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On the number of minimal pairs of compact
convex sets that are not translates of one another

by

J. Grzybowski and R. Urbański (Poznań)

Abstract. Let [A,B] be the family of pairs of compact convex sets equivalent to
(A,B). We prove that the cardinality of the set of minimal pairs in [A,B] that are not
translates of one another is either 1 or greater than ℵ0.

Let X = (X, τ) be a topological vector space over the field R. Let K(X)
be the family of all nonempty compact convex subsets of X. For any A,B ⊂
X the Minkowski sum is defined by A+B = {a+ b | a ∈ A and b ∈ B}. For
(A,B), (C,D) ∈ K2(X), let (A,B) ∼ (C,D) if and only if A+D = B+C. Let
[A,B] be the equivalence class of (A,B) in K2(X)/∼. For (A,B), (C,D) ∈
K2(X) let (A,B) ≤ (C,D) if and only if (A,B) ∼ (C,D), A ⊂ C and
B ⊂ D. Let m[A,B] be the family of all elements of [A,B] that are minimal
with respect to the ordering ≤. Let A ∨B be the convex hull of A ∪B. For
A,B,C ∈ K2(X), we have the Pinsker formula A∨B+C = (A+C)∨(B+C).

Minimal pairs of compact convex sets play an important role in quasi-
differential calculus [5]–[7]. Minimal pairs were studied in numerous papers
([1]–[4], [8]–[14], [17], and others).

Let (A,B) ∈ K2(X) and nA,B be the number of minimal pairs in m[A,B]
that are not translates of one another. If X = R1 or R2 then nA,B is always
1 ([8], [15]). In [13], there is an example of A,B ∈ K(R3) such that nA,B is
the continuum.

In December 2000, Professor S. Rolewicz posed the problem whether
nA,B can be finite and greater than 1. The following theorem implies a
negative answer to this problem.

Theorem. Let (A1, B1), (A2, B2) be two equivalent minimal pairs of
compact convex sets such that (A2, B2) is not a translate of (A1, B1). Then
there exists an uncountable family (Aλ, Bλ), λ ∈ Λ, of minimal pairs that
are equivalent to (A1, B1) and no (Aλ, Bλ) is a translate of (Aµ, Bµ), λ 6= µ.
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Proof. Assume that {(An + x,Bn + x) | n ∈ N, x ∈ X} is the family of
all minimal pairs equivalent to (A1, B1) and (A2, B2). Let

k3 = min{k ∈ N | ∃α ∈ (0, 1/2], ∃x ∈ X such that

(Ak + x,Bk + x) ≤ (αA1 + (1− α)A2, αB1 + (1− α)B2)}.
If k3 = 1 then

αA1 + (1− α)A1 + x = A1 + x ⊂ αA1 + (1− α)A2.

By the order law of cancellation [16]

(1− α)A1 + x ⊂ (1− α)A2 and so A1 +
x

1− α ⊂ A2.

In a similar way we prove that

B1 +
x

1− α ⊂ B2.

Since (A2, B2) is minimal,

A1 +
x

1− α = A2, B1 +
x

1− α = B2.

This contradicts the assumption of our theorem. Therefore, k3 6= 1. In a
similar way we prove that k3 6= 2. Thus k3 > 2. We can assume that α1 ∈
(0, 1/2] and

(Ak3 , Bk3) ≤ (α1A1 + (1− α1)A2, α1B1 + (1− α1)B2).

Set k1 = 1, k2 = 2. Assume that (Ak1 , Bk1), . . . , (Akn , Bkn) are minimal
pairs such that k1 < . . . < kn,

ki = min{k ∈ N | ∃α ∈ (0, 1/2], ∃x ∈ X such that

(Ak + x,Bk + x) ≤ (αAki−2 + (1− α)Aki−1 , αBki−2 + (1− α)Bki−1)}
and

(Aki , Bki) ≤ (αi−2Aki−2 + (1− αi−2)Aki−1 , αi−2Bki−2 + (1− αi−2)Bki−1)

for i = 3, . . . , n. Let

kn+1 = min{k ∈ N | ∃α ∈ (0, 1/2], ∃x ∈ X such that

(Ak + x,Bk + x) ≤ (αAkn−1 + (1− α)Akn , αBkn−1 + (1− α)Bkn)}.
Of course, kn+1 6= kn−1, kn. Define

γn+1
i = αi(1− αi+1(. . . (1− αn−2(1− α)) . . .)), i = 1, . . . , n− 2.

Notice that γn+1
i ∈ (0, 1/2] and

(Akn+1+x,Bkn+1 +x)≤ (γn+1
i Aki+(1−γn+1

i )Aki+1 , γ
n+1
i Bki+(1−γn+1

i )Bki+1).

Therefore,
kn+1 > kn.
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We can assume that αn−1 ∈ (0, 1/2] and

(Akn+1 , Bkn+1) ≤ (αn−1Akn−1 +(1−αn−1)Akn , αn−1Bkn−1 +(1−αn−1)Bkn).

In this way we can choose infinite sequences (αn)n ⊂ (0, 1/2] and (kn)n such
that k1 < k2 < . . . ,

kn = min{k ∈ N | ∃α ∈ (0, 1/2], ∃x ∈ X such that

(Ak + x,Bk + x) ≤ (αAkn−2 + (1− α)Akn−1 , αBkn−2 + (1− α)Bkn−1)},
and

(Akn , Bkn) ≤ (αn−2Akn−2 + (1−αn−2)Akn−1 , αn−2Bkn−2 + (1−αn−2)Bkn−1)

for all n ≥ 3. Notice that (Akn∨Akn+1 , Bkn∨Bkn+1) is equivalent to (A1, B1)
for n ∈ N (see [12]). The sequences (Akn ∨ Akn+1)n and (Bkn ∨Bkn+1)n are
decreasing. Thus the pair (C,D) with

C =
∞⋂

n=1

(Akn ∨ Akn+1), D =
∞⋂

n=1

(Bkn ∨Bkn+1)

is equivalent to (A1, B1) (see [12]). There exists a minimal pair (A,B) ≤
(C,D) (see [11]). Let

γi+2
i = αi, i ∈ N, γni = αi(1− γni+1), i, n ∈ N, n ≥ i+ 3.

Then

(Akn , Bkn) ≤ (γni Aki + (1− γni )Aki+1 , γ
n
i Bki + (1− γni )Bki+1).

Notice that

γn+1
n−2 − γnn−2 = −αn−2 · αn−1, n ≥ 3,

γn+1
i − γni = −αi(γn+1

i+1 − γni+1), n ≥ i+ 3.

Then
γn+1
i − γni = (−1)n−1−iαi . . . αn−1.

Since αn ∈ (0, 1/2] for all n, the sequence (γni )n converges to some γi ∈
(0, 1/2], (γi+2n

i )n is decreasing and (γi+2n+1
i )n is increasing. Therefore,

Akn ∨ Akn+1 ⊂ (γni Aki + (1− γni )Aki+1) ∨ (γn+1
i Aki + (1− γn+1

i )Aki+1)

= (γ′Aki + (1− γ′′)Aki+1 + (γ′′ − γ′)Aki)
∨ (γ′Aki + (1− γ′′)Aki+1 + (γ′′ − γ′)Aki+1)

= γ′Aki + (1− γ′′)Aki+1 + (γ′′ − γ′)(Aki ∨Aki+1)

for all i, n ∈ N, where n ≥ i + 2, γ ′ = min(γni , γ
n+1
i ), γ′′ = max(γni , γ

n+1
i ).

In the last equality we have applied the Pinsker formula (see [14]). We can
assume that 0 ∈ Aki ∩Aki+1 . Then

Akn ∨ Akn+1 ⊂ γiAki + (1− γi)Aki+1 + |γn+1
i − γni |(Aki ∨ Aki+1).
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Hence

C ⊂
∞⋂

n=i+2

(γiAki + (1− γi)Aki+1 + |γn+1
i − γni |(Aki ∨Aki+1))

= γiAki + (1− γi)Aki+1 +
∞⋂

n=i+2

|γn+1
i − γni |(Aki ∨ Aki+1)

= γiAki + (1− γi)Aki+1 (see [12, Lemma 3.10]).

In this way we prove that

(A,B) ≤ (γiAki + (1− γi)Aki+1 , γiBki + (1− γi)Bki+1).

We know that A = Am +x, B = Bm+x for some m ∈ N, x ∈ X. According
to the definition of ki+2 we have m ≥ ki+2 for all i ∈ N, which leads to a
contradiction with our assumption.
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