STUDIA MATHEMATICA 158 (1) (2003)

On the number of minimal pairs of compact convex sets that are not translates of one another

by

J. GRZYBOWSKI and R. URBAŃSKI (Poznań)

Abstract. Let [A, B] be the family of pairs of compact convex sets equivalent to (A, B). We prove that the cardinality of the set of minimal pairs in [A, B] that are not translates of one another is either 1 or greater than \aleph_0 .

Let $X = (X, \tau)$ be a topological vector space over the field \mathbb{R} . Let $\mathcal{K}(X)$ be the family of all nonempty compact convex subsets of X. For any $A, B \subset X$ the Minkowski sum is defined by $A + B = \{a + b \mid a \in A \text{ and } b \in B\}$. For $(A, B), (C, D) \in \mathcal{K}^2(X)$, let $(A, B) \sim (C, D)$ if and only if A + D = B + C. Let [A, B] be the equivalence class of (A, B) in $\mathcal{K}^2(X)/\sim$. For $(A, B), (C, D) \in \mathcal{K}^2(X)$ let $(A, B) \leq (C, D)$ if and only if $(A, B) \sim (C, D), A \subset C$ and $B \subset D$. Let m[A, B] be the family of all elements of [A, B] that are minimal with respect to the ordering \leq . Let $A \vee B$ be the convex hull of $A \cup B$. For $A, B, C \in \mathcal{K}^2(X)$, we have the Pinsker formula $A \vee B + C = (A + C) \vee (B + C)$.

Minimal pairs of compact convex sets play an important role in quasidifferential calculus [5]–[7]. Minimal pairs were studied in numerous papers ([1]–[4], [8]–[14], [17], and others).

Let $(A, B) \in \mathcal{K}^2(X)$ and $n_{A,B}$ be the number of minimal pairs in m[A, B]that are not translates of one another. If $X = \mathbb{R}^1$ or \mathbb{R}^2 then $n_{A,B}$ is always 1 ([8], [15]). In [13], there is an example of $A, B \in \mathcal{K}(\mathbb{R}^3)$ such that $n_{A,B}$ is the continuum.

In December 2000, Professor S. Rolewicz posed the problem whether $n_{A,B}$ can be finite and greater than 1. The following theorem implies a negative answer to this problem.

THEOREM. Let (A_1, B_1) , (A_2, B_2) be two equivalent minimal pairs of compact convex sets such that (A_2, B_2) is not a translate of (A_1, B_1) . Then there exists an uncountable family (A_λ, B_λ) , $\lambda \in \Lambda$, of minimal pairs that are equivalent to (A_1, B_1) and no (A_λ, B_λ) is a translate of (A_μ, B_μ) , $\lambda \neq \mu$.

²⁰⁰⁰ Mathematics Subject Classification: 52A07, 26A27.

Key words and phrases: convex analysis, minimal pairs of compact convex sets.

Proof. Assume that $\{(A_n + x, B_n + x) \mid n \in \mathbb{N}, x \in X\}$ is the family of all minimal pairs equivalent to (A_1, B_1) and (A_2, B_2) . Let

$$k_{3} = \min\{k \in \mathbb{N} \mid \exists \alpha \in (0, 1/2], \exists x \in X \text{ such that} \\ (A_{k} + x, B_{k} + x) \leq (\alpha A_{1} + (1 - \alpha)A_{2}, \alpha B_{1} + (1 - \alpha)B_{2})\}.$$

If $k_3 = 1$ then

$$\alpha A_1 + (1 - \alpha)A_1 + x = A_1 + x \subset \alpha A_1 + (1 - \alpha)A_2.$$

By the order law of cancellation [16]

$$(1-\alpha)A_1 + x \subset (1-\alpha)A_2$$
 and so $A_1 + \frac{x}{1-\alpha} \subset A_2$.

In a similar way we prove that

$$B_1 + \frac{x}{1-\alpha} \subset B_2.$$

Since (A_2, B_2) is minimal,

$$A_1 + \frac{x}{1-\alpha} = A_2, \quad B_1 + \frac{x}{1-\alpha} = B_2$$

This contradicts the assumption of our theorem. Therefore, $k_3 \neq 1$. In a similar way we prove that $k_3 \neq 2$. Thus $k_3 > 2$. We can assume that $\alpha_1 \in (0, 1/2]$ and

$$(A_{k_3}, B_{k_3}) \le (\alpha_1 A_1 + (1 - \alpha_1) A_2, \alpha_1 B_1 + (1 - \alpha_1) B_2).$$

Set $k_1 = 1$, $k_2 = 2$. Assume that $(A_{k_1}, B_{k_1}), \ldots, (A_{k_n}, B_{k_n})$ are minimal pairs such that $k_1 < \ldots < k_n$,

 $k_{i} = \min\{k \in \mathbb{N} \mid \exists \alpha \in (0, 1/2], \exists x \in X \text{ such that} \\ (A_{k} + x, B_{k} + x) \le (\alpha A_{k_{i-2}} + (1 - \alpha)A_{k_{i-1}}, \alpha B_{k_{i-2}} + (1 - \alpha)B_{k_{i-1}})\}$

and

$$(A_{k_i}, B_{k_i}) \le (\alpha_{i-2}A_{k_{i-2}} + (1 - \alpha_{i-2})A_{k_{i-1}}, \alpha_{i-2}B_{k_{i-2}} + (1 - \alpha_{i-2})B_{k_{i-1}})$$

for $i = 3, \dots, n$. Let

$$k_{n+1} = \min\{k \in \mathbb{N} \mid \exists \alpha \in (0, 1/2], \ \exists x \in X \text{ such that} \\ (A_k + x, B_k + x) \le (\alpha A_{k_{n-1}} + (1 - \alpha)A_{k_n}, \alpha B_{k_{n-1}} + (1 - \alpha)B_{k_n})\}.$$

Of course, $k_{n+1} \neq k_{n-1}, k_n$. Define

$$\gamma_i^{n+1} = \alpha_i (1 - \alpha_{i+1} (\dots (1 - \alpha_{n-2} (1 - \alpha)) \dots)), \quad i = 1, \dots, n-2.$$

Notice that $\gamma_i^{n+1} \in (0, 1/2]$ and

 $(A_{k_{n+1}}+x, B_{k_{n+1}}+x) \leq (\gamma_i^{n+1}A_{k_i} + (1-\gamma_i^{n+1})A_{k_{i+1}}, \gamma_i^{n+1}B_{k_i} + (1-\gamma_i^{n+1})B_{k_{i+1}}).$ Therefore,

$$k_{n+1} > k_n.$$

We can assume that $\alpha_{n-1} \in (0, 1/2]$ and

 $(A_{k_{n+1}}, B_{k_{n+1}}) \leq (\alpha_{n-1}A_{k_{n-1}} + (1 - \alpha_{n-1})A_{k_n}, \alpha_{n-1}B_{k_{n-1}} + (1 - \alpha_{n-1})B_{k_n}).$ In this way we can choose infinite sequences $(\alpha_n)_n \subset (0, 1/2]$ and $(k_n)_n$ such that $k_1 < k_2 < \ldots$,

$$k_n = \min\{k \in \mathbb{N} \mid \exists \alpha \in (0, 1/2], \exists x \in X \text{ such that} \\ (A_k + x, B_k + x) \le (\alpha A_{k_{n-2}} + (1 - \alpha)A_{k_{n-1}}, \alpha B_{k_{n-2}} + (1 - \alpha)B_{k_{n-1}})\},$$

and

 $(A_{k_n}, B_{k_n}) \leq (\alpha_{n-2}A_{k_{n-2}} + (1 - \alpha_{n-2})A_{k_{n-1}}, \alpha_{n-2}B_{k_{n-2}} + (1 - \alpha_{n-2})B_{k_{n-1}})$ for all $n \geq 3$. Notice that $(A_{k_n} \vee A_{k_{n+1}}, B_{k_n} \vee B_{k_{n+1}})$ is equivalent to (A_1, B_1) for $n \in \mathbb{N}$ (see [12]). The sequences $(A_{k_n} \vee A_{k_{n+1}})_n$ and $(B_{k_n} \vee B_{k_{n+1}})_n$ are decreasing. Thus the pair (C, D) with

$$C = \bigcap_{n=1}^{\infty} (A_{k_n} \lor A_{k_{n+1}}), \quad D = \bigcap_{n=1}^{\infty} (B_{k_n} \lor B_{k_{n+1}})$$

is equivalent to (A_1, B_1) (see [12]). There exists a minimal pair $(A, B) \leq (C, D)$ (see [11]). Let

$$\gamma_i^{i+2} = \alpha_i, \quad i \in \mathbb{N}, \quad \gamma_i^n = \alpha_i(1 - \gamma_{i+1}^n), \quad i, n \in \mathbb{N}, \ n \ge i+3.$$

Then

$$(A_{k_n}, B_{k_n}) \le (\gamma_i^n A_{k_i} + (1 - \gamma_i^n) A_{k_{i+1}}, \gamma_i^n B_{k_i} + (1 - \gamma_i^n) B_{k_{i+1}}).$$

Notice that

$$\gamma_{n-2}^{n+1} - \gamma_{n-2}^{n} = -\alpha_{n-2} \cdot \alpha_{n-1}, \qquad n \ge 3,$$

$$\gamma_{i}^{n+1} - \gamma_{i}^{n} = -\alpha_{i}(\gamma_{i+1}^{n+1} - \gamma_{i+1}^{n}), \qquad n \ge i+3.$$

Then

$$\gamma_i^{n+1} - \gamma_i^n = (-1)^{n-1-i} \alpha_i \dots \alpha_{n-1}$$

Since $\alpha_n \in (0, 1/2]$ for all *n*, the sequence $(\gamma_i^n)_n$ converges to some $\gamma_i \in (0, 1/2], (\gamma_i^{i+2n})_n$ is decreasing and $(\gamma_i^{i+2n+1})_n$ is increasing. Therefore,

$$\begin{aligned} A_{k_n} \lor A_{k_{n+1}} &\subset (\gamma_i^n A_{k_i} + (1 - \gamma_i^n) A_{k_{i+1}}) \lor (\gamma_i^{n+1} A_{k_i} + (1 - \gamma_i^{n+1}) A_{k_{i+1}}) \\ &= (\gamma' A_{k_i} + (1 - \gamma'') A_{k_{i+1}} + (\gamma'' - \gamma') A_{k_i}) \\ &\lor (\gamma' A_{k_i} + (1 - \gamma'') A_{k_{i+1}} + (\gamma'' - \gamma') A_{k_{i+1}}) \\ &= \gamma' A_{k_i} + (1 - \gamma'') A_{k_{i+1}} + (\gamma'' - \gamma') (A_{k_i} \lor A_{k_{i+1}}) \end{aligned}$$

for all $i, n \in \mathbb{N}$, where $n \ge i+2$, $\gamma' = \min(\gamma_i^n, \gamma_i^{n+1})$, $\gamma'' = \max(\gamma_i^n, \gamma_i^{n+1})$. In the last equality we have applied the Pinsker formula (see [14]). We can assume that $0 \in A_{k_i} \cap A_{k_{i+1}}$. Then

$$A_{k_n} \vee A_{k_{n+1}} \subset \gamma_i A_{k_i} + (1 - \gamma_i) A_{k_{i+1}} + |\gamma_i^{n+1} - \gamma_i^n| (A_{k_i} \vee A_{k_{i+1}}).$$

Hence

$$C \subset \bigcap_{n=i+2}^{\infty} (\gamma_i A_{k_i} + (1-\gamma_i) A_{k_{i+1}} + |\gamma_i^{n+1} - \gamma_i^n| (A_{k_i} \vee A_{k_{i+1}}))$$

= $\gamma_i A_{k_i} + (1-\gamma_i) A_{k_{i+1}} + \bigcap_{n=i+2}^{\infty} |\gamma_i^{n+1} - \gamma_i^n| (A_{k_i} \vee A_{k_{i+1}})$
= $\gamma_i A_{k_i} + (1-\gamma_i) A_{k_{i+1}}$ (see [12, Lemma 3.10]).

In this way we prove that

$$(A,B) \le (\gamma_i A_{k_i} + (1-\gamma_i) A_{k_{i+1}}, \gamma_i B_{k_i} + (1-\gamma_i) B_{k_{i+1}}).$$

We know that $A = A_m + x$, $B = B_m + x$ for some $m \in \mathbb{N}$, $x \in X$. According to the definition of k_{i+2} we have $m \ge k_{i+2}$ for all $i \in \mathbb{N}$, which leads to a contradiction with our assumption.

References

- C. Bauer, Minimal and reduced pairs of convex bodies, Geom. Dedicata 62 (1996), 179–192.
- [2] V. F. Demyanov, The minimality of equivalent pairs of convex sets in R², I, Vestnik St. Petersburg Univ. Math. 30 (1999), 7–11.
- [3] —, The minimality of equivalent pairs of convex sets in \mathbb{R}^2 , II, ibid. 32 (1999), 5–8.
- [4] V. F. Demyanov and E. Caprary, Minimality of convex sets equivalent on a cone, ibid. 31 (1998), 28–33.
- [5] V. F. Demyanov and A. M. Rubinov, *Quasidifferential Calculus*, Optimization Software Inc., Springer, New York, 1986.
- [6] —, —, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt/M, 1995.
- [7] —, —, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl. 43, Kluwer, Dordrecht, 2001.
- J. Grzybowski, Minimal pairs of compact sets, Arch. Math. (Basel) 63 (1994), 173– 181.
- J. Grzybowski and R. Urbański, Minimal pairs of bounded closed convex sets, Studia Math. 126 (1997), 95–99.
- [10] J. Grzybowski, R. Urbański and M. Wiernowolski, On common summands and anti-summands of compact convex sets, Bull. Polish Acad. Sci. Math. 47 (1999), 69–76.
- D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of convex compact sets, ibid. 39 (1991), 1–5.
- [12] D. Pallaschke, W. Urbańska and R. Urbański, C-minimal pairs of compact convex sets, J. Convex Anal. 4 (1997), 1–25.
- [13] D. Pallaschke and R. Urbański, A continuum of minimal pairs of compact convex sets which are not connected by translations, ibid. 3 (1996), 83–95.
- [14] —, —, Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets, Math. Appl., Kluwer, Dordrecht, 2002.
- [15] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267–273.

62

- [16] R. Urbański, A generalization of the Minkowski-Rådström-Hörmander Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709–715.
- [17] —, On minimal convex pairs of convex compact sets, Arch. Math. (Basel) 67 (1996), 226–238.

Faculty of Mathematics and Computer Science Adam Mickiewicz University Umultowska 87 61-614 Poznań, Poland E-mail: jgrz@amu.edu.pl rich@amu.edu.pl

> Received September 27, 2002 Revised version May 8, 2003

(5043)