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Some seminorms on quasi ∗-algebras

by

Camillo Trapani (Palermo)

Abstract. Different types of seminorms on a quasi ∗-algebra (A,A0) are constructed
from a suitable family F of sesquilinear forms on A. Two particular classes, extended
C∗-seminorms and CQ∗-seminorms, are studied in some detail. A necessary and sufficient
condition for the admissibility of a sesquilinear form in terms of extended C∗-seminorms
on (A,A0) is given.

1. Introduction and basic definitions. Let A0 be a ∗-algebra. A
seminorm p0 on A0 is called a C∗-seminorm if

p0(X∗X) = p0(X)2, ∀X ∈ A0.

This notion, first considered by Fell [8], has been extensively studied in the
literature [6] from several different points of view.

In [12] Yood studied in particular C∗-seminorms on a ∗-algebra A0 that
can be defined via a family F of positive linear functionals on A0 and gave
a characterization of those defined by admissible positive linear function-
als. The importance of admissibility relies on the fact that the Gelfand–
Naimark–Segal construction based on an admissible form produces a
bounded representation.

Further generalizations have led Bhatt, Inoue and Ogi [5] to consider
unbounded C∗-seminorms on a ∗-algebra A0, i.e. C∗-seminorms p defined
only on a ∗-subalgebra D(p) of A0.

In [2], unbounded C∗-seminorms on partial ∗-algebras [1] have also been
studied with the aim of extending some results of representation theory
already known for the case of ∗-algebras.

The main aim of this paper is to extend Yood’s approach also to the
partial algebraic situation. Instead of general partial ∗-algebras, we confine
ourselves to quasi ∗-algebras whose partial algebraic structure is simpler. For
the reader’s convenience we recall the definition (originally due to Lassner
[9, 10]).
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Let A be a linear space and A0 a ∗-algebra contained in A. We say that A
is a quasi ∗-algebra with distinguished ∗-algebra A0 (or, simply, over A0) if:

(i) the right and left multiplications of an element of A by an element
of A0 are always defined and linear;

(ii) an involution * (which extends the involution of A0) is defined in A

with the property (AB)∗ = B∗A∗ whenever the multiplication is defined.

A quasi ∗-algebra (A,A0) is said to have a unit I if there exists an element
I ∈ A0 such that AI = IA = A, ∀A ∈ A. A quasi ∗-algebra (A,A0) is said to
be topological if a locally convex topology ξ is defined in A such that (a) the
involution is continuous and the multiplications are separately continuous;
and (b) A0 is dense in A[ξ].

For the purposes of this paper we need to define certain particular types
of seminorms.

Definition 1.1. Let (A,A0) be a quasi ∗-algebra with unit I and p a
seminorm on A. We say that p is a Q∗-seminorm on (A,A0) if

(Q∗1) p(A) = p(A∗), ∀A ∈ A;
(Q∗2) p(I) = 1;
(Q∗3) for each X ∈ A0 there exists KX > 0 such that

p(AX) ≤ KX p(A), ∀A ∈ A.

If p is a Q∗-seminorm, we can define

p0(X) := max{ sup
p(A)=1

p(AX), sup
p(A)=1

p(XA)};(1)

then p(X) ≤ p0(X) for every X ∈ A0 and

p(AX) ≤ p(A)p0(X), ∀A ∈ A, X ∈ A0.

The seminorm p0 on A0 satisfies: (a) p0(X∗) = p0(X) for every X ∈ A0

and (b) p0(XY ) ≤ p0(X)p0(Y ) for every X,Y ∈ A0, and so it is an m∗-
seminorm on A0.

Definition 1.2. A Q∗-seminorm p is called a CQ∗-seminorm if p0 is a
C∗-seminorm on A0.

If p itself satisfies the C∗-condition when restricted to A0, then we call
it an extended C∗-seminorm on (A,A0). More precisely,

Definition 1.3. A Q∗-seminorm p is called an extended C∗-seminorm if

(C∗1) p(X∗X) = p(X)2, ∀X ∈ A0.

We notice that if p is an extended C∗-seminorm on (A,A0) and p is
submultiplicative, i.e.

p(AX) ≤ p(A)p(X), ∀A ∈ A, X ∈ A0,

then p0(X) = p(X) for every X ∈ A0.
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The paper is organized as follows.
In Section 2, we show that certain families F of sesquilinear forms on a

quasi ∗-algebra (A,A0) always define a quasi ∗-algebra (A(F),A0(F0)) and
a Q∗-seminorm pF to which a C∗-seminorm on A0(F0) is closely linked.
We also give conditions for pF to be an extended C∗-seminorm or a CQ∗-
seminorm. Moreover, we consider some examples constructed with Lp-spaces
or with (partial) ∗-algebras of operators in Hilbert space.

In Section 3 we study the admissibility of families of sesquilinear forms
on (A,A0) and we characterize them in terms of the extended C∗-seminorms
they generate. Furthermore, we examine the C∗-seminorms generated by the
family of all sesquilinear forms that are continuous with respect to a given
seminorm q on A. In particular we give a counterexample that shows that
the starting family F of sesquilinear forms used to define these extended
C∗-seminorms does not exhaust the set of all pF -continuous sesquilinear
forms even in the case of a ∗-algebra.

Finally, in Section 4, we examine, with analogous methods, the construc-
tion of CQ∗-seminorms starting once more from a family F of sesquilinear
forms. This study is of interest for the investigation of auxiliary norms in
CQ∗-algebras [3].

2. Seminorms defined by sesquilinear forms on quasi ∗-algebras

Definition 2.1. Let (A,A0) be a quasi ∗-algebra with unit I. A positive
sesquilinear form Ω on A× A is called left-invariant if

Ω(XA,B) = Ω(A,X∗B), ∀A,B ∈ A, X ∈ A0,(2)

and right-invariant if

Ω(AX,B) = Ω(A,BX∗), ∀A,B ∈ A, X ∈ A0.(3)

The set of all positive, left-invariant (resp. right-invariant) sesquilinear forms
is denoted by Pl (resp. Pr).

Due to positivity, any Ω ∈ Pl is hermitian, i.e. Ω(B,A) = Ω(A,B) for
any A,B ∈ A, and satisfies the Cauchy–Schwarz inequality:

|Ω(A,B)|2 ≤ Ω(A,A)Ω(B,B), ∀A,B ∈ A.(4)

We notice that (2) and (4) imply that the set

N(Ω) = {A ∈ A : Ω(A,A) = 0}
is a left quasi-ideal of A, in the sense that if A ∈ N(Ω) and X ∈ A0 then
XA ∈ N(Ω).

If Ω ∈ Pl, the sesquilinear form Ω∗ defined by

Ω∗(A,B) = Ω(B∗, A∗), A,B ∈ A,
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is positive and right-invariant, i.e. Ω∗ ∈ Pr. For this reason, we will only
work with Pl, since the properties of Pr can be easily derived by taking ∗.

Definition 2.2. An element Ω ∈ Pl is called admissible if for each
A ∈ A there exists KA > 0 such that

Ω(AX,AX) ≤ KAΩ(X,X), ∀X ∈ A0.

The set of all admissible sesquilinear forms in Pl will be denoted with Pal .

If Ω ∈ Pl and A ∈ A, we can define a linear functional ωAΩ on A0 by

ωAΩ(X) = Ω(XA,A), X ∈ A0.

The equality
Ω(X∗XA,A) = Ω(XA,XA)

implies that each ωAΩ is positive on A0, and it is a state if, and only if,
Ω(A,A) = 1.

We put
F0 = {ωAΩ : Ω ∈ F , A ∈ A}.

Following [12], we say that a family K of positive linear functionals on
A0 is balanced if for each ω ∈ K and for each Y ∈ A0, the positive linear
functional ωY defined by

ωY (X) = ω(Y ∗XY ), X ∈ A0,

is still an element of K.
Then it is easy to prove that F0 is balanced. Indeed, one has (ωAΩ)Y =

ωY AΩ for each Y ∈ A0. Then following Yood’s construction, the set

A0(F0) = {X ∈ A0 : sup{ωAΩ(X∗X) : Ω ∈ F , A ∈ A, Ω(A,A) = 1} <∞}
is a ∗-subalgebra of A0 and

|X|F0 = (sup{ωAΩ(X∗X) : Ω ∈ F , A ∈ A, Ω(A,A) = 1})1/2

defines a C∗-seminorm on A0(F0).
Let F ⊆ Pl. For A ∈ A, we put

pRF (A) = sup
Ω∈Fs

Ω(A,A)1/2, pLF (A) = sup
Ω∈Fs

Ω(A∗, A∗)1/2,

where Fs = {Ω ∈ F : Ω(I, I) = 1}. One, or even both, of these numbers
may be ∞. Then we set

AR(F) = {A ∈ A : pRF (A) <∞}, AL(F) = {A ∈ A : pLF(A) <∞}.
Clearly, pRF (A) = pLF (A∗) for each A ∈ A.

Proposition 2.3. Let F ⊆ Pl be a family of sesquilinear forms. Then

(i) AR(F) is a left module over A0(F0) and

pRF(XA) ≤ |X|F0 pRF (A), ∀A ∈ AR(F), X ∈ A0(F0).
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(ii) AL(F) is a right module over A0(F0) and

pLF (AX) ≤ |X|F0 pLF (A), ∀A ∈ AL(F), X ∈ A0(F0).

Proof. It is easy to check that AR(F) is a vector space and that A∗ ∈
AL(F) if, and only if, A ∈ AR(F). Now let X ∈ A0(F0) and A ∈ AR(F); we
first prove that XA ∈ AR(F). If Ω(A,A) = 0, then Ω(XA,XA) = 0 for each
Ω ∈ F , and so pF (XA) = 0. Now let Ω(A,A) > 0. Put B = A/Ω(A,A)1/2.
Then ωBΩ is a state on A0 and belongs to F0. Since

Ω(XA,XA) = ωBΩ(X∗X)Ω(A,A),

it follows that Ω(XA,XA)1/2 ≤ |X|F0 pRF (A) and so

pRF (XA) ≤ |X|F0 pRF (A).(5)

In conclusion, XA ∈ AR(F). Taking adjoints it also follows that if A ∈
AL(F) and X ∈ A0(F), then AX ∈ AL(F) and

pLF (AX) ≤ |X|F0 pLF (A).(6)

Now put

A(F) = AR(F) ∩ AL(F), pF (A) = max{pRF(A), pLF (A)}.
Then A(F) is a ∗-invariant subspace of A but, in general, need not be a
quasi ∗-algebra over A0(F0). Clearly, pF is a seminorm on A(F) satisfying
pF (A∗) = pF (A) for each A ∈ A(F) (we call it a ∗-invariant seminorm) but
an inequality like (5) or (6) does not hold for pF , in general.

There is, however, some special situation. If Ω ∈ Pl and X ∈ A0, we put
ΩX(A,B) := Ω(AX,BX). It is easily seen that ΩX ∈ Pl.

Definition 2.4. Let F ⊆ Pl. We say that F is strongly balanced if for
each Ω ∈ F and each X ∈ A0, the following conditions are satisfied:

(i) ΩX ∈ F .
(ii) If Ω(X,X) = 0 for some X ∈ A0, then Ω(AX,AX) = 0 for any

A ∈ A.

Proposition 2.5. Let F be strongly balanced. Then

pRF (AX) ≤ |X|F0 pRF (A), ∀A ∈ A(F), X ∈ A0(F0),

pLF (XA) ≤ |X|F0 pLF (A), ∀A ∈ A(F), X ∈ A0(F0).

Therefore, in this case, (A(F),A0(F0)) is a quasi ∗-algebra and pF is a
Q∗-seminorm on (A(F),A0(F0)) and

pF (AX) ≤ |X|F0 pF (A), ∀A ∈ A(F), X ∈ A0(F0).

Proof. If Ω(X,X) = 0 for every Ω ∈ F (in particular, if |X|F0 = 0),
then by (ii) of Definition 2.4, for every Ω ∈ F and A ∈ A, Ω(AX,AX) = 0.
Hence pRF (AX) = 0.
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Let now A ∈ A(F), X ∈ A0(F0). For each Ω ∈ F such that Ω(X,X) > 0
we have

Ω(AX,AX) = Ω(AY,AY )Ω(X,X)

with Y = X/Ω(X,X)1/2. Taking the sup over Fs and making use of (i) of
Definition 2.4, we get

pRF(AX) ≤ pRF (X) pRF (A) ≤ |X|F0 pRF(A).

Definition 2.6. We say that a family F ⊆ Pl is well-behaved if

A(F) = AR(F) = AL(F), pF(A) = pRF(A) = pLF(A).

For well-behaved families F Proposition 2.3 gives:

Proposition 2.7. If F is well-behaved , then (A(F),A0(F0)) is a quasi
∗-algebra and

pF (AX) ≤ |X|F0 pF (A),(7)

i.e. pF is a Q∗-seminorm on (A(F),A0(F0)).

Notice that pF(X) ≤ |X|F0 for every X ∈ A0.
We can summarize the previous discussion in the following:

Theorem 2.8. Let (A,A0) be a quasi ∗-algebra and F ⊂ Pl a family of
sesquilinear forms on A× A. Then:

(i) There exists a quasi ∗-algebra (A(F),A0(F0)) contained in (A,A0)
such that pF is a ∗-invariant seminorm on (A(F),A0(F0)).

(ii) If F is well-behaved , then pF is a Q∗-seminorm on (A(F),A0(F0)).
(iii) If F is strongly balanced , then pF is an extended C∗-seminorm on

(A(F),A0(F0)).

Proof. We need only prove (iii). Let F be strongly balanced. Then the
set

Fu = {ωΩ : Ω ∈ F}
is a balanced family of positive linear functionals on A0 in the sense of [12].
Indeed, let ωΩ ∈ Fu and Y ∈ A0. Then, for each X ∈ A0,

ωYΩ(X) = ωΩ(Y ∗XY ) = Ω(Y ∗XY, I) = Ω(XY, Y ) = ΩY (X, I)
and ΩY ∈ F by assumption. Since Fu ⊂ F0, we get

sup
Ω∈Fs

ωΩ(X∗X) <∞, ∀X ∈ A0(F0).

Then it turns out [12, Lemma 2.1] that

puF (X) = sup
Ω∈Fs

ωΩ(X∗X)1/2, X ∈ A0(F0),

is a C∗-seminorm on A0(F0). But clearly puF (X) = pF (X) for every X ∈
A0(F0). Therefore pF is an extended C∗-seminorm on (A(F),A0(F0)).
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A natural question arises: when | |F0 = (pF )0, where (pF )0 is constructed
as in (1) starting from pF? We first notice that (7) implies (pF)0(X) ≤ |X|F0

for every X ∈ A0(F0). Moreover, we have the following

Proposition 2.9. Let F ⊂ Pl be a well-behaved family of sesquilinear
forms and (A(F),A0(F0)) the quasi ∗-algebra constructed as above. The
following statements are equivalent :

(i) |X|F0 = (pF )0(X), ∀X ∈ A0(F0).
(ii) Ω(XA,XA) ≤ (pF)0(X)2Ω(A,A), ∀Ω ∈ F ,X ∈ A0, A ∈ A.

(iii) For each Ω ∈ F and A ∈ A, ωAΩ is (pF)0-continuous.

If any of the previous statements holds then pF is a CQ∗-seminorm on
(A(F),A0(F0)).

Proof. (i)⇒(ii). By the definition of | |F0 itself it follows that

Ω(XA,XA) ≤ (pF )0(X)2Ω(A,A), ∀Ω ∈ F , X ∈ A0, A ∈ A.

(ii)⇒(iii). We have

|ωAΩ(X)| = |Ω(XA,A)| ≤ Ω(XA,XA)1/2Ω(A,A)1/2 ≤ (pF )0(X)Ω(A,A).

Thus each ωAΩ is (pF)0-continuous.
(iii)⇒(i). Assume that each ωAΩ is (pF)0-continuous. Then

|ωAΩ(X)| ≤ ‖ωAΩ‖(pF )0(pF)0(X), ∀X ∈ A0,

where ‖ωAΩ‖(pF )0 = sup{|ωAΩ(X)| : (pF)0(X) = 1}.
By Kaplansky’s inequality, we get

ωAΩ(X∗X) ≤ Ω(A,A)1−2−n(ωAΩ((X∗X)2n))2−n

≤ Ω(A,A)1−2−n(‖ωAΩ‖(pF )0(pF )0((X∗X)2n))2−n.

For n→∞, we have

ωAΩ(X∗X) ≤ Ω(A,A)(pF )0(X∗X).

This implies that (pF)0(X∗X) = |X∗X|F0 = |X|2F0 for each X ∈ A0(F0).
Finally, for each X ∈ A0(F0) we have

(pF )0(X)2 ≥ (pF )0(X∗X) = |X∗X|F0 = |X|2F0 ≥ (pF )0(X)2

and the statement is proved.

Before proceeding we give some examples.

Example 2.10. Let I be a compact interval on the real line and consider
the quasi ∗-algebra (Lp(I), C(I)) where C(I) stands for the ∗-algebra of all
continuous functions on I and Lp(I) is the usual Lp-space on I. We assume
that p ≥ 2. Let w ∈ Lp/(p−2)(I) (we take 1/0 =∞) and w ≥ 0. Then

Ω(w)(f, g) =
�

I

f(x)g(x)w(x) dx, f, g ∈ Lp(I),



106 C. Trapani

defines a left (and right) invariant positive sesquilinear form on Lp(I). If
w ∈ L∞(I), then Ω(w) is admissible.

We put
F = {Ω(w) : w ∈ Lp/(p−2)(I), w ≥ 0}.

It is easy to see that F is strongly balanced and that Ω(w) ∈ Fs if, and only
if, ‖w‖1 = 1. Now, for each w ∈ Lp/(p−2)(I) such that w ≥ 0, ‖w‖1 = 1 and
for each φ ∈ C(I) and f ∈ Lp(I) we have

Ω(w)(φf, φf) =
�

I

|φ(x)|2|f(x)|2w(x) dx ≤ ‖φ‖2∞
�

I

|f(x)|2w(x) dx.

Thus A0(F0) = C(I) and |φ|F0 ≤ ‖φ‖∞.
It is easy to see that the C∗-seminorm | |F0 is a norm that makes C(I)

a normed algebra [7, Ch. VII]. Therefore [11, Theorem 1.2.4], |φ|F0 = ‖φ‖∞
for every φ ∈ C(I).

On the other hand,

A(F) =
{
f ∈ Lp(I) : sup

‖w‖1=1

�

I

|f(x)|2w(x) dx <∞
}

= L∞(I).

Therefore, the extended C∗-seminorm pF coincides with the L∞-norm.

Example 2.11. Let D be a dense domain in H. As usual, L+(D,H)
(see e.g. [1]) denotes the space of all closable operators A in H such that
D(A) = D and D(A∗) ⊇ D. The equality A+ = A∗�D defines an involution
in L+(D,H). Let

B(D) = {X ∈ L+(D,H) : X is bounded and X : D → D, X+ : D → D}.
Then B(D) is a ∗-algebra and

(
L+(D,H),B(D)

)
is a quasi ∗-algebra under

the weak multiplication:

A�Bf = ABf, B �Af = BAf, A ∈ L+(D,H), B ∈ B(D).

If f ∈ D, we put
Ωf (A,B) = 〈Af,Bf〉.

Then each Ωf is left-invariant.
Let now M be a subspace of D and let

FM = {Ωf : f ∈M}.
Then A0(F0) = B(D) and

pRFM(A) = sup
Ω∈(FM)s

Ω(A,A)1/2 = ‖A�M‖,

pLFM(A) = sup
Ω∈(FM)s

Ω(A∗, A∗)1/2 = ‖A∗�M‖.

Thus

A(F) = {A ∈ L+(D,H) : A�M and A∗�M are bounded}.



Seminorms on quasi ∗-algebras 107

The corresponding seminorm pFM is a ∗-invariant seminorm but not, in
general, a Q∗-seminorm. IfM = D, then A(F) = A0(F0) = B(D) and pF is
a C∗-seminorm.

As in Example 2.10, when A0 is a Banach ∗-algebra, the situation sim-
plifies:

Proposition 2.12. Assume A0 is a Banach ∗-algebra with unit. Then
A0(F0) = A0 for every family F ⊆ Pl.

Proof. Let Ω ∈ F . For each A ∈ A, the functional ωAΩ(X) = Ω(XA,A)
is positive on A0 and so it is continuous. Then

ωAΩ(X∗X) ≤ ωAΩ(I)‖X∗X‖ ≤ Ω(A,A)‖X‖2, ∀X ∈ A0.

Therefore, A0 = A(F0).

The following lemma, already proven in [2] for unbounded C∗-seminorms
on partial ∗-algebras, allows the construction of a C∗-algebra starting from
an extended C∗-seminorm p on a quasi ∗-algebra (A,A0) at least when A0 is
p-dense in A, by which we mean that for each A ∈ A there exists a sequence
{An} ⊂ A0 such that p(A − An) → 0. The proof is similar to that given in
[2] and we omit it.

Proposition 2.13. Let p be an extended C∗-seminorm on (A,A0) and
assume that A0 is p-dense in A. Denote by Â the set of all Cauchy sequences
in A with respect to the seminorm p and define an equivalence relation in Â
by {An} ∼ {Bn} iff limn→∞ p(An −Bn) = 0. Then:

(1) The quotient space Â/∼ is a ∗-algebra under the following operations,
involution and norm:

{An}∼ + {Bn}∼ ≡ {An +Bn}∼, λ{An}∼ ≡ {λAn}∼,
{An}∼{Bn}∼ ≡ {XnYn}∼,

where {Xn} and {Yn} in A0 are such that {Xn}∼ ≡ {An}∼ and {Yn}∼ ≡
{Bn}∼, and

{An}∼∗ ≡ {A∗n}∼, ‖{An}∼‖p ≡ lim
n→∞

p(An).

(2) If for each A ∈ A we put

Ã = {An}∼ (An = A, n ∈ N), Ã = {Ã : A ∈ A},
then Ã is a dense ∗-invariant subspace of Â/∼ satisfying ÃB̃ = (AB)∼

whenever A ∈ A0.

3. Admissibility and continuity. In this section we try to character-
ize positive sesquilinear forms that are admissible. Admissibility is an impor-
tant concept since it implies the boundedness of certain *-representations
of A.
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Proposition 3.1. Let F ⊆ Pl be strongly balanced. If A(F) = A, then
each Ω ∈ F is admissible.

Proof. Without loss of generality we may assume that Ω(I, I) = 1. Now,
suppose that the statement is false. Then there would be A ∈ A such that
for each n ∈ N we could find Xn ∈ A0 with

Ω(AXn, AXn) > nΩ(Xn,Xn).

We have Ω(Xn,Xn) > 0, since otherwise Ω(AXn, AXn) = 0 by (ii) of Def-
inition 2.4. Thus we can define Yn = Xn/Ω(Xn,Xn)1/2. Then ΩYn ∈ Fs
(because F is strongly balanced and ΩYn(I, I) = 1). But ΩYn(A,A) > n so
that A 6∈ A(F) = A and this is a contradiction.

Let q be a seminorm on (A,A0). A sesquilinear form Φ is said to be
continuous with respect to q, or simply q-continuous, if there exists K > 0
such that

|Φ(A,B)| ≤ Kq(A)q(B), ∀A,B ∈ A,(8)

or, equivalently,
Φ(A,A) ≤ Kq(A)2, ∀A ∈ A.

The infimum of all positive constants for which (8) holds will be denoted by
‖Φ‖q.

In what follows we assume that q is a Q∗-seminorm on (A,A0) and we
denote by C(q) the set of all q-continuous elements of Pl. It is easy to see
that for each Φ is in C(q), the form ΦX is in C(q) for every X ∈ A0 (but
C(q) is not necessarily strongly balanced, since (i) of Definition 2.4 may fail).
Moreover ‖ΦX‖q ≤ ‖Φ‖q q(X)2 for each Φ ∈ C(q) and X ∈ A0.

By Theorem 2.8, A(C(q)) is a quasi ∗-algebra over A0(C(q)0). Since q
is a Q∗-seminorm, we have A0(C(q)0) = A0. Indeed, in this case, for each
Ω ∈ C(q) and A ∈ A, the linear form ωAΩ is q0-continuous (q0 being defined
as in (1)), since

|ωAΩ(X)| = |Ω(XA,A)| ≤ Kq0(X)q(A)2, ∀X ∈ A0.

This implies that

|ωAΩ(X)| ≤ ωAΩ(I)q0(X), ∀X ∈ A0.

Therefore

sup{ωAΩ(X∗X) : A ∈ A, Ω(A,A) = 1} ≤ q0(X∗X), ∀X ∈ A0,

and this implies the statement.
In order to describe admissibility, we consider some special subsets of

C(q). Let
C0(q) = {Ω ∈ C(q) : ‖Ω‖q = Ω(I, I)},
Ce(q) = {Ω ∈ C0(q) : ΩX ∈ C0(q), ∀X ∈ A0}.
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Let F ⊂ C0(q). In this case we have

pLF (A) = sup
Ω∈Fs

Ω(A,A)1/2 ≤ q(A), ∀A ∈ A.

So A(F) = A and therefore pF is a ∗-invariant seminorm on A (but not
necessarily a Q∗-seminorm).

If G is another subset of C0(q) with F ⊂ G, we have

pF (A) ≤ pG(A), ∀A ∈ A.

In conclusion, for each F ⊂ C0(q) we get

pF (A) ≤ pC0(q)(A) ≤ q(A), ∀A ∈ A.(9)

Lemma 3.2. If Ω ∈ Ce(q), then Ω is admissible, i.e. Ce(q) ⊂ Pal .

Proof. If Ω ∈ Ce(q), then ΩX ∈ C0(q) for each X ∈ A0. Thus ‖ΩX‖ =
ΩX(I, I). This implies that

Ω(AX,AX) ≤ Ω(X,X)q(A)2, A ∈ A,

and therefore Ω is admissible.

From this lemma it follows that Ce(q) is strongly balanced and therefore,
by Theorem 2.8(iii), pCe(q) is an extended C∗-seminorm. More generally, if
F ⊂ C0(q) is strongly balanced then F ⊆ Ce(q), pF is an extended C∗-
seminorm and

pF (A) ≤ pCe(q)(A) ≤ pC0(q)(A) ≤ q(A), ∀A ∈ A.(10)

Proposition 3.3. Let Ω ∈ Pl. A necessary and sufficient condition for
Ω to be admissible is that there exists an (everywhere defined) extended
C∗-seminorm q on (A,A0) such that Ω ∈ Ce(q).

Proof. We only need to prove the necessity. Let Ω be admissible, i.e.
Ω ∈ Pal . Put F = {ΩX : X ∈ A0}. Then F is strongly balanced. The admis-
sibility of Ω implies that

pLF (A)2 = sup
Ω∈Fs

Ω(A,A)

is finite for each A ∈ A. Thus A(F) = A. If we define, as before,

pF(A) = max{pLF (A), pRF(A)}, A ∈ A,

then pF is an extended C∗-seminorm on (A,A0). Clearly Ω is pF -continuous
and ‖Ω‖pF = Ω(I, I). Thus Ω ∈ Ce(pF).

The discussion so far applies to the particular case where q = pF for some
subset F of Pl. In this case, each Ω ∈ F is pF -continuous on (A(F),A0(F0));
i.e., F ⊆ C(pF). Moreover, for each Ω ∈ Fs, we have ‖Ω‖pF = 1. Indeed, by
the Cauchy–Schwarz inequality, for any A,B ∈ A(F) we have

|Ω(A,B)|2 ≤ Ω(A,A)Ω(B,B) ≤ pF (A)2pF (B)2.
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Thus ‖Ω‖pF ≤ 1; but sinceΩ(I, I) = 1, the equality follows. This also implies
that ‖Ω‖pF = Ω(I, I) for each Ω ∈ F . Thus F ⊂ C0(pF ).

In particular, if F is strongly balanced, then by (10) we get

pF (A) = pCe(pF )(A) = pC0(pF )(A), ∀A ∈ A,

and by Proposition 3.3, each Ω ∈ F is admissible on (A(F),A0(F0)). In
Example 3.11 it is shown that F 6= Ce(pF ), in general.

Summarizing the previous results we have:

Proposition 3.4. Let F be a strongly balanced subset of Pl. Then each
Ω ∈ F is admissible on (A(F),A0(F0)).

We now return to the general situation and look for conditions under
which C(q) = C0(q), as it happens for the sets of positive linear forms on a
∗-algebra defined in an analogous way.

Proposition 3.5. Let q be an extended C∗-seminorm on (A,A0) and Φ
be a q-continuous sesquilinear form on (A,A0). Assume that A0 is q-dense
in A. If Φ(I, I) = 1, then

|Φ(A,B)| ≤ q(A)q(B), ∀A,B ∈ A.(11)

Proof. We begin by proving (11) for A,B ∈ A0. Indeed, put

ω(A) = Φ(A, I), A ∈ A0.

Thus, as shown in [12],

|ω(A)| ≤ q(A), ∀A ∈ A0.

Then, for any A,B ∈ A0, we have

|Φ(A,B)| = |ω(B∗A)| ≤ q(B∗A) ≤ q(A)q(B).

Now, let A,B ∈ A. Then there exist sequences (An), (Bn) in A0 such that
q(A− An)→ 0 and q(B −Bn)→ 0. By some simple estimates and making
use of the q-continuity of Φ, one can easily prove that

Φ(A,B) = lim
n→∞

Φ(An, Bn).

So finally

|Φ(A,B)| = lim
n→∞

|Φ(An, Bn)| ≤ lim
n→∞

q(An)q(Bn) = q(A)q(B).

Corollary 3.6. Assume that (A,A0) is a normed quasi ∗-algebra (i.e.
a topological quasi ∗-algebra whose topology is defined by a norm ‖ · ‖) and
q an extended C∗-seminorm on (A,A0) such that for some C > 0,

q(A) ≤ C‖A‖, ∀A ∈ A.

Then the conclusion of Proposition 3.5 holds.

Proof. It is sufficient to observe that, in this case, A0 is q-dense in A.
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Remark 3.7. We notice that the q-density of A0 in A is quite a strong
condition. For instance, if {A ∈ A : q(A) = 0} = {0}, then q is a C∗-norm
on A0. The q-density of A0 then forces A to be embedded in a C∗-algebra
(its completion).

We conclude our discussion with the following

Theorem 3.8. Let q be an extended C∗-seminorm on (A,A0) and as-
sume that A0 is q-dense in A. Then:

(i) C(q) = Ce(q).
(ii) supΩ∈C(q)s Ω(X,X) = supΩ∈C(q)s Ω(X∗,X∗), ∀X ∈ A.

(iii) If F = C(q), then A(F) = A, A0(F0) = A0 and

q(X)2 = sup
Ω∈C(q)s

Ω(X,X), ∀X ∈ A.(12)

Proof. (i) From Proposition 3.5, it follows that for each Ω ∈ C(q),
‖Ω‖q = Ω(I, I). Thus C(q) = C0(q). But C(q) satisfies (ii) of Definition 2.4,
so finally C(q) = C0(q) = Ce(q) and each Ω ∈ C(q) is admissible.

(ii) We first show that the equality holds for X ∈ A0. To do this we
consider the family of linear functionals {ωΩ : Ω ∈ C(q)}. Then the desired
equality follows immediately from the corresponding equality for balanced
families of linear functionals, shown in [12].

To extend the equality to X ∈ A, we proceed as follows: the q-density
of A0 in A implies that for each X ∈ A there exists a sequence {Xn} ⊂ A0
such that q(X − Xn) → 0. Then, for each ε > 0, there exists nε ∈ N such
that for every n > nε,

|Ω(X,X)−Ω(Xn,Xn)| ≤ 2(q(X) + ε)q(X −Xn), ∀Ω ∈ C(q)s,
where we have also made use of (i). This implies that

sup
Ω∈C(q)s

Ω(X,X) = lim
n→∞

sup
Ω∈C(q)s

Ω(Xn,Xn).

This easily yields the equality

sup
Ω∈C(q)s

Ω(X,X) = sup
Ω∈C(q)s

Ω(X∗,X∗), ∀X ∈ A.

(iii) The equalities A(F) = A, A0(F0) = A0 are obvious. In order to
prove (12), we observe that if φ = {W ∈ A : q(W ) = 0}, then A/φ is
a normed space under the norm ‖X + W‖ = q(X) for all X ∈ A and
W ∈ φ. Its completion is a C∗-algebra, due to the q-density of A0 in A.
Then an argument completely analogous to that of [12, Theorem 2.5] can
be applied.

Example 3.9. In this example we will consider the special case A = A0,
i.e. A is a ∗-algebra with unit and q is a C∗-seminorm on A. In this case
there is one-to-one correspondence between left-invariant positive sesqui-
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linear forms and positive linear functionals on A. Indeed, if Ω is a left-
invariant positive sesquilinear form then

ωΩ(A) = Ω(A, I), A ∈ A,

is a positive linear functional on A. Conversely, if ω is a positive linear
functional on A, then

Ω(A,B) = ω(B∗A), A,B ∈ A,

defines a left-invariant positive sesquilinear form on A× A.
If Ω is q-continuous, then also ωΩ is q-continuous, in the sense that there

exists a K > 0 such that

|ωΩ(A)| ≤ Kq(A), ∀A ∈ A.

If ‖ωΩ‖0q denotes the infimum of these K’s, then ‖ωΩ‖0q = ‖Ω‖q = Ω(I, I).
Therefore C(q) = C0(q) = Ce(q) (the last equality is due to the fact that
C(q) is strongly balanced).

Example 3.10. Let H be a Hilbert space and let A ⊆ B(H) be any
∗-algebra of bounded operators with unit. If f ∈ H, we put

Ωf (A,B) = 〈Af,Bf〉, A,B ∈ A.

Then each Ωf is left-invariant and the set F = {Ωf : f ∈ H} is strongly
balanced. In this case A(F) = A0(F0) = A and pF (A) = ‖A‖ for A ∈ A. The
set C(pF) consists of all sesquilinear forms Φ for which there exists K > 0
such that

Φ(A,B) ≤ K‖A‖ ‖B‖, ∀A,B ∈ A.

This set properly contains F , in general. As seen in Example 3.9, in this
case C(pF) = C0(pF ) = Ce(pF) and

pF (A) = pC(A) = ‖A‖, ∀A ∈ A.

Example 3.11. Let A be a bounded self-adjoint operator with contin-
uous spectrum σ ⊂ R and let C(σ) denote the ∗-algebra of all continuous
functions on the compact set σ with its usual sup norm ‖ ‖∞. Let

M = {f(A) : f ∈ C(σ)},
where f(A) is defined via the functional calculus. As is known, each f(A)
is bounded and ‖f(A)‖ = ‖f‖∞. Then M is a C∗-algebra of operators. We
take as F the family of sesquilinear forms considered in Example 3.10.

Fix λ0 ∈ σ. We define a sesquilinear form Ωλ0 by

Ωλ0(f(A), g(A)) = f(λ0)g(λ0), f, g ∈ C(σ).

Then Ωλ0 is positive, left-invariant and bounded. Indeed,

|Ωλ0(f(A), g(A))| = |f(λ0)g(λ0)| ≤ ‖f‖∞‖g‖∞
= ‖f(A)‖ ‖g(A)‖, f, g ∈ C(σ).
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This implies that ‖Ωλ0‖pF ≤ 1. In fact, it is easy to realize that equality
holds true. We now show that it is not possible to find η ∈ H such that

Ωλ0(f(A), g(A)) = 〈f(A)η, g(A)η〉, ∀f, g ∈ C(σ).

Indeed, if E(·) denotes the spectral measure of A, we would have

Ωλ0(f(A), g(A)) = 〈f(A)η, g(A)η〉
=

�

σ

f(λ)g(λ)d〈E(λ)η, η〉 = f(λ0)g(λ0), ∀f, g ∈ C(σ),

and this is possible only if λ0 is an eigenvalue of A. This example shows
that, in general, F 6= Ce(pF ).

4. CQ∗-seminorms on quasi ∗-algebras. Let q be a Q∗-seminorm
on (A,A0) and C(q) the set of all q-continuous sesquilinear forms in Pl. If
F ⊂ C(q), we put Fu = {Ω ∈ F : ‖Ω‖q = 1}. Define

πF(A) = max{ sup
Ω∈Fu

Ω(A,A)1/2, sup
Ω∈Fu

Ω(A∗, A∗)1/2}.

By the q-continuity of each Ω ∈ F , we have πF(A) ≤ q(A) for every A ∈ A;
therefore πF is an everywhere defined seminorm on A. Obviously, πF(A∗) =
πF(A) for each A ∈ A; hence πF is ∗-invariant. For simplicity, in what follows
we will assume that

πF(A) = sup
Ω∈Fu

Ω(A,A)1/2, ∀A ∈ A.

Since Ω(I, I) ≤ ‖Ω‖q for every Ω ∈ F , it also follows that

πF(A) ≤ pF(A), ∀A ∈ A.

Analogously, for each Ω ∈ F and A ∈ A, the positive linear functional ωAΩ
is q0-continuous, since

|ωAΩ(X)| ≤ ‖Ω‖qq0(X)q(A)2, ∀X ∈ A0.

Therefore A0(F0) = A0 and |X|F0 ≤ q0(X) for every X ∈ A0.

Proposition 4.1. The following inequalities hold :

πF(XA) ≤ |X|2F0πF(A), πF(AX) ≤ |X|2F0πF(A), ∀A ∈ A, X ∈ A0.

Thus πF is a Q∗-seminorm on (A,A0). Moreover (πF)0(X) = |X|F0 for
each X ∈ A0. Therefore πF is a CQ∗-seminorm on (A,A0).

Proof. As in the proof of Proposition 2.8, taking into account that for
each Ω ∈ F , A ∈ A the form ωAΩ is ‖ ‖F0-continuous we get, for each n ∈ N,

Ω(XA,XA) ≤ Ω(A,A)1−2−n(‖ωAΩ‖F0 |(X∗X)2n |2−nF0 ), ∀X ∈ A0.

Letting n→∞, we have

Ω(XA,XA) ≤ |X∗X|F0 Ω(A,A).
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This in turn implies that

πF(XA) ≤ |X|2F0πF(A), ∀A ∈ A, X ∈ A0.

From this estimate it also follows that (πF)0(X) ≤ |X|F0 for each X ∈ A0.
To complete the proof we only need to prove the opposite inequality. For

this we observe that for Ω ∈ F , one has

|Ω(XA,A)| ≤ ‖Ω‖qπF(XA)πF(A) ≤ ‖Ω‖q(πF)0(X)πF(A)2

for each X ∈ A0(F0) and A ∈ A; therefore each ωAΩ is (πF)0-continuous.
Then proceeding as before we can prove

ωAΩ(X∗X) = Ω(XA,XA) ≤ (πF)0(X∗X)Ω(A,A),

and this implies that

|X|F0 ≤ (πF)0(X), ∀X ∈ A0.

In conclusion, πF is a CQ∗-seminorm on (A,A0), for any F ⊂ C(q).
The maximal such seminorm is obtained, of course, for F = C(q). So the
question arises whether πC(q) = q. We do not have a complete answer to this
question. We only mention that also in simple cases very extreme situations
may occur, as the next example shows.

Example 4.2. We consider once more the situation of Example 2.10,
i.e. the quasi ∗-algebra (Lp(I), C(I)) with p ≥ 2. Each sesquilinear form
Ω(w) ∈ F is continuous with respect to the Lp-norm ‖ ‖p (which we take
as the q of the previous discussion). In this case, ‖ ‖p is a CQ∗-norm and
one finds that πF(f) = ‖f‖p for every f ∈ Lp(I) and (πF)0(φ) = ‖φ‖∞ for
every φ ∈ C(I).

If 1 ≤ p < 2, the Lp-norm is still a CQ∗-norm. But C(q) = {0} and so
πF(f) = 0 for each f ∈ Lp(I). For the details we refer to [4].
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