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Besicovitch via Baire

by

T. W. Körner (Cambridge)

Abstract. We construct various Besicovitch sets using Baire category arguments.

1. Introduction. A Besicovitch set is a compact subset E of Rn of
Lebesgue measure zero containing line segments of length 1 in every direc-
tion [n ≥ 2]. (Formally, if u is a unit vector, there exists an x such that
x + λu ∈ E for all 0 ≤ λ ≤ 1.) The first example of such a set was given by
Besicovitch in [2] and many different examples have been given since. Besi-
covitch sets turned out to be unexpectedly important in harmonic analysis
(see Chapter X of [7]).

In Section 2, I give a Baire category argument for the existence of Besi-
covitch sets. I hope that some readers will find it an attractive alternative
to the standard proofs.

In the next section (Section 3), I derive some further generic properties
of our sets. It turns out that our sets are (quasi-always) more irregular than
those produced by the classical argument set out in Chapter X of [7], by
the remarkable method of Kahane [6] and by the random constructions of
Alexander [1]. (Of course, this makes them less rather than more interesting
for the purposes of harmonic analysis.)

The paper of Alexander [1] uses the fundamental theorem of Besicov-
itch [3] which states that, if an irregular set S in R2 has finite linear mea-
sure, then S has an orthogonal projection Sθ of zero linear measure for
almost all directions θ. If we take S = E × E where E is a Cantor set
with ratio of dissection 1/4, then this shows that the set E + λE consid-
ered in [6] will have zero linear measure for almost every value of λ and
so the set considered by Kahane does, indeed, have area 0. Kahane in-
forms me that the argument used in his paper to obtain this result was
incorrect and that he owes the correct argument just given to Alexan-
der.
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In the final section (Section 4), I develop the method of Section 2 slightly
to obtain the following result which I believe to be new.

Theorem 1.1. Let 1 > a > 0 and let n be an integer with n ≥ 2. There
exists a collection L of line segments in Rn each of length at least 2−a such
that

(i) There is a line segment l ∈ L in any given direction.
(ii)

⋃
l∈L l is a closed set lying in the ball with centre the origin and

radius 1.
(iii) If l̂ is any line then we can find L0 with L0 ⊆ L and L\L0 containing

at most one element such that
⋃
l∈L0

l ∩ l̂ has zero linear Lebesgue measure.

2. A Besicovitch set. We shall work in R2 but the argument is easily
extended to Rn. Consider the collection K of non-empty compact subsets
of R2. If we define

%(E,F ) = sup
e∈E

inf
f∈F
‖e− f‖, d(E,F ) = %(E,F ) + %(F,E)

for any E,F ∈ K then it is easy to check that d is a complete metric (the
Hausdorff metric; see Section 28 of [5]) on K.

We study the following set.

Definition 2.1. P is the collection of all closed subsets P of the rect-
angle [−1, 1]× [0, 1] with the following properties:

(i) P is the union of line segments joining points of the form (x1, 0) to
points of the form (x2, 1) with x1, x2 ∈ [−1, 1].

(ii) If |v| ≤ 1/2 then we can find x1 and x2 with x2 − x1 = v and
x1, x2 ∈ [−1, 1] such that the line segment joining (x1, 0) to (x2, 1) lies in P .

Lemma 2.2. P is a closed subset of (K, d).

Proof. Suppose Pn ∈ P, K ∈ K and d(Pn,K) → 0. We first seek to
show that K satisfies property (i) in Definition 2.1. To this end, suppose
that k ∈ K. By definition, we can find pn ∈ Pn with ‖pn − k‖ → 0 as
n → ∞. Since Pn has property (i), we can find x1,n, x2,n ∈ [−1, 1] such
that the line segment ln joining (x1,n, 0) to (x2,n, 1) contains pn. By the
compactness of [−1, 1]2, we can find an integer sequence n(j) → ∞ and
x1, x2 ∈ [−1, 1] such that x1,n(j) → x1 and x2,n(j) → x2 as j → ∞. If we
denote the line segment joining (x1, 0) to (x2, 0) by l then d(ln(j), l)→ 0 as
j → ∞. It follows that l ⊆ K and k ∈ l. We have established that K has
property (i).

The proof that K has property (ii) is similar.

From now on we consider the space (P, d) with the restriction metric.
By Lemma 2.2, (P, d) is complete. We can now state our first theorem.
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Theorem 2.3. The set of P ∈ P of Lebesgue measure zero is of second
category in (P, d).

Since a set of second category in a complete metric space is non-empty, it
follows that there exists a set P0 ∈ P of Lebesgue measure zero. By part (ii)
of Definition 2.1, P0 contains line segments of length at least 1 in every
direction making an angle of absolute value less than or equal to π/6 with
the y-axis. If we take the union of three copies of P0 rotated through 0, π/3
and 2π/3 the result will be a Besicovitch set.

The key to our proof of Theorem 2.3 is the following lemma.

Lemma 2.4. If v ∈ [0, 1] and ε > 0, write P(v, ε) for the set of P ∈ P
with the following property. There exist a finite collection of rectangles
R1, . . . , RN , say , with sides parallel to the axes, such that , if y ∈ [0, 1] ∩
[v − ε, v + ε], then

{x : (x, y) ∈ P} ⊆
{
x : (x, y) ∈

N⋃

j=1

Rj

}

and the total length of the finite set of intervals making up {x : (x, u) ∈⋃N
j=1Rj} is strictly less than 100ε. Then P \ P(v, ε) is closed and nowhere

dense in (P, d).

Proof. It is easy to check that P(v, ε) is open. (If η > 0 is sufficiently
small, then setting R′j = Rj + [−η, η]2 it remains true that the length of the

finite unions of intervals {x : (x, y) ∈ ⋃N
j=1R

′
j} is strictly less than 100ε for

all y ∈ [0, 1] ∩ [v − ε, v + ε]. If P ∈ P(v, ε), P ′ ∈ P and d(P,P ′) < η then

{x : (x, y) ∈ P ′} ⊆
{
x : (x, y) ∈

N⋃

j=1

R′j
}

and so P ′ ∈ P(v, ε).)
We need to show that P(v, ε) is dense. To this end, let us write l(x, θ)

for the line segment through (x, v) which joins a point on the line y = 0 to a
point on the line y = 1 and which is at angle θ to the y-axis. We start with
a bit of technical tidying up. Observe that, if P ∈ P and 1 > η > 0, then
writing

P ′ =
⋃
{l(x+ η, θ) : l(x, θ) ⊆ P and x ≤ 0}

∪
⋃
{l(x− η, θ) : l(x, θ) ⊆ P and x ≥ 0}

we have P ′ ∈ P, d(P,P ′) ≤ η and P ′ ⊆ [−1 + η, 1− η]× [0, 1].
Thus, to show that P(v, ε) is dense it suffices to show that, given δ > 0,

η > 0 and P ∈ P with P ⊆ [−1 +η, 1−η]× [0, 1], we can find a P ′ ∈ P(y, ε)
with d(P,P ′) < δ. To this end, note that we can find a % > 0 such that,
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writing
Q =

⋃
{l(x, φ) : |φ− θ| ≤ % and l(x, θ) ⊆ P},

we have Q ∈ P and d(P,Q) < δ/2. We observe that the set of open intervals
(θ − %, θ + %) with l(x, θ) ⊆ P is an open cover of [−π/6, π/6] (by condi-
tion (ii) of Definition 2.1) and so, by compactness, we can find x1, . . . , xM
and θ1, . . . , θM such that l(xm, θm) ⊆ P for all 1 ≤ m ≤M and

M⋃

m=1

(θm − %, θm + %) ⊇ [−π/6, π/6].

We can now find %m and %′m such that % ≥ %m, %′m > 0 for 1 ≤ m ≤M ,
M⋃

n=1

(θm − %′m, θm + %m) ⊇ [−π/6, π/6] and
M∑

m=1

(%m + %′m) ≤ π.

Setting

Q′ =
M⋃

m=1

{l(xm, φ) : φ ∈ (θm − %′m, θm + %m)},

we observe that Q′ ⊆ Q and Q′ ∈ P.
A simple compactness argument shows that we can find x̃1, . . . , x̃M̃ and

θ̃1, . . . , θ̃M̃ such that l(x̃m, θ̃m) ⊆ P for all 1 ≤ m ≤ M̃ and, writing

Q′′ =
M̃⋃

m=1

l(x̃m, θ̃m),

we have d(P,Q′′) ≤ δ/2. If we now take P ′ = Q′ ∪ Q′′, then P ′ ∈ P and
d(P ′, P ) < δ.

At this point it may be worth the reader’s while to sketch P ′. If 1 ≥ y+ε
the set

P ′ ∩ {(x, v) : −1 ≤ x ≤ 1, v ≤ y ≤ v + ε}
consists of a finite set of lines and a finite set of triangles with vertices on the
line y = v and bases on the line y = v+ ε of total length less than 4πε (it is
not necessary to make best estimates here). But it is trivial that a triangle
of base Kε can be covered by a finite collection of rectangles R′1, . . . , R

′
q,

say, with one side parallel to the base in such a way that the intersection of
any line parallel to the base with

⋃N
j=1Rj has length at most Kε.

It is thus clear that there exist a finite collection of rectangles R1, . . . , RN
with sides parallel to the axes such that, if y ∈ [0, 1] ∩ [v − ε, v + ε], then

{x : (x, y) ∈ P} ⊆
{
x : (x, y) ∈

N⋃

j=1

Rj

}
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and the total length of the finite set of intervals making up {x : (x, u) ∈⋃N
j=1Rj} is strictly less than 100ε.

We see that Lemma 2.4 proves a result which is slightly stronger than
Theorem 2.3. (Observe that, by Fubini’s theorem, every member of E has
Lebesgue measure zero.)

Theorem 2.5. The set E of E ∈ P such that {x : (x, u) ∈ E} has
Lebesgue measure zero is of second category in (P, d).

Proof. Lemma 2.4 tells us that (in the notation of that lemma)
P(r/n, 1/n) is of second category for all integers r and n with 0 ≤ r ≤ n.
Thus, setting Pn =

⋂n
r=0 P(r/n, 1/n), we know that Pn is of second cat-

egory. By the defining property of P(r/n, 1/n), we know that, if P ∈ Pn,
then {x : (x, u) ∈ P} has Lebesgue measure strictly less than 100/n for all
u ∈ [0, 1].

It follows that P∗ =
⋂∞
n=1Pn is of second category and, if P ∈ P∗, then

{x : (x, u) ∈ P} has Lebesgue measure zero for all u ∈ [0, 1]. Thus E ⊇ P∗
and E is of second category.

3. Other generic properties. In Lemma 2.4, we considered P(v, ε)
with 0 ≤ v ≤ 1. This restriction is not very important and by making
appropriate modifications (essentially replacing “100ε” by “100(|v|+ 1)ε”)
we obtain the following result.

Theorem 3.1. If P ∈ P, let us write P̂ for the union of all lines passing
through [−1, 1]×{0} and [−1, 1]×{1} whose intersection with [−1, 1]× [0, 1]
lies in P . The set of P ∈ P such that {x : (x, y) ∈ P̂} has Lebesgue measure
zero for all y ∈ R is of second category in (P, d).

All our results can be extended in this way but we shall stick to consid-
ering P rather than P̂ .

Here is another modification of Lemma 2.4.

Lemma 3.2. Let h : [0,∞) → [0,∞) be a strictly increasing function
with h(0) = 0. If v ∈ [0, 1] and ε > 0 write Q(v, ε) for the set of Q ∈ P
with the following property. There exist η > 0, κ > 0, an integer M ≥ 1 and
points xj ∈ [−1, 1] such that , writing

Rj = (xj − κ, xj + κ)× (v − η, v + η),

we have
M⋃

j=1

Rj ⊇ Q ∩ ([−1, 1]× (y − η, y + η))

and Mh(2η) < ε. Then P \ Q(v, ε) is closed and nowhere dense in (P, d).
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Proof. The proof is a rerun with modifications of the proof of Lemma 2.4.
It is easy to check that Q(v, ε) is open.

Now suppose we are given a δ > 0 and P ∈ P. Exactly as in the proof
of Lemma 2.4, we can find a Q ∈ P with d(P,Q) < δ having the following
property. There exists an integer M ≥ 1 and points xj ∈ [−1, 1] such that Q
is the union of (possibly degenerate) triangles Tj with vertex xj and base a
subset of [−1, 1]× {0} and triangles T ′j with vertex xj and base a subset of
[−1, 1]×{1} [1 ≤ j ≤M ]. (In the special case v = 0 we take Tj = {(xj , 0)}.
In the special case v = 1 we take Tj = {(xj , 1)}.) Provided we take κ small
enough (depending on M) and η small enough (depending on v and κ), we
will have Mh(2η) < ε and

M⋃

j=1

Rj ⊇ Q ∩ ([−1, 1]× (y − η, y + η)).

Thus Q ∈ Q(v, ε) and we have shown that P \ Q(v, ε) is nowhere dense.

Lemma 3.2 immediately yields the following corollary.

Lemma 3.3. Let h : [0,∞) → [0,∞) be a strictly increasing function
with h(0) = 0 and let E be a countable subset of [0, 1]. Write QE for the
set of Q ∈ P with the following property. Given any y ∈ E and any integer
p ≥ 1 there exist η > 0, κ > 0, an integer M ≥ 1 and points xj ∈ [−1, 1]
such that , writing

Rj = (xj − κ, xj + κ)× (v − η, v + η),

we have
M⋃

j=1

Rj ⊇ Q ∩ ([−1, 1]× (y − η, y + η))

and Mh(2η) < 1/p. Then QE is of second category in (P, d).

We now follow a traditional path from the condensation of singularities.

Lemma 3.4. Let h : [0,∞) → [0,∞) be a strictly increasing function
with h(0) = 0 and let E be a countable dense subset of [0, 1]. Suppose that
QE is as in Lemma 3.3 and Q ∈ QE .

(i) If n ≥ 1, write YQ,n for the set of y ∈ [0, 1] with the following
property. There exist η > 0, κ > 0, an integer M ≥ 1 and points xj ∈ [−1, 1]
such that , writing

Rj = (xj − κ, xj + κ)× (v − η, v + η),

we have
M⋃

j=1

Rj ⊇ Q ∩ ([−1, 1]× (y − η, y + η))



Besicovitch via Baire 71

and Mh(2η) < 1/n. Then YQ,n is of second category in [0, 1] with the usual
Euclidean metric.

(ii) Write Y ∗Q for the set of y ∈ [0, 1] with the following property. Given
any ε > 0 there exist η > 0, κ > 0, an integer M ≥ 1 and points xj ∈ [−1, 1]
such that , writing

Rj = (xj − κ, xj + κ)× (v − η, v + η),

we have
M⋃

j=1

Rj ⊇ Q ∩ ([−1, 1]× (y − η, y + η))

and Mh(2η) < ε. Then Y ∗Q is of second category in [0, 1] with the usual
Euclidean metric.

Proof. (i) It is easy to check that YQ,n is open. SinceE ⊆ YQ,n, [0, 1]\YQ,n
is nowhere dense.

(ii) Observe that Y ∗Q =
⋂∞
n=1 YQ,n.

Lemma 3.4 has a trivial corollary.

Lemma 3.5. Let h : [0,∞) → [0,∞) be a strictly increasing function
with h(0) = 0 and let E be a countable dense subset of [0, 1]. Suppose QE
is as in Lemma 3.3 and Q ∈ QE . Write YQ for the set of y ∈ [0, 1] with the
following property. Given any integer p ≥ 1, there exist κ > 0, an integer
M ≥ 1 and points xj ∈ [−1, 1] such that

M⋃

j=1

((xj − κ, xj + κ)× {y}) ⊇ Q ∩ ([−1, 1]× {y})

and Mh(2η) < 1/p. Then YQ is of second category in [0, 1] with the usual
Euclidean metric.

Proof. With the notation of Lemma 3.4, YQ ⊆ XQ.

Recall that, if h : [0,∞) → [0,∞) is a strictly increasing function with
h(0) = 0, then we say that a set A in Rn has zero Hausdorff h-measure if,
given ε > 0, we can find balls Bk of radius rk such that

⋃∞
k=1Bk ⊇ A and∑∞

k=1 h(rk) < ε. Lemmas 3.3 and 3.5 thus imply the following theorem.

Theorem 3.6. Let h : [0,∞) → [0,∞) be a strictly increasing function
with h(0) = 0. Then there exists a set Q of second category in (P, d) such
that , if Q ∈ Q, then {x : (x, y) ∈ Q} has zero Hausdorff h-measure for all
y in a set of second category in [0, 1].

It is well known (see essentially [4, Proposition 12.2]) that a compact set
P which contains line segments of length 1 at all angles θ to the y-axis with
|θ| ≤ π/6 cannot have zero Hausdorff h-measure for h(t) = tα with α < 2
and thus (see [4, Theorem 8.2]) there is a subset E of R of positive Lebesgue
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measure such that, if k(t) = tβ with β < 1 and y ∈ E, then {x : (x, y) ∈ P}
does not have zero Hausdorff k-measure.

If x1 6= x2 and y1 6= y2, consider the function

f(t) =
x1 + ty1

x2 + ty2
.

By applying the intermediate value theorem, we see that f is rational on a
dense subset E of R. Thus, if t ∈ E, the equation

n1(x1 + ty1) + n2(x2 + ty2) = 0

has non-trivial integer solutions in n1 and n2. This shows that a Besicovitch
type set must be rich in arithmetical relations. We shall show that (quasi-all)
sets in P have cross sections without such relations.

We need two definitions to make things precise.

Definition 3.7. If E is a non-empty subset of [−1, 1], we say that E is
independent if, whenever M ≥ 1 and x1, . . . , xM are distinct elements of E,
the equation

M∑

j=1

njxj = 0

has no non-trivial integer solutions in nj .

Let us write χm(t) = exp imt.

Definition 3.8. We say that a non-empty closed subset E of [−1, 1]
is Kronecker if, whenever f : [−1, 1] → C is a continuous function with
|f(t)| = 1 for all t ∈ [−1, 1] and ε > 0, we can find an integer m such that
|f(t)− χm(t)| ≤ ε for all t ∈ E.

If
∑M

j=1 njxj = 0 then
∏M
j=1 χ(xj)nj so a Kronecker set must be inde-

pendent.
We shall prove the following theorem.

Theorem 3.9. There exists a set Q of second category in (P, d) such
that , if Q ∈ Q, then {x : (x, y) ∈ Q} is a Kronecker set for all y in a set of
second category in [0, 1].

As might be expected, Theorem 3.9 follows from a variation on Lem-
ma 3.2.

Lemma 3.10. Let f : [−1, 1]→C be a continuous function with |f(t)|= 1
for all t ∈ [−1, 1]. If v ∈ [0, 1] and ε > 0 write Q(v, ε) for the set of Q ∈ P
with the following property. There exist η > 0 and an integer m ≥ 1 such
that

|f(x)− χm(x)| < ε for all (x, y) ∈ Q with |y − v| < η.

Then P \ Q(v, ε) is closed and nowhere dense in (P, d).
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Proof. It is easy to check that Q(v, ε) is open.
Now suppose we are given a δ with 1 > δ > 0 and P ∈ P. By mak-

ing simple changes in the proof of Lemma 2.4 we can find a Q ∈ P with
d(P,Q) < δ/2 having the following property. There exists an integer M ≥ 1,
a real number ν > 0 and points xj ∈ [−1 +ν, 1−ν] such that Q is the union
of (possibly degenerate) triangles Tj with vertex xj and base a subset of
[−1 + ν, 1 − ν] × {0} and triangles T ′j with vertex xj and base a subset
of [−1 + ν, 1 − ν] × {1} [1 ≤ j ≤ M ]. (In the special case v = 0 we take
Tj = {(xj, 0)}. In the special case v = 1 we take Tj = {(xj, 1)}.)

By uniform continuity, we can find a δ′ with min(δ, ν)/4 > δ′ > 0 and
|f(s) − f(t)| < 1/2 for all |s − t| < δ′ and s, t ∈ [−1, 1]. Choose an integer
m ≥ 100/δ′. By the intermediate value theorem we can find x̃j such that

χm(x̃j) = f(x̃j) and |x̃j − xj | < δ′

for all 1 ≤ j ≤M . Now set

T̃j = Tj + (x̃j − xj , 0)

for 1 ≤ j ≤ M and take Q̃ =
⋃M
j=1 T̃j . We have Q̃ ∈ P and d(P, Q̃) < δ.

Finally, by uniform continuity again, there exists an η > 0 such that

|f(x)− χm(x)| < ε for all (x, y) ∈ Q̃ with |y − v| < η.

Thus P \ Q(v, ε) is nowhere dense in (P, d).

Write S([−1, 1]) for the set of continuous functions f : [−1, 1]→ C with
|f(t)| = 1 for all t ∈ [−1, 1]. Using uniform continuity it is easy to check
that there exists a sequence fn ∈ S([−1, 1]) which is uniformly dense in
S([−1, 1]). The following is an immediate corollary of Lemma 3.10.

Lemma 3.11. Let E be a countable subset of [0, 1]. Write QE for the set
of Q ∈ P with the following property. Given any y ∈ E and any integers
p, q ≥ 1 there exists an η > 0 and an integer m ≥ 1 such that

|fq(x)− χm(x)| < 1/p for all (x, y) ∈ Q̃ with |y − v| < η.

Then QE is of second category in (P, d).

The proof of Theorem 3.9 from Lemma 3.11 now follows the pattern of
the proof of Lemma 3.5.

4. An isotropic Besicovitch set. The object of this final section is
to prove Theorem 1.1 in the case n = 2 (the proof for higher dimensions is
essentially identical). Throughout this section a will be a fixed number with
1 > a > 0 and constants Aj will depend on the value of a chosen. We work
in R2. We write D for the disc with centre 0 and radius 1. We shall take
“chord” to mean a line segment joining points on the boundary of D.

We follow the arguments of Section 2 closely. We study the following set.
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Definition 4.1. P is the collection of all closed subsets P of the disc D
such that

(i) P is the union of a collection LP of chords of length at least 2− a.
(ii) If u is a unit vector we can find an l ∈ LP which is parallel to u.

Lemma 4.2. If d is the Hausdorff metric on P, then (P, d) is complete.

Proof. Similar to Lemma 2.2.

We shall need to know that certain sets are closed. The following results
are typical.

Lemma 4.3. (i) Suppose P ∈ P and 0 < θ < π/2. Write Eθ for the
union of all chords l ⊆ P of length at least 2 − a, making an angle φ with
the vertical such that |φ| ≤ θ. Then Eθ is closed.

(ii) Suppose P ∈ P and 1 ≥ c(1) ≥ c(2) ≥ 2 − a. Write Fc(1),c(2) for
the union of all chords l ⊆ P of length |l| such that c(1) ≥ |l| ≥ c(2). Then
Fc(1),c(2) is closed.

Proof. (i) Let zj ∈ Eθ and ‖zj−z‖ → 0 as j →∞. Then zj ∈ lj where lj
is a chord of length at least 2− a, joining points aj and bj on the boundary
of D and making an angle φj with the vertical such |φj | ≤ θ. By using
compactness twice, we can find a sequence nj →∞ and points a and b on
the boundary of D such that ‖an(j)−a‖ → 0 and ‖bn(j)−b‖ → 0 as j →∞.
Since P is closed, the chord l joining a and b is a subset of P . It is easy
to check that l has length at least 2 − a, that l makes an angle φ with the
vertical such that |φ| ≤ θ and that z ∈ l. Thus z ∈ Eθ and Eθ is closed.

(ii) Similar.

If κ > 0 we write Dκ for the closed disc with centre the origin and
radius κ.

Lemma 4.4. There is a constant A1, depending only on a, such that the
complement P \P(v,u, ε) of the set P(v,u, ε) defined in the next paragraph
is closed and nowhere dense in (P, d).

Let v ∈ [0, 1], u be a unit vector and 1 > ε > 0. Let u⊥ be a unit
vector perpendicular to u. We define P(v,u, ε) to be the collection of P ∈ P
with the following property. There exists a κ with ε ≥ κ > 0 such that
the following is true. Write E(u, ε − κ) for the union of all chords l ⊆ P
which are of length at least 2 − a and make an angle φ with u⊥ such that
|φ| ≤ π/2 + κ− ε. There exists a set H ′ such that writing H = H ′ +Dκ, if
l∗ is any chord with

l∗ ⊆ {xu + vu⊥ : x ∈ R, |v − y| < ε2},
then E(u, ε− κ) ∩ l has linear Lebesgue measure strictly less than A1ε.
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Proof. There is no loss in generality in taking u = (1, 0), u⊥ = (0, 1)
and v ≥ 0. We may also assume that 10−3 > ε. We try to follow the pattern
of the proof of Lemma 2.4. It is easy to check that P(v,u, ε) is open. We
need to show that P(v,u, ε) is dense.

We start with a bit of technical tidying up. Suppose P ∈ P and a/2 >
η > 0. Let F1 be the set of chords l ⊆ P with length |l| satisfying
2 ≥ |l| ≥ 2 − a/2 and F2 be the set of chords l ⊆ P with length |l| sat-
isfying 2 − a/2 ≥ |l| ≥ 2 − a. Let F̃1 be the set of chords l̃ for which there
exists an l ∈ F1 such that l̃ is the closest chord parallel to l which has length
|l| − η. Let F̃2 be the set of chords l̃ for which there exists an l ∈ F2 such
that l̃ is the closest chord parallel to l which has length |l|+ η. If we write
P ′ for the closure of the union of chords belonging to F̃1 ∪ F̃2 then P ′ ∈ P,
d(P,P ′) ≤ η and P ′ is the union of chords l with 2− a+ η ≤ |l| ≤ 2− η.

Thus to show that P(v,u, ε) is dense it suffices to show that, given δ > 0,
η > 0 and P ∈ P which is the union of chords l with 2− a+ η ≤ |l| ≤ 2− η,
we can find a P ′ ∈ P(y,u, ε) with d(P,P ′) < δ. To this end write Ê(u, ε/2)
for the set of lines whose intersections with D belong to E(u, ε/2) and
set F (u, ε/2) =

⋃
E(u, ε/2). Simple trigonometry shows that there is a

constant A2, depending on a alone, such that every line in Ê(u, ε/2) must
intersect the line y = v at a point (x, v) with |x| ≤ A2.

Let us write l̂(x, θ) for the line through (x, v) at angle θ to the y-axis
and l(x, θ) = l̂(x, θ) ∩ D. Simple trigonometry shows that there exists a %
with ε/4 > % > 0 such that, if |x| ≤ A2, |θ| ≤ π/2 − ε/2 and l(x, θ) ⊆ P
then 2 − η/2 ≥ |l(x, θ + τ)| ≥ 2 − a + η/2 and d(l(x, θ + τ), l(x, θ)) ≤ δ/4
whenever |τ | ≤ %.

Just as in the proof of Lemma 2.4, we observe that the set of open
intervals (θ − %, θ + %) with l(x, θ) ⊆ P and |x| ≤ A2 is an open cover of
[ε/2− π/2, π/2− ε/2] and so, by compactness, we can find x1, . . . , xM and
θ1, . . . , θM such that l(xm, θm) ⊆ P for all 1 ≤ m ≤M and

M⋃

m=1

(θm − %, θm + %) ⊇ [ε/2− π/2, π/2− ε/2].

We can now find %m and %′m such that % ≥ %m, %′m > 0 for 1 ≤ m ≤M ,
M⋃

n=1

(θm − %′m, θm + %m) ⊇ [ε/2− π/2, π/2− ε/2],
M∑

m=1

(%m + %′m) ≤ π.

Setting

Q′ =
⋃
{l(xm, φ) : φ ∈ (θm − %′m, θm + %m), 1 ≤ m ≤M}

we observe that Q′∪E(u, 3ε/4) ∈ P and d(Q′∪F (u, ε/2), F (u, ε/2)) ≤ δ/2.



76 T. W. Körner

A simple compactness argument shows that we can find x̃1, . . . , x̃M̃ and

θ̃1, . . . , θ̃M̃ such that l(x̃m, θ̃m) ⊆ F (u, ε/2) for all 1 ≤ m ≤ M̃ and, writing

Q′′ =
M̃⋃

m=1

l(x̃m, θ̃m),

we have d(F (u, ε/2), Q′′) ≤ δ/2. If we now take P ′ = Q′ ∪Q′′ ∪ E(u, 3ε/4)
then P ′ ∈ P and d(P ′, P ) < δ.

We need to show P ′ ∈ P(v,u, ε). Write E′(u, 3ε/4) for the union of all
chords l ⊆ P which are of length at least 2 − a and make an angle φ with
u⊥ such that |φ| ≤ π/2− 3ε/4. Then

E(u, 3ε/4) ∩ {xu + yu⊥ : x ∈ R, y ∈ [0, 1] ∩ [v − ε2, v + ε2]}
⊆ {xu + yu⊥ ∈ Q′ ∪Q′′ : x ∈ R, y ∈ [v − ε2, v + ε2]}.

Thus it will follow that P ′ ∈ P(v,u, ε) if we can show that there exists a
constant A1 (depending only on a) such that (provided only that κ is small
enough), if we write H ′ = Q+Q′ and

H = H ′ + {x : ‖x‖ < κ},
and if l∗ is any chord with

l∗ ⊆ {xu + vu⊥ : x ∈ R, |v − y| < ε2},
then E(u, ε− κ) ∩ l∗ has linear Lebesgue measure strictly less than A1ε.

To see this, look at

Tm =
⋃
{l(xm, φ) : φ ∈ (θm − %′m, θm + %m)}

∩ {(x, y) : x ∈ R, y ∈ [v − ε2, v + ε2]}.
If l∗ is as in the previous paragraph, then l∗ ∩ Tm is the the base of a
triangle of height no greater than ε2 and with base angles at least ε/8. By
simple trigonometry, there exists an A3 (depending on a alone) such that
l∗∩Tm has length less than A3(%m+%′m). A compactness argument (or more
trigonometry) shows that (provided only κ is small enough) l∗ ∩ (Tm +Dκ)
has length less than 2A3(%m + %′m) for all l∗ of the kind specified in the
previous paragraph. The desired conclusion now follows.

Lemma 4.5. There is a constant A1, depending only on a, such that the
set P(ε) defined in the next paragraph is of second category in (P, d).
P(ε) is the set of P ∈ P with the following property. Suppose l∗ is a

chord parallel to a unit vector w. Let w⊥ be a unit vector perpendicular to
w and write E(w, ε/2) for the union of all chords l ⊆ P which are of length
at least 2−a and make an angle φ with u⊥ such that |φ| ≤ π/2−ε/2. Then
E(w, ε/2) ∩ l∗ has linear Lebesgue measure strictly less than A1ε.
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Proof. Without loss of generality suppose 10−2 ≥ ε. We can find a finite
collection of ordered pairs (vm,um) with |vm| ≤ 1 and um a unit vector
[1 ≤ m ≤ M ] with the following property. Choose unit vectors u⊥m perpen-
dicular to um. If l∗ is any chord then we can find an m with 1 ≤ m ≤ M
such that

l∗ ⊆ {xw + vw⊥ : x ∈ R, |v − y| ≤ ε2/2}.
We use the notation of Lemma 4.4. Set Q(ε) =

⋃M
m=1 P(vm,um, ε). If

P ∈ Q(ε) and l∗ is any chord then, writing E(w, ε) for the union of all
chords l ⊆ P which are of length at least 2− a and make an angle ψ with l∗

such that |ψ| ≥ ε, we know, by the definition of P(vm,um, ε) in Lemma 4.4,
that E(w, ε/2)∩ l∗ has linear Lebesgue measure strictly less than A1ε. Thus
Q(ε) ⊆ P(ε). But, by Lemma 4.4, Q(ε) is of second category, so P(ε) is also
of second category.

We are now in a position to prove Theorem 1.1. (As stated earlier we
just deal with the case n = 2.) Since (P, d) is complete, it follows at once
from our next result.

Theorem 4.6. Consider the set Q ⊂ P satisfying the following condi-
tion. Let L be the set of chords l of length at least 2 − a such that l ⊆ Q.
Then, if l∗ is any chord ,

⋃
l∈L, l 6=l∗ l ∩ l∗ has zero linear Lebesgue measure.

Then Q is of second category in (P, d).

Proof. We use the notation of Lemma 4.5. Set Q′ =
⋂∞
j=1 P(1/j). By

Lemma 4.5, Q′ is of second category in (P, d). The theorem will thus follow
if we can show that Q ⊇ Q′.

To this end, consider any P ∈ Q and any chord l∗ parallel to a unit
vector w. Let w⊥ be a unit vector perpendicular to w and write Ej =
E(w, 1/(2j)) for the union of all chords l ⊆ P which are of length at least
2− a and make an angle φ with w⊥ such that |φ| ≤ (π − 1/j)/2. By the
definition of P(1/j), Ej ∩ l∗ has linear Lebesgue measure strictly less than
A1/j. Now

E1 ∩ l∗ ⊆ E2 ∩ l∗ ⊆, . . .
∞⋃

j=1

(Ej ∩ l∗) =
⋃

l∈L, l 6=l∗
l ∩ l∗,

so, by monotone convergence,
⋃
l∈L, l 6=l∗ l has linear Lebesgue measure zero

as required.
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