we also denote by Y;,
then there exists a surjective map ¢;: X; — Y;. We take as Z the product
of these new spaces Y;.
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Suppose that ¥;; and ¥, are not strictly cosingular. Then the definition
of a fundamental Q) D,, space and Corollary 2.7 imply that

(2) Y; =Y ifandonlyif X;=X.

Since the sum of a lower semi-Fredholm operator and a strictly cosingular
operator is lower semi-Fredholm [11, Chap. V, Theorem 3.4], the operator
from the product of copies of X; into the product of copies of Y; induced
by ¥ is lower semi-Fredholm. Thus, taking into account that the product
of k quotient indecomposable spaces is a @Dy space [6, Theorem 1], we
conclude that the number of copies of Y; in Y is smaller than or equal to
the number of copies of X; in X.

It is enough to select a suitable V,, and take as D a diagonal matrix with
a number of copies of ¢; on the diagonal as necessary. m

REMARK 3.5. Similarly to [2, Lemma 5], we could have proved a re-
sult stronger than Proposition 3.4. Namely, for each couple of fundamental
spaces X € QD,, Y € QD,, and each surjective operator ¥: X — Y, there
exist a quotient Z of Y which is a fundamental QD,, space, an automor-
phism U of Z and a permutation V, of the factors of X so that

UQzWV, = (D + K|B),

where D is a diagonal surjective m x m matrix, K is a strictly cosingular
m x m matrix and B is an m x (n —m) matrix.

However, we do not need this result in its full generality.

REMARK 3.6. Let Y = [[IX,Y; € @D, and X = H?ZlXj € QD,, be
fundamental spaces. Suppose that there exists a surjective operator from X
onto Y determined by a matrix (D|0), where D = diag(qi,...,qn) is an
m x m diagonal matrix. Let A € Mxy. Then a;; = 0 whenever X; # X;.
We will denote by DA the operator from X into Y with entries a;;q;.

Moreover, if x(X) = (n1,...,n) and x(Y) = (mq,...,my), then

dim Mxy = mini + ... +myn.
The following result was essentially proved in [5]:

PROPOSITION 3.7. Let Z be a complex quotient indecomposable space.
Then for every surjective operator q: Z — X we can write

L(Z,X)=Cqo SC(Z,X).
Proof. Observe that there exists an isomorphism ¥ from a quotient Y of
Z onto X so that ¢ = ¥Qy. By [5, Theorem 4], L(Z,Y) = CQy ®SC(Z,Y).
Let T € L(Z,X). Then ¥~1T = AQy + K for some A € C and some
KeSC(Z,Y) Thus T = \q+ VK with VK € SC(Z,Y). m
PROPOSITION 3.8. Let X € QD,, and Y € QD,, be complex fundamen-
tal spaces. Suppose that there exists a surjective operator from X onto Y with
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matriz (D|0), where D is an m X m diagonal matriz. Then for every T €
L(X,Y) there exist a matriz A € Mx y(C) and an operator K € SC(X,Y)
such that

T=DA+K.

Proof. Let (Tj;) be the matrix associated to T'. Set D = diag(q1, ..., qm)-
Then by Proposition 3.7, T;; = aijq; + K;j, where a;; € C and K;; €
SC(X;,Y;). Moreover, by Remark 3.6, a;; = 0 for X; # X;. In matrix
terms, this is equivalent to the equality

(Tij) = diag(qa, - - -, gm)(aij) + (Kij),
where A = (aij) < M)Qy(@) and K = (KU) (S SC(X, Y) [ |

4. Operators on QD,, spaces. Here we show that some properties of
the operators on a @@D,, space X can be derived from those obtained for a
fundamental QD,, space. The key will be Theorem 4.8, in which we use a
filter defined in the class of all fundamental quotients of X (see Definition 4.1
below) to identify matrices and operators, modulo the strictly cosingular
operators.

_ DEFINITION 4.1. Let X € QDy. A fundamental quotient of X is a pair
(X,U), where X is a quotient of X and U is an isomorphism from X onto
a fundamental QD,, space [[}"_; X;. We usually write X ~ [Ti-, X; or sim-
ply X.

Let X; ~ [T, X; and Xy ~ [T, Y; be two fundamental quotients
of X. We say that X isa diagonal quotient of X, if there exists a diagonal
surjective matrix from [[;, Y; onto [[; X;.

We write X7 < Xo when [T, X; is a diagonal quotient of []7 ; ¥; up
to a permutation of the factors.

REMARK 4.2. Every fundamental quotient ()Z' ,U) of X is quasi-maximal.
PRrROPOSITION 4.3. Every X € QD,, has a fundamental quotient.

Proof. By definition, X has a quotient [[;" ; X; with X; quotient inde-
composable for every i. If X; and X; are not quotient incomparable, then
passing to further quotients, we can suppose that they are isomorphic. If X;
and X; are quotient incomparable, then so are their quotients. By an iter-
ative process of passing to further quotients we get a product with factors
either isomorphic or quotient incomparable. Applying suitable isomorphisms
in the factors we get a fundamental )D,, space. m

For the convenience of the reader we recall some basic facts about prod-
uct spaces.
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LEMMA 4.4. Let M and M;, i = 1,...,n, be subspaces of X. Let ¢;:
X — X/M; be the quotient maps and ¢ = q1 X ... X q,. Then

(a) The map q is surjective if and only if M-+ ...+ M- is a direct sum.

(b) Suppose that q is surjective and that M+ M; is infinite-codimensional
for every i. Then there exist infinite-codimensional subspaces L; O M; and
a surjective map from X /M onto [[;,(X/L;).

Proof. (a) Observe that, via the natural identifications (X/M;)* = M;-,

the dual map ¢*: Mj- x ... x M- — X* is given by ¢*(f1,..., fn) = f1 +

..+ fn. Now, q is surjective if and only if ¢* is injective with closed range,
and this amounts to M- + ...+ M, being a direct sum.

(b) Since ¢: X — [[_, X/M; is surjective, Mi- + ...+ M- is a direct
sum. Thus there exists 0 < ¢ < 1 such that for every f; € M-, i=1,...,n
we have || 0, fill = e, il

The sums M + M; are infinite-codimensional. Thus by Lemma 2.4 there
exist subspaces N; 2 M and L; O M;, and compact operators K;: X — X
with ||K;| < ¢/2 so that (I + K;)*L; = N;-.

Let fi € L, i=1,...,n. Then

IS+ mnm| =[S ] - [ K] = @2 Y 1s
i=1 =1 — —

Thus the subspaces N;- form a direct sum. Hence p: X — [[i,(X/N;) is
onto, by (a). As Nil C M*, p admits a factorization p = poQx/n through
X/M. Since I + K; induces an isomorphism U; from X/N; onto X/L; and p
is surjective, composing pg and Uy X ... x U,, we get a surjective map from
X/M onto [ | (X/L;). =

PROPOSITION 4.5. Let X € QDy and Y € QD,,. Suppose that Y is
isomorphic to a quotient of X (so that m < n). Let X and Y be fundamental
quotients of X and Y, respectively. Then Y has a fundamental quotient Z
such that Z <Y and there exists a surjective operator from X onto Z
determined by a diagonal surjective matriz.

Proof. Set X ~ H?:l X, and Y ~ [T~ Y:. All spaces in the state-
ment are isomorphic to quotients of X, so we can write X=X /M and
Y; ~ X/N; ~ Y/L; for suitable subspaces. Since X =X /M is quasi-
maximal, M + N; is infinite-codimensional for every i. So we can apply
Lemma 4.4 to the onto operator X — [[;*; X/N;, and find a surjection
X/M — [[;~,(X/V;) for some V; O N;. Now X/V; >~ Y/W; = Z; for some
W; D L;, and we have a surjective operator X/M — [[;%, Z;. The surjec-
tive operator A: Y — ey, — 11" —1 Zi factorizes through an isomorphism
U:Z =Y/Ker A ~ I, Z so that (Z,U) is a fundamental quotient of Y

)
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and Z < Y. The map ¢: X = X/M — I, Zi ~ Z is surjective and it is
enough to apply Proposition 3.4.

COROLLARY 4.6. Let X € @QD,. Then the relation < defines a filter
on the set of all fundamental quotients of X; i.e., given two fundamental
quotients X1, Xo, there exists a fundamental quotient X3 such that X3 < X3
and X3 § XQ.

Proof. Taking Y = X, X :~)Z'1 and Y = X, in Proposition 4.5, we get
a fundamental quotient X3 < X3 and a diagonal surjective matrix from X;
onto X3. Thus X3 < Xi. =

For a fundamental quotient X ~ =1 X; we set x(X X) = x(ITj=1 X5)-

COROLLARY 4.7. Let X be a QD,, space and let X1 and X2 be funda-
mental quotients of X. Then x(X1) = x(X2).

Proof. By Corollary 4.6, it is enough to consider the case )~(1 < )?2.
After a permutation of the factors, we can suppose that there is a diagonal
surjective matrix from Xp ~ H?Zl X, into X ~ H;LZIYJ Then, by (2),
X; = Xj if and only if Y¥; = Y}, which yields the assertion. =

THEOREM 4.8. Let X € @D, and' Y € QD,, be complex spaces. Suppose
that Y is isomorphic to a quotient of X . Let X ~ H?:l XjandY ~ [, Y;
be fundamental quotients of X and Y, respectively, so that there exists a
surjective operator from X onto Y with matriz (D|0), where D is a diagonal
matriz. Then the map

¥: Mg 5(C) — L(X,Y)/SC(X,Y)
defined by (A) = [DAQ ] is bijective. In particular,
dim L(X,Y)/SC(X,Y) < dim Mg ¢
Proof. Let T € L(X,Y). Since X is quasi-maximal, we can apply Propo-

sition 2.8(b) with Y = Y;. Then we obtain quotients Qz,;: Y; — Z; and

operators S;: X — Z; such that SiQsz — Qz,T € SC(X, Z;). Passing to
further quotients of Z;, we can suppose that [["; Z; is a fundamental

QD,, space. Let 7 ~ [~ Z; be the corresponding fundamental quo-
tient. Taking S = H;n:1 Sj and Q7 € L(Y,Z), where Qz(y1,...,Ym) =
(Qz, (v1),-..,Qz, (ym)), we obtain

(3) SQsz — QT € SC(X, Z).

Applying Proposition 3.8 to )?, Z and Dy = Q;D, we have S = D1 A +
Ky with A € My 3(C) and Ky € SC(X, Z). Putting this in (3), we get
D1AQ5 — Q;T = Qz(DAQs; — T) € SC(X, 2) As 7 is quasi-maximal,
DAQg —T € SC(X,Y) by Proposition 2.8 and ¥ is onto.
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Now, if DAQ; € SC(X,Y), then DA € SC(X,Y), i.e., ¢ya;; is strictly
cosingular for every 4, j. As every ¢; is onto, it follows that a;; = 0 for every
1,7 and A = 0, so 1 is injective. Hence

dim L(X,Y)/SC(X,Y) < dim L(X,Y)/SC(X,Y) = dim M 3(C),
by Proposition 3.8. u

REMARK 4.9. Given complex spaces X € QD,, and Y € QD,,, with Y
isomorphic to a quotient of X, Proposition 4.5 ensures the existence of
fundamental quotients X, Y under the hypothesis of Theorem 4.8.

REMARK 4.10. The map ¢: Mg o(C) — L(X,Y)/SC(X,Y) that ap-

pears in Theorem 4.8 depends on the choice of the fundamental quotients X
and Y. However, for different choices of fundamental quotients X, Xo and
Y1, Yz, the subspaces of m X n matrices My 3 (C) and M % (C) coincide
up to permutation.

Denote by 1 the isomorphism ¢ of Theorem 4.8 when X =Y, X=Y
and D = I.

THEOREM 4.11. Let X € QD,, be a complex space. Let X ~ H?Zl X be
a fundamental quotient of X. Then the map

O: L(X)/SC(X) — My 5

defined by O[T = @Z))?(l [Q5T] is an algebra isomorphism from L(X)/SC(X)
onto a subalgebra of M5 .

Proof. First of all, @ is injective by Proposition 2.8(a) and Theorem 4.8.

In view of Theorem 4.8, it just remains to prove the multiplicativity.

Let [Tl], [TQ] € L(X)/SC(X) with @[Tl] = A; and @[TQ] = As. Then
Q71— A1Q5 = S and Q ;o — A2Q ¢ = So with S1, S» € SC(X, X). Thus

QXTITQ - A1A2Q_f( = A152 + SlTQ < SC(X,)Z')
and @([Tl][TQ]) = @([TlTQ]) = A1A2 = @[Tl]@[TQ] ]

5. Spectral theory on @D, spaces. Recall that an operator T &
L(X,Y) is said to be semi-Fredholm if R(T) is closed and either Ker(7T') or
dimY/R(T) is finite. For a semi-Fredholm operator T' we define the index
by

ind(T") :=dimKer(7T) — dimY/R(T) € Z U {£o0}.

It is well known that the index is a continuous map [10, Theorem IV.5.17].

The operator T' € L(X,Y) is said to be Fredholm if it is semi-Fredholm
with finite index. The essential spectrum of T € L(X) is defined as follows:

oe(T) = {\: A\l — T is not Fredholm}.
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The following result follows from the fact that the strictly cosingular
operators SC form a perturbation ideal in the sense of Heuser [9, Section
51].

PROPOSITION 5.1. An operator T € L(X) is Fredholm if and only if
[T] is invertible in L(X)/SC(X). In particular, oe(T") = o([T]) for every
TeL(X).

PROPOSITION 5.2. Let X be a QD,, space. Then ind(T) = 0 for every
semi-Fredholm operator T' on X.

Proof. We suppose first that X is complex. In this case it is enough to
observe that ind(7T'—\I) is a continuous discrete function in A, that C\ oe(7")
is connected by Proposition 5.1 and Theorem 4.11, and that ind(7'—XI) =0
for |A| > ||T|.

Suppose now that X is a real space and that X¢ denotes its complexi-
fication. Then X¢ is isomorphic to X @& X as a real space, thus it is a real
@Dy, space [6, Theorem 2|. As every complex quotient of X¢ is also a real
quotient, X¢ is a complex QD,, space for some m < 2n. If T¢ is the com-
plexification of a semi-Fredholm operator T', then T¢ is also semi-Fredholm
and ind(T¢) = ind(T"). By the first part ind(7¢) = 0, so ind(T) = 0. =

COROLLARY 5.3. Suppose that X is a QD,, space for some n. Then X
s isomorphic neither to any of its proper subspaces nor to any of its proper
quotients.

Proof. Let : X — Y be a quotient and let U: Y — X be an isomor-
phism. Then UQ is a semi-Fredholm operator on X. By Proposition 5.2,
UQ is Fredholm of index 0. As UQ is surjective, Ker Q = 0 and () = I. The
proof for the case of subspaces is analogous. =

The following results are a consequence of Theorem 4.11.

PROPOSITION 5.4. Let X be a complex QD,, space and let T € L(X).
Then

(a) |oe(T)] < n.
(b) T is not Fredholm if and only if there exists a non-strictly cosingular
operator U € L(X) such that TU € SC(X).

Proof. (a) It is enough to observe that o.(T") coincides with o([T]) by
Proposition 5.1, which is the set of eigenvalues of the scalar matrix @[T by
Theorem 4.11.

(b) If T is Fredholm, then [T] € L(X)/SC(X) is invertible, and TU €
SC(X) implies U € SC(X).

Conversely, suppose that 7' is not Fredholm and [T'] # 0. Let p be the
minimal polynomial of [T]. Since [T is not invertible, it follows that p(0) = 0
and there exists a polynomial ¢ with degq = degp — 1 such that T'q(T) =
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p(T). By the definition of a minimal polynomial, U = ¢(T") cannot be strictly
cosingular. Since TU = p(T') € SC(X), the result is proved. m

For a complex QD,, space X, Theorem 4.11 allows us to identify the
Calkin algebra L(X)/SC(X) with a subalgebra of Mg . The next result
provides additional information on such subalgebras.

THEOREM 5.5. Let n € N. A complex space X is n-decomposable if and
only if there exists an operator T' € L(X) such that |oe(T)| = n.

Proof. Suppose that X = X1 & ...8 X,,. Then
T(x1,xa,...,Ty) = (1,222, ...,NTy)

defines an operator on T' € L(X) such that oo(T) = {1,2,...,n}.

Conversely, let T' € L(X) be such that o¢(T") = {A1,..., A} with A; # A
for i # j. By [4, Theorem V.1.8], A\I — T is invertible on C \ {A1,...,\,}
with the possible exceptions of isolated points.

We select closed simple curves C1,...,C, on C\ o(T) which do not
intersect so that each \; is in the interior of C; and every point in o(7T) is
contained in the interior of C; for some j.

The analytic operational calculus [12, Section V.8] allows us to define

P=\(AM-17)""d\, i=1,...n
C;
Then each P; is a projection and X = R(P1) & ... @ R(P,) [12, Theorem
V.9.1]. Thus, X is n-decomposable. =

REMARK 5.6. Clearly, the proof of Theorem 5.5 shows that a complex
Banach space is n-decomposable if and only if there exists an operator T €
L(X) such that 0.(T") has n components, i.e., 0¢(T") admits a partition into
n non-empty compact subsets.

The following example shows that in Proposition 5.4 it is not enough to
suppose X indecomposable in order to get |0e(T")| = 1 for every T' € L(X).

EXAMPLE [8, (4.2)]. There exists a complex indecomposable space X
and an operator S € L(X) such that 0,(S) = {\ € C: |\| = 1}. Moreover
ind(S) = —1.

An interesting question is to describe the subalgebras of M, (C) which
can be identified with the Calkin algebra L(X)/SC(X) for some QD,, space
X, as in Theorem 4.11.

In the case of an indecomposable QD,, space X, Theorem 5.5 implies
that |0e(T)] = 1 for every T € L(X). Therefore, L(X)/SC(X) can be
identified by Theorem 4.11 with a subalgebra A of M, (C) such that each
matrix in A4 has only one eigenvalue. A trivial example of such a subalgebra
is A= {AI: X\ € C}. A second example is the algebra of all upper triangular
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matrices in M, (C) with constant diagonal. We denote this algebra by U,.
Note that the first example is a subalgebra of U,,. Let us see that the Kolchin
Theorem on unipotent algebraic groups allows us to show that up to a change
of basis all the subalgebras A are of this kind.

We recall that a matrix A € M, (C) is said to be unipotent if its sole
eigenvalue is 1, i.e. if its characteristic polynomial is ga(z) = (z — 1)™.

THEOREM 5.7. Let X be an indecomposable QD,, space. Then the Calkin
algebra L(X)/SC(X) can be identified with a subalgebra of U, .

Proof. Let A be the subalgebra of M, (C) identified with L(X)/SC(X)
by Theorem 4.11 and let G be the invertible elements in .A. We claim that
the set G of all unipotent elements of G is a subgroup.

Each matrix A € A has a unique eigenvalue, which we denote by «(A).
Thus, ga(z) = (x — «(A))" is the characteristic polynomial of A and it is
easy to see that

a(A) = %trace(A), a(A)" = det(A).

Therefore the assignment A — «(A) defines a continuous map « from G
into C satisfying (a(A)a(B)a(AB) )" = det(A)det(B)det(AB)™! = 1.
This implies that the function f: G x G — C, defined by

f(A,B) = a(A)a(B)a(AB) ™,

takes its values in the finite set of nth roots of unity. The function f is con-
tinuous and G x G is connected, so f(G x G) must be a point. As f(I,I) =1,
it follows that a(A)a(B) = a(AB) for every A, B in G, and the claim is
proved.

Since G, is a subgroup of G, we can apply the Kolchin Theorem [13,
Theorem 8.2] to Gy, and we deduce that there exists an invertible matrix
B € M, (C) such that B~'GB is a subgroup of the group U,, of all upper
triangular unipotent matrices in M, (C). The algebras generated by G and
U, in M,(C) are A and U, respectively. Thus, B~*AB C U, as we wanted
to prove. m
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