On the number of minimal pairs of compact convex sets that are not translates of one another

by

J. Grzybowski and R. Urbański (Poznań)

Abstract

Let $[A, B]$ be the family of pairs of compact convex sets equivalent to (A, B). We prove that the cardinality of the set of minimal pairs in $[A, B]$ that are not translates of one another is either 1 or greater than \aleph_{0}.

Let $X=(X, \tau)$ be a topological vector space over the field \mathbb{R}. Let $\mathcal{K}(X)$ be the family of all nonempty compact convex subsets of X. For any $A, B \subset$ X the Minkowski sum is defined by $A+B=\{a+b \mid a \in A$ and $b \in B\}$. For $(A, B),(C, D) \in \mathcal{K}^{2}(X)$, let $(A, B) \sim(C, D)$ if and only if $A+D=B+C$. Let $[A, B]$ be the equivalence class of (A, B) in $\mathcal{K}^{2}(X) / \sim$. For $(A, B),(C, D) \in$ $\mathcal{K}^{2}(X)$ let $(A, B) \leq(C, D)$ if and only if $(A, B) \sim(C, D), A \subset C$ and $B \subset D$. Let $m[A, B]$ be the family of all elements of $[A, B]$ that are minimal with respect to the ordering \leq. Let $A \vee B$ be the convex hull of $A \cup B$. For $A, B, C \in \mathcal{K}^{2}(X)$, we have the Pinsker formula $A \vee B+C=(A+C) \vee(B+C)$.

Minimal pairs of compact convex sets play an important role in quasidifferential calculus [5]-[7]. Minimal pairs were studied in numerous papers ([1]-[4], [8]-[14], [17], and others).

Let $(A, B) \in \mathcal{K}^{2}(X)$ and $n_{A, B}$ be the number of minimal pairs in $m[A, B]$ that are not translates of one another. If $X=\mathbb{R}^{1}$ or \mathbb{R}^{2} then $n_{A, B}$ is always 1 ([8], [15]). In [13], there is an example of $A, B \in \mathcal{K}\left(\mathbb{R}^{3}\right)$ such that $n_{A, B}$ is the continuum.

In December 2000, Professor S. Rolewicz posed the problem whether $n_{A, B}$ can be finite and greater than 1 . The following theorem implies a negative answer to this problem.

Theorem. Let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ be two equivalent minimal pairs of compact convex sets such that $\left(A_{2}, B_{2}\right)$ is not a translate of $\left(A_{1}, B_{1}\right)$. Then there exists an uncountable family $\left(A_{\lambda}, B_{\lambda}\right), \lambda \in \Lambda$, of minimal pairs that are equivalent to $\left(A_{1}, B_{1}\right)$ and no $\left(A_{\lambda}, B_{\lambda}\right)$ is a translate of $\left(A_{\mu}, B_{\mu}\right), \lambda \neq \mu$.

[^0]Proof. Assume that $\left\{\left(A_{n}+x, B_{n}+x\right) \mid n \in \mathbb{N}, x \in X\right\}$ is the family of all minimal pairs equivalent to $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$. Let $k_{3}=\min \{k \in \mathbb{N} \mid \exists \alpha \in(0,1 / 2], \exists x \in X$ such that

$$
\left.\left(A_{k}+x, B_{k}+x\right) \leq\left(\alpha A_{1}+(1-\alpha) A_{2}, \alpha B_{1}+(1-\alpha) B_{2}\right)\right\}
$$

If $k_{3}=1$ then

$$
\alpha A_{1}+(1-\alpha) A_{1}+x=A_{1}+x \subset \alpha A_{1}+(1-\alpha) A_{2}
$$

By the order law of cancellation [16]

$$
(1-\alpha) A_{1}+x \subset(1-\alpha) A_{2} \quad \text { and so } \quad A_{1}+\frac{x}{1-\alpha} \subset A_{2}
$$

In a similar way we prove that

$$
B_{1}+\frac{x}{1-\alpha} \subset B_{2}
$$

Since $\left(A_{2}, B_{2}\right)$ is minimal,

$$
A_{1}+\frac{x}{1-\alpha}=A_{2}, \quad B_{1}+\frac{x}{1-\alpha}=B_{2}
$$

This contradicts the assumption of our theorem. Therefore, $k_{3} \neq 1$. In a similar way we prove that $k_{3} \neq 2$. Thus $k_{3}>2$. We can assume that $\alpha_{1} \in$ ($0,1 / 2$] and

$$
\left(A_{k_{3}}, B_{k_{3}}\right) \leq\left(\alpha_{1} A_{1}+\left(1-\alpha_{1}\right) A_{2}, \alpha_{1} B_{1}+\left(1-\alpha_{1}\right) B_{2}\right)
$$

Set $k_{1}=1, k_{2}=2$. Assume that $\left(A_{k_{1}}, B_{k_{1}}\right), \ldots,\left(A_{k_{n}}, B_{k_{n}}\right)$ are minimal pairs such that $k_{1}<\ldots<k_{n}$,
$k_{i}=\min \{k \in \mathbb{N} \mid \exists \alpha \in(0,1 / 2], \exists x \in X$ such that

$$
\left.\left(A_{k}+x, B_{k}+x\right) \leq\left(\alpha A_{k_{i-2}}+(1-\alpha) A_{k_{i-1}}, \alpha B_{k_{i-2}}+(1-\alpha) B_{k_{i-1}}\right)\right\}
$$

and

$$
\left(A_{k_{i}}, B_{k_{i}}\right) \leq\left(\alpha_{i-2} A_{k_{i-2}}+\left(1-\alpha_{i-2}\right) A_{k_{i-1}}, \alpha_{i-2} B_{k_{i-2}}+\left(1-\alpha_{i-2}\right) B_{k_{i-1}}\right)
$$

for $i=3, \ldots, n$. Let

$$
\begin{aligned}
& k_{n+1}=\min \{k \in \mathbb{N} \mid \exists \alpha \in(0,1 / 2], \exists x \in X \text { such that } \\
& \\
& \left.\quad\left(A_{k}+x, B_{k}+x\right) \leq\left(\alpha A_{k_{n-1}}+(1-\alpha) A_{k_{n}}, \alpha B_{k_{n-1}}+(1-\alpha) B_{k_{n}}\right)\right\} .
\end{aligned}
$$

Of course, $k_{n+1} \neq k_{n-1}, k_{n}$. Define

$$
\gamma_{i}^{n+1}=\alpha_{i}\left(1-\alpha_{i+1}\left(\ldots\left(1-\alpha_{n-2}(1-\alpha)\right) \ldots\right)\right), \quad i=1, \ldots, n-2
$$

Notice that $\gamma_{i}^{n+1} \in(0,1 / 2]$ and
$\left(A_{k_{n+1}}+x, B_{k_{n+1}}+x\right) \leq\left(\gamma_{i}^{n+1} A_{k_{i}}+\left(1-\gamma_{i}^{n+1}\right) A_{k_{i+1}}, \gamma_{i}^{n+1} B_{k_{i}}+\left(1-\gamma_{i}^{n+1}\right) B_{k_{i+1}}\right)$.
Therefore,

$$
k_{n+1}>k_{n} .
$$

We can assume that $\alpha_{n-1} \in(0,1 / 2]$ and $\left(A_{k_{n+1}}, B_{k_{n+1}}\right) \leq\left(\alpha_{n-1} A_{k_{n-1}}+\left(1-\alpha_{n-1}\right) A_{k_{n}}, \alpha_{n-1} B_{k_{n-1}}+\left(1-\alpha_{n-1}\right) B_{k_{n}}\right)$.
In this way we can choose infinite sequences $\left(\alpha_{n}\right)_{n} \subset(0,1 / 2]$ and $\left(k_{n}\right)_{n}$ such that $k_{1}<k_{2}<\ldots$,
$k_{n}=\min \{k \in \mathbb{N} \mid \exists \alpha \in(0,1 / 2], \exists x \in X$ such that

$$
\left.\left(A_{k}+x, B_{k}+x\right) \leq\left(\alpha A_{k_{n-2}}+(1-\alpha) A_{k_{n-1}}, \alpha B_{k_{n-2}}+(1-\alpha) B_{k_{n-1}}\right)\right\}
$$

and
$\left(A_{k_{n}}, B_{k_{n}}\right) \leq\left(\alpha_{n-2} A_{k_{n-2}}+\left(1-\alpha_{n-2}\right) A_{k_{n-1}}, \alpha_{n-2} B_{k_{n-2}}+\left(1-\alpha_{n-2}\right) B_{k_{n-1}}\right)$
for all $n \geq 3$. Notice that $\left(A_{k_{n}} \vee A_{k_{n+1}}, B_{k_{n}} \vee B_{k_{n+1}}\right)$ is equivalent to $\left(A_{1}, B_{1}\right)$ for $n \in \mathbb{N}$ (see [12]). The sequences $\left(A_{k_{n}} \vee A_{k_{n+1}}\right)_{n}$ and $\left(B_{k_{n}} \vee B_{k_{n+1}}\right)_{n}$ are decreasing. Thus the pair (C, D) with

$$
C=\bigcap_{n=1}^{\infty}\left(A_{k_{n}} \vee A_{k_{n+1}}\right), \quad D=\bigcap_{n=1}^{\infty}\left(B_{k_{n}} \vee B_{k_{n+1}}\right)
$$

is equivalent to $\left(A_{1}, B_{1}\right)$ (see [12]). There exists a minimal pair $(A, B) \leq$ (C, D) (see [11]). Let

$$
\gamma_{i}^{i+2}=\alpha_{i}, \quad i \in \mathbb{N}, \quad \gamma_{i}^{n}=\alpha_{i}\left(1-\gamma_{i+1}^{n}\right), \quad i, n \in \mathbb{N}, n \geq i+3
$$

Then

$$
\left(A_{k_{n}}, B_{k_{n}}\right) \leq\left(\gamma_{i}^{n} A_{k_{i}}+\left(1-\gamma_{i}^{n}\right) A_{k_{i+1}}, \gamma_{i}^{n} B_{k_{i}}+\left(1-\gamma_{i}^{n}\right) B_{k_{i+1}}\right)
$$

Notice that

$$
\begin{aligned}
\gamma_{n-2}^{n+1}-\gamma_{n-2}^{n} & =-\alpha_{n-2} \cdot \alpha_{n-1}, & & n \geq 3 \\
\gamma_{i}^{n+1}-\gamma_{i}^{n} & =-\alpha_{i}\left(\gamma_{i+1}^{n+1}-\gamma_{i+1}^{n}\right), & & n \geq i+3
\end{aligned}
$$

Then

$$
\gamma_{i}^{n+1}-\gamma_{i}^{n}=(-1)^{n-1-i} \alpha_{i} \ldots \alpha_{n-1}
$$

Since $\alpha_{n} \in(0,1 / 2]$ for all n, the sequence $\left(\gamma_{i}^{n}\right)_{n}$ converges to some $\gamma_{i} \in$ $(0,1 / 2],\left(\gamma_{i}^{i+2 n}\right)_{n}$ is decreasing and $\left(\gamma_{i}^{i+2 n+1}\right)_{n}$ is increasing. Therefore,

$$
\begin{aligned}
& A_{k_{n}} \vee A_{k_{n+1}} \subset\left(\gamma_{i}^{n} A_{k_{i}}+\left(1-\gamma_{i}^{n}\right) A_{k_{i+1}}\right) \vee\left(\gamma_{i}^{n+1} A_{k_{i}}+\left(1-\gamma_{i}^{n+1}\right) A_{k_{i+1}}\right) \\
&=\left(\gamma^{\prime} A_{k_{i}}+\left(1-\gamma^{\prime \prime}\right) A_{k_{i+1}}+\left(\gamma^{\prime \prime}-\gamma^{\prime}\right) A_{k_{i}}\right) \\
& \vee\left(\gamma^{\prime} A_{k_{i}}+\left(1-\gamma^{\prime \prime}\right) A_{k_{i+1}}+\left(\gamma^{\prime \prime}-\gamma^{\prime}\right) A_{k_{i+1}}\right) \\
&= \gamma^{\prime} A_{k_{i}}+\left(1-\gamma^{\prime \prime}\right) A_{k_{i+1}}+\left(\gamma^{\prime \prime}-\gamma^{\prime}\right)\left(A_{k_{i}} \vee A_{k_{i+1}}\right)
\end{aligned}
$$

for all $i, n \in \mathbb{N}$, where $n \geq i+2, \gamma^{\prime}=\min \left(\gamma_{i}^{n}, \gamma_{i}^{n+1}\right), \gamma^{\prime \prime}=\max \left(\gamma_{i}^{n}, \gamma_{i}^{n+1}\right)$. In the last equality we have applied the Pinsker formula (see [14]). We can assume that $0 \in A_{k_{i}} \cap A_{k_{i+1}}$. Then

$$
A_{k_{n}} \vee A_{k_{n+1}} \subset \gamma_{i} A_{k_{i}}+\left(1-\gamma_{i}\right) A_{k_{i+1}}+\left|\gamma_{i}^{n+1}-\gamma_{i}^{n}\right|\left(A_{k_{i}} \vee A_{k_{i+1}}\right)
$$

Hence

$$
\begin{aligned}
C & \subset \bigcap_{n=i+2}^{\infty}\left(\gamma_{i} A_{k_{i}}+\left(1-\gamma_{i}\right) A_{k_{i+1}}+\left|\gamma_{i}^{n+1}-\gamma_{i}^{n}\right|\left(A_{k_{i}} \vee A_{k_{i+1}}\right)\right) \\
& =\gamma_{i} A_{k_{i}}+\left(1-\gamma_{i}\right) A_{k_{i+1}}+\bigcap_{n=i+2}^{\infty}\left|\gamma_{i}^{n+1}-\gamma_{i}^{n}\right|\left(A_{k_{i}} \vee A_{k_{i+1}}\right) \\
& =\gamma_{i} A_{k_{i}}+\left(1-\gamma_{i}\right) A_{k_{i+1}} \quad \quad(\text { see }[12, \text { Lemma } 3.10]) .
\end{aligned}
$$

In this way we prove that

$$
(A, B) \leq\left(\gamma_{i} A_{k_{i}}+\left(1-\gamma_{i}\right) A_{k_{i+1}}, \gamma_{i} B_{k_{i}}+\left(1-\gamma_{i}\right) B_{k_{i+1}}\right)
$$

We know that $A=A_{m}+x, B=B_{m}+x$ for some $m \in \mathbb{N}, x \in X$. According to the definition of k_{i+2} we have $m \geq k_{i+2}$ for all $i \in \mathbb{N}$, which leads to a contradiction with our assumption.

References

[1] C. Bauer, Minimal and reduced pairs of convex bodies, Geom. Dedicata 62 (1996), 179-192.
[2] V. F. Demyanov, The minimality of equivalent pairs of convex sets in \mathbb{R}^{2}, I, Vestnik St. Petersburg Univ. Math. 30 (1999), 7-11.
[3] -, The minimality of equivalent pairs of convex sets in \mathbb{R}^{2}, II, ibid. 32 (1999), 5-8.
[4] V. F. Demyanov and E. Caprary, Minimality of convex sets equivalent on a cone, ibid. 31 (1998), 28-33.
[5] V. F. Demyanov and A. M. Rubinov, Quasidifferential Calculus, Optimization Software Inc., Springer, New York, 1986.
[6] -, 一, Constructive Nonsmooth Analysis, Peter Lang, Frankfurt/M, 1995.
[7] —, 一, Quasidifferentiability and Related Topics, Nonconvex Optim. Appl. 43, Kluwer, Dordrecht, 2001.
[8] J. Grzybowski, Minimal pairs of compact sets, Arch. Math. (Basel) 63 (1994), 173181.
[9] J. Grzybowski and R. Urbański, Minimal pairs of bounded closed convex sets, Studia Math. 126 (1997), 95-99.
[10] J. Grzybowski, R. Urbański and M. Wiernowolski, On common summands and anti-summands of compact convex sets, Bull. Polish Acad. Sci. Math. 47 (1999), 69-76.
[11] D. Pallaschke, S. Scholtes and R. Urbański, On minimal pairs of convex compact sets, ibid. 39 (1991), 1-5.
[12] D. Pallaschke, W. Urbańska and R. Urbański, C-minimal pairs of compact convex sets, J. Convex Anal. 4 (1997), 1-25.
[13] D. Pallaschke and R. Urbański, A continuum of minimal pairs of compact convex sets which are not connected by translations, ibid. 3 (1996), 83-95.
[14] -, -, Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets, Math. Appl., Kluwer, Dordrecht, 2002.
[15] S. Scholtes, Minimal pairs of convex bodies in two dimensions, Mathematika 39 (1992), 267-273.
[16] R. Urbański, A generalization of the Minkowski-Rådström-Hörmander Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 709-715.
[17] -, On minimal convex pairs of convex compact sets, Arch. Math. (Basel) 67 (1996), 226-238.

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87
61-614 Poznań, Poland
E-mail: jgrz@amu.edu.pl rich@amu.edu.pl

Received September 27, 2002
Revised version May 8, 2003

[^0]: 2000 Mathematics Subject Classification: 52A07, 26A27.
 Key words and phrases: convex analysis, minimal pairs of compact convex sets.

