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Optimal domains for the kernel operator
associated with Sobolev’s inequality

by

Guillermo P. Curbera (Sevilla) and Werner J. Ricker (Eichstätt)

Abstract. Refinements of the classical Sobolev inequality lead to optimal domain
problems in a natural way. This is made precise in recent work of Edmunds, Kerman
and Pick; the fundamental technique is to prove that the (generalized) Sobolev inequality
is equivalent to the boundedness of an associated kernel operator on [0, 1]. We make a
detailed study of both the optimal domain, providing various characterizations of it, and
of properties of the kernel operator when it is extended to act in its optimal domain. Several
results are devoted to identifying the maximal rearrangement invariant space inside the
optimal domain. The methods and techniques used involve interpolation theory, Banach
function spaces and vector integration.

Introduction. In 1938 Sobolev proved the following inequality, valid
for differentiable functions f on a bounded domain Ω in Rn with n ≥ 2:

‖f‖Lq(Ω) ≤ C
∥∥|∇f |

∥∥
Lp(Ω), f ∈ C1

0(Ω),(1)

where 1 < p < n, q := np/(n − p) and C > 0 is a constant depending on p
and n. In the limiting case, when p = n, the result fails, i.e. we cannot take
q =∞. Indeed, in [25] Trudinger showed

‖f‖Lϕ(Ω) ≤ C
∥∥|∇f |

∥∥
Ln(Ω), f ∈ C1

0(Ω),

where Lϕ(Ω) is the Orlicz space given by ϕ(t) = exp(tn
′
) − 1 and n′ :=

n/(n − 1) is the conjugate exponent of n. This result opened the way to
refining Sobolev’s inequality; one seeks a smaller range space for a given
fixed domain space, or a bigger domain space for a given fixed range space.
Thereby, the problems arise of determining the optimal range space and the
optimal domain space for Sobolev’s inequality. In this regard, see also the
recent work [20].
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Such optimality problems have to be considered within a particular class
of spaces. We may choose the class of Lebesgue spaces. In this context, for in-
equality (1) the space Lq(Ω) with q := np/(n−p) is the optimal range space
given the fixed domain space Lp(Ω), 1 < p < n. In the class of Orlicz spaces,
the space Lϕ(Ω) with ϕ(t) = exp(tn

′
)−1 and n′ := n/(n−1) is the optimal

range space for the fixed domain space Ln(Ω) (see [11]). The optimal range
problem within the class of Orlicz spaces has been studied by Cianchi [4].

In the other direction, Edmunds, Kerman and Pick studied the optimal
domain problem, for inequality (1), within the class of rearrangement in-
variant (briefly, r.i.) spaces [10]. They consider r.i. norms %R and %D and a
generalized Sobolev inequality

%R(f∗) ≤ C%D(|∇f |∗), f ∈ C1
0(Ω),(2)

where f∗ and |∇f |∗ are, respectively, the decreasing rearrangements of f
and its gradient |∇f |. Using results of Talenti, they show (for |Ω| = 1) that
(2) is equivalent to boundedness of the kernel operator T associated with
Sobolev’s inequality, namely

Tf(t) =
1�
t

f(s)s(1/n)−1 ds, t ∈ [0, 1],(3)

acting between the function spaces on [0,1] with norms %R and %D, that is,
%R(Tf) ≤ K%D(f) [10, Theorem 6.1]. For a fixed r.i. norm %R they determine
the smallest norm %D for which (2) holds (i.e. the optimal domain) [10,
Theorem 4.1], namely

%D(f) := %R

(
t 7→

1�
t

|f(s)|s(1/n)−1 ds
)
.

Our aim is to identify such optimal domains, and related spaces, and to study
their properties in terms of the properties of the range space X. Given a
r.i. space X on [0, 1] with norm %, i.e., X = (L1, L∞)%, let [T,X] denote
the optimal lattice domain corresponding to the imbedding (2), that is, the
maximal Banach function space on [0, 1] to which T can be extended as
a continuous linear operator, with values still in X [8, Section 3]. Various
equivalent descriptions of the optimal domain [T,X] can be formulated. The
kernel

K(t, s) := s(1/n)−1χ[t,1](s), (t, s) ∈ [0, 1]× (0, 1],(4)

generates the operator (3). Since K is non-negative, [T,X] = {f : T |f | ∈ X}
[8, Proposition 5.2]. Moreover, K satisfies the conditions of [8, Theorem 5.12]
and so

[T,X] = (L1(s1/nds), L1(s(1/n)−1ds))%,

where this last interpolation space is obtained via the K-functional and the
r.i. norm % [2, V.1].



Optimal domains for Sobolev’s inequality 133

An alternative description of the optimal domain space [T,X] is possible
in terms of the L1-space of the associated vector measure νX . Indeed, put
f = χA in (3), for A ∈ B (the σ-algebra of all Borel sets in [0, 1]). Then
T (χA) ∈ C([0, 1]) ⊂ X and the X-valued set function

νX : A 7→ νX(A) := T (χA)(5)

is countably additive, i.e. it is a vector measure in X. Let L1(νX) denote the
space of all νX -integrable functions, equipped with the topology of conver-
gence in mean (see Section 1). For general X-valued measures ν associated
with a kernel operator S, we always have L1(ν) ⊂ [S,X], but the inclusion
may be proper [8, Remark 5.3]. Equality occurs whenever X has absolutely
continuous (briefly, a.c.) norm [8, Proposition 5.2]. It will be shown (Propo-
sition 3.5), for the particular kernel operator (3) associated with Sobolev’s
inequality, that

[T,X] = L1(νX),

without any restrictions on X. With this result, we will be able to apply
the theory and techniques used in our study of L1(νX) (see [8]) to the
space [T,X]. The important point in this regard is that the integration
operator f 7→ � f dνX , for f ∈ L1(νX), is precisely the restriction of the
kernel operator T given in (3) to L1(νX).

This provides a strong motivation to better understand the Banach func-
tion spaces L1(νX), the associated integration operator, and the connec-
tions to properties of the underlying r.i. space X. The optimal domain
space [T,X] = L1(νX) need not be r.i. The final sections contain vari-
ous results identifying the largest r.i. space inside [T,X]. For instance, it
is shown that if the dilation exponents of the function ϕ determining the
Marcinkiewicz space X := Mϕ satisfy 1/n < γϕ ≤ δϕ < 1, then the largest
r.i. space inside [T,X] is the Marcinkiewicz space MΦ, where Φ is equivalent
to t 7→ t−1/nϕ(t); the space [T,X] itself is not r.i., that is, the inclusion
MΦ ⊂ [T,X] is proper.

1. Preliminaries. A r.i. space X on [0, 1] is a Banach space of inte-
grable functions on [0, 1] which contains the simple functions, has the prop-
erty that g ∈ X and ‖g‖ ≤ ‖f‖ whenever f ∈ X and |g| ≤ |f |, satisfies
the Fatou property, and has the property that whenever f ∈ X and g is
equimeasurable with f , then g ∈ X and ‖g‖ = ‖f‖. In particular, if f ∗ is
the decreasing rearrangement of f ∈ X, then f ∗ ∈ X with ‖f∗‖ = ‖f‖ [2,
I.1.1; II.4.1]. Hence, L∞([0, 1]) ⊂ X ⊂ L1([0, 1]) continuously. The closure
of L∞([0, 1]) in X is denoted by Xb; it is again a r.i. space. The associate
space X ′ of X is the space of functions g on [0, 1] such that fg ∈ L1([0, 1])
for every f ∈ X [2, II.4.2].
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Let ϕ be an increasing, concave function on [0, 1] with ϕ(0) = 0. The
Lorentz space Λϕ associated to ϕ, for short Λ, is defined by

Λϕ :=
{
f : ‖f‖Λϕ :=

1�
0

f∗(s) dϕ(s) <∞
}
,

and the Marcinkiewicz space Mϕ associated to ϕ is given by

Mϕ :=
{
f : ‖f‖Mϕ := sup

0<t≤1

1
ϕ(t)

t�
0

f∗(s) ds <∞
}
.

Both are r.i. spaces and (Λϕ)′ = Mϕ [13, p. 112]. We also consider such spaces
for a quasiconcave function ϕ (concavity is replaced with ϕ(t)/t decreasing)
since, in this case, there is an equivalent concave function [13, p. 49]. If
two functions are equivalent [13, p. 48], then the corresponding Lorentz and
Marcinkiewicz spaces are isomorphic.

The fundamental function ϕX of a r.i. space X is defined by ϕX(s) :=
‖χ[0,s]‖X . It is increasing, quasiconcave with ϕX(0+) := limt→0+ ϕX(t) ≥ 0.
We may assume ϕX is concave [2, II.5.11]. The space ΛX := Λϕ (for ϕ =
ϕX) is the smallest r.i. space having fundamental function ϕX . The space
MX := Mϕ (for ϕ(t) = t/ϕX(t)) is the largest r.i. space having fundamental
function ϕX . By a result of Semenov, ΛX ↪→ X ↪→ MX [13, pp. 118–119].
The space X is isomorphic to L∞([0, 1]) if and only if ϕX(0+) > 0 [23,
Lemma 3, p. 220].

We briefly recall the theory of integration of real functions with respect
to a vector measure, initially due to Bartle, Dunford and Schwartz [1]. Let
(Ω,Σ) be a measurable space,X a Banach space and ν : Σ → X a countably
additive vector measure. Let X∗ be the dual space of X and, for each x∗ ∈
X∗, denote the R-valued measure A 7→ 〈x∗, ν(A)〉 by x∗ν and its variation
measure by |x∗ν|. A measurable function f : Ω → R is integrable with
respect to ν if f ∈ L1(|x∗ν|) for every x∗ ∈ X∗, and for each A ∈ Σ there
exists a vector in X (denoted by � A f dν) such that 〈 � A f dν, x∗〉 = � A f dx∗ν
for every x∗ ∈ X∗ (see [14]). The ν-integrable functions form a linear space
in which

‖f‖ν := sup
{ �
|f | d|x∗ν| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}

is a seminorm. A set A ∈ Σ is ν-null if |x∗ν|(A) = 0 for every x∗ ∈ X∗.
Identifying functions which differ on a ν-null set, we obtain a Banach

space (of classes) of ν-integrable functions, denoted by L1(ν). It is a Banach
function space [5, Theorem 1] for the ν-a.e. order, and has a.c. norm, i.e.,
order bounded, increasing sequences are norm convergent. Simple functions
are dense in L1(ν) and the ν-essentially bounded functions are contained in
L1(ν). The integration operator Iν from L1(ν) to X is defined by f 7→ � f dν.
It is continuous, linear and of norm at most one. No assumptions have been
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made on the variation measure |ν| of ν in the definition of L1(ν). In general
L1(|ν|) ⊂ L1(ν) [15, Theorem 4.1]. For further details concerning L1(ν)
see [5], [6], [18]. Such spaces L1(ν) can be quite different from the classical
L1-spaces of scalar measures and may be difficult to identify explicitly [7].
Indeed, every Banach lattice with a.c. norm and having a weak unit (e.g.
L2([0, 1])) is the L1-space of some vector measure [5, Theorem 8].

In general we will follow the notation in [2], [9], [13] and [16].

2. Basic results for X = L∞([0, 1]). To undertake a more detailed
study of the kernel operator T associated to Sobolev’s inequality, we first
consider the case X = L∞([0, 1]).

The vector function F associated to the kernel (4) is given by

F (s) = s(1/n)−1χ[0,s](t), s ∈ (0, 1], t ∈ [0, 1].(6)

It is L∞([0, 1])-valued and satisfies ‖F (s)‖∞ = s(1/n)−1. The vector mea-
sure ν (see (5)) associated to T for X = L∞([0, 1])) is given by

ν(A)(t) =
1�
t

χA(s)s(1/n)−1 ds, 0 ≤ t ≤ 1, A ∈ B.(7)

It takes its values in C([0, 1]) ⊂ L∞([0, 1]) and is σ-additive because

‖ν(A)‖∞ =
∥∥∥

1�
(·)
χA(s)s(1/n)−1 ds

∥∥∥
∞

=
�
A

s(1/n)−1 ds.(8)

The next result collects some basic properties of ν. For the notion of a
Banach space valued function on [0, 1] being Bochner or Pettis λ-integrable
(for Lebesgue measure λ) we refer to [9].

Proposition 2.1. Let ν be the L∞([0, 1])-valued vector measure (7).

(a) The measure ν has bounded variation, with |ν|(A) = � A s(1/n)−1 ds
for A ∈ B, and the range of ν is relatively compact in L∞([0, 1]).

(b) The function F : [0, 1]→ L∞([0, 1]) is Pettis λ-integrable and

ν(A) =
�
A

F dλ, A ∈ B.

(c) The function F has non-separable range, and hence is not strongly
measurable. In particular , F is not Bochner λ-integrable.

(d) L1(ν) is equal to L1(|ν|) = L1(s(1/n)−1 ds). Moreover , the optimal
domain is given by [T,L∞([0, 1])] = L1(ν).

Proof. (a) The first claim is immediate from (8). As for the second claim,
it is clear from (7) that ν takes its values in C([0, 1]) and satisfies ν(A)(t) =

� AK(t, s) ds for t ∈ [0, 1] and A ∈ B, where K is the kernel (4). The result
then follows from [8, Proposition 4.1].
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(b) We first verify that F is weakly integrable. Let x∗ ∈ L∞([0, 1])∗;
we can suppose that x∗ ≥ 0. The function s ∈ (0, 1] 7→ 〈F (s), x∗〉 =
s(1/n)−1x∗(χ[0,s]) is measurable. Its λ-integrability follows from

|〈F (s), x∗〉| ≤ ‖F (s)‖∞‖x∗‖ = s(1/n)−1‖x∗‖.(9)

Hence, F : (0, 1] → L∞([0, 1]) is Dunford-integrable with respect to λ [9,
pp. 52–56]. This implies that the operator S : L∞([0, 1])∗ → L1([0, 1]) given
by Sx∗ = 〈F (·), x∗〉 is well defined. Moreover, (9) shows that S is weakly
compact, since the image of the unit ball is uniformly integrable. Hence,
since F is defined on a separable measure space, it follows by [12, Corollary
4] that F is Pettis λ-integrable.

To verify ν = � F dλ, define m(A) = � A F dλ for A ∈ B. As F is Pettis
λ-integrable, the Orlicz–Pettis theorem ensures m is σ-additive. Fix A ∈ B
and let ψ ∈ L1([0, 1]). By Fubini’s theorem 〈ν(A), ψ〉 = 〈m(A), ψ〉. But
L1([0, 1]) separates points of L∞([0, 1]) and so ν = m.

(c) The function F is not strongly measurable, because its range is not
separable. Indeed, let 0 < s1 < s2; then

‖F (s1)− F (s2)‖∞ = ‖s(1/n)−1
1 χ(0,s1] − s(1/n)−1

2 χ(0,s2]‖∞
≥ s(1/n)−1

2 ‖χ[s1,s2]‖∞ ≥ 1.

(d) By (a) we have L1(|ν|) = L1(s(1/n)−1 ds). Recall that L1(|ν|) ⊂
L1(ν). Let f ∈ L1(ν). Note that ν is non-negative, i.e. ν(A)(t) ≥ 0 for all t.
Then � |f | dν ≥ 0, and so

1�
0

|f(s)|s(1/n)−1 ds =
∥∥∥

1�
(·)
|f(s)|s(1/n)−1 ds

∥∥∥
∞

=
∥∥∥

�
|f | dν

∥∥∥
∞

= sup
0≤x∗, ‖x∗‖≤1

〈 �
|f | dν, x∗

〉

= sup
0≤x∗, ‖x∗‖≤1

�
|f | dx∗ν = ‖f‖ν <∞.

As noted earlier, L1(ν) ⊂ [T,L∞([0, 1])] always holds. Let f ∈
[T,L∞([0, 1])]. Then T |f | ∈ L∞([0, 1]) and so, from (3), we have 0 ≤

� 1
t |f(s)|s(1/n)−1 ds ≤ ‖T |f |‖∞ for all 0 < t ≤ 1. Hence, f ∈ L1(s(1/n)−1 ds),

which shows that f ∈ L1(ν).

Recall that the integration map Iν is given by

t 7→
1�
t

f(s)s(1/n)−1 ds, t ∈ [0, 1],(10)

for every f ∈ L1(ν) = L1(s(1/n)−1 ds). By (10), Iν is a positive operator
from L1(ν) into L∞([0, 1]). Of course, Iν is the kernel operator T restricted
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to L1(ν). The space of absolutely continuous functions on [0, 1] which vanish
at 1 is denoted by AC1([0, 1]).

Proposition 2.2. Let Iν : L1(ν)→ L∞([0, 1]) be the map (10).

(a) Iν is injective.
(b) The range Iν(L1(ν)) = AC1([0, 1]).
(c) Iν is not weakly compact , and hence also not compact.

Proof. (a) Let f ∈ L1(ν). Then g(s) := s(1/n)−1f(s) belongs to L1([0, 1])
by Proposition 2.1(d). Suppose Iν(f) = 0 in L∞([0, 1]). It is clear from (10)
that Iν(f) ∈ AC1([0, 1]) and so Iν(f)(t) = 0 for every t ∈ [0, 1]. For every
0 ≤ a < b ≤ 1, we have � 1

0 χ[a,b]g dλ = Iν(f)(b)− Iν(f)(a) = 0. Hence, g = 0
a.e. in [0, 1]. We conclude f is zero a.e. on [0, 1].

(b) It was already noted in (a) that Iν(L1(ν)) ⊂ AC1([0, 1]). So, let
h ∈ AC1([0, 1]). Define f(s) := −s1−(1/n)h′(s) for a.e. s ∈ [0, 1]. Since

1�
0

|f(s)|s(1/n)−1 ds =
1�
0

|h′(s)| ds <∞,

it follows from Proposition 2.1(d) that f ∈ L1(ν). According to (10) we have
Iν(f)(t) = � 1

t −h′(s) ds = h(t) for every t ∈ [0, 1]. This establishes that Iν
maps L1(ν) onto AC1([0, 1]).

(c) Suppose Iν is weakly compact. By Proposition 2.1(d) the functions
fk(s) := ks1−(1/n)χ[0,1/k](s), for s ∈ [0, 1] and k ≥ 1, all have norm one in
L1(ν). Since Iν takes its values in the closed subspace C([0, 1]) of L∞([0, 1]),
it follows that {Iν(fk)} is relatively weakly compact in C([0, 1]). By passing
to a subsequence, if needed, we may assume (by the Eberlein–Shmul’yan
theorem) that {Iν(fk)} converges weakly in C([0, 1]). Considering the Dirac
point measures and using (10), which implies Iν(fk)(t) = 0 for all t ∈ [1/k, 1]
and Iν(fk)(0) = 1 (for all k ≥ 1), it follows that the weak limit of {Iν(fk)}
must be the function χ{1}, which is not in C([0, 1]). So, Iν is not weakly
compact.

Remark 2.3. (a) Propositions 2.1(a) and 2.2(c) should be compared.
(b) Since the restriction of Iν to L∞([0, 1]) coincides with T , it follows

from Proposition 2.2(b) that T maps L∞([0, 1]) into C([0, 1]). Ascoli’s the-
orem implies that T : L∞([0, 1])→ L∞([0, 1]) is compact.

3. Basic results for X 6' L∞([0, 1]). Let X be a r.i. space on [0, 1].
Since L∞([0, 1]) imbeds continuously into X, the function F in (6) takes its
values in X and the measure ν in (7) is σ-additive as an X-valued measure.
We will denote F by FX and ν by νX to indicate the space where the values
are taken.
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Proposition 3.1. Let X be a r.i. space not isomorphic to L∞([0, 1]).

(a) The function FX : [0, 1] → X is Bochner λ-integrable and νX(A) =
� A FX dλ for A ∈ B. Consequently , νX has bounded variation, given by

|νX |(A) =
�
A

s(1/n)−1ϕX(s) ds, A ∈ B.(11)

(b) The range νX(B) ⊂ Xb and is a relatively compact subset of X.

Proof. (a) To see that FX is strongly measurable, we check that it is
continuous on (0, 1]. Let 0 < s1 < s2. Then

‖FX(s1)− FX(s2)‖X = ‖s(1/n)−1
1 χ(0,s1] − s(1/n)−1

2 χ(0,s2]‖X
= ‖(s(1/n)−1

1 − s(1/n)−1
2 )χ(0,s1] − s(1/n)−1

2 χ(s1,s2]‖X
≤ (s(1/n)−1

1 − s(1/n)−1
2 )ϕX(1) + s

(1/n)−1
2 ϕX(s2 − s1),

and this last term tends to 0 as s2 − s1 → 0, since ϕX(0+) = 0. Now�
(0,1]

‖FX(s)‖X ds =
�

(0,1]

s(1/n)−1ϕX(s) ds,

which is finite as ϕX is bounded. So, FX is Bochner λ-integrable.
To verify νX = � FX dλ, define m(A) = � A FX dλ for A ∈ B. Fix A ∈ B

and let ψ ∈ X ′. As in the proof of Proposition 2.1(b) we have 〈νX(A), ψ〉 =
〈m(A), ψ〉. But X ′ separates points of X and so νX = m.

(b) Note that νX(B) ⊂ C([0, 1]) ⊂ Xb. Relative compactness of νX(B)
follows from Proposition 2.1(a).

Remark 3.2. The proof of Proposition 3.1(a) implies, for X = L1([0, 1])
and with the definition FL1(0) := 0, that FL1 : [0, 1] → L1([0, 1]) is con-
tinuous. So, its range is a compact subset of L1([0, 1]). It then follows
from Proposition 3.1(a) and [9, Theorem 2, p. 68] that the kernel opera-
tor T : L1([0, 1])→ L1([0, 1]) is compact.

One aim is to describe and identify properties of the optimal domain
[T,X]. Because of Proposition 3.5 below, this means a detailed study of
L1(νX). We first collect some basic properties of these spaces.

Proposition 3.3. Let X be a r.i. space.

(a) L1(νX) is a separable Banach function space with a.c. norm.
(b) L1(νX) = L1(νXb).
(c) L1(νX) is weakly sequentially complete.

Proof. (a) That L1(νX) has a.c. norm is a general fact from vector in-
tegration theory [5, Theorem 1]. Since B is countably generated the separa-
bility follows [21, Proposition 2].
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(b) Since νX(B) ⊂ Xb (Proposition 3.1(b)), it is known that in this case
L1(νX) = L1(νXb) [22, Lemma 2.3].

(c) For X = L∞([0, 1]), the statement is clear from Proposition 2.1(d).
So, we assume that X 6' L∞([0, 1]). If Y is a Banach function space, then Y
is sequentially complete for the topology σ(Y, Y ′), where Y ′ is the associate
space of Y [2, I.5.3]. Since X is a r.i. space for which ϕX(0+) = 0, we have
X ′b = X ′ = X∗b [2, II.5.5]. Hence, Xb is weakly sequentially complete, and
thus so is L1(νXb) [5, Theorem 3], and then also L1(νX) by part (b).

Given a r.i. space X, it is useful to be able to decide which measur-
able functions f on [0, 1] belong to the optimal domain space [T,X]. Since
[T,X] = L1(νX) (see Proposition 3.5 below) the following result provides
useful criteria for deciding membership of [T,X].

Proposition 3.4. Let X be a r.i. space on [0, 1] not isomorphic to
L∞([0, 1]). Let f : [0, 1]→ R be a measurable function.

(a) The following statements are equivalent :

(i) f ∈ L1(νX).
(ii) The function fFX : [0, 1]→ X is Pettis λ-integrable.

(iii) � 1
0 |f | d|x′νX | <∞ for every x′ ∈ X ′.

(iv) For every g ∈ X ′ which is non-negative and decreasing

(12)
1�
0

|f(s)|s(1/n)−1
s�
0

g(t) dt ds <∞.

(b) f ∈ L1(|νX |) iff fFX : [0, 1]→ X is Bochner λ-integrable.

Proof. (a) Given x∗ ∈ X∗, it follows from Proposition 3.1(a) that

|x∗νX |(A) =
�
A

|〈FX , x∗〉| dλ, A ∈ B.(13)

According to the definition [9, II.3], the function fFX is Pettis λ-integrable
if 〈fFX , x∗〉 ∈ L1([0, 1]) for each x∗ ∈ X∗ and for each A ∈ B there ex-
ists a vector in X (denoted by � A fFX dλ) such that 〈 � A fFX dλ, x∗〉 =

� A f〈FX , x∗〉 dλ for x∗ ∈ X∗. In view of (13) and the definition of νX-
integrability we see that (i)⇔(ii).

Since X ′ ⊂ X∗, it is clear that (i)⇒(iii). So, suppose that (iii) holds.
Since νX(B) ⊂ Xb and X∗b = X ′ [2, II.5.5], we conclude that

1�
0

|f | d|u∗νXb | <∞, u∗ ∈ X∗b.(14)

But we have seen in the proof of Proposition 3.3(c) that Xb is weakly sequen-
tially complete and hence cannot contain a copy of the sequence space c0.
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A result of Lewis [15, Theorem 5.1], shows that (14) implies f ∈ L1(νXb).
Hence, by Proposition 3.3(b), also f ∈ L1(νX).

Recall elements of X ′ are functions. Let g ∈ X ′. Since X ′ is r.i. also
g∗ ∈ X ′. By (13) and (6),

|gνX |(A) =
�
A

s(1/n)−1|〈χ[0,s], g〉| ds =
�
A

s(1/n)−1
∣∣∣
s�
0

g(t) dt
∣∣∣ds

≤
�
A

s(1/n)−1
s�
0

g∗(t) dt ds = |g∗νX |(A).

Hence, (iv) implies (iii). Since Proposition 3.1(a) implies

〈νX , x′〉(A) =
�
A

s(1/n)−1〈χ[0,s], x
′〉 ds for A ∈ B,

it is clear (iii) implies (iv).
(b) As f is R-valued and measurable and FX is strongly measurable, also

fFX : [0, 1] → X is strongly measurable. So, fFX is Bochner λ-integrable
iff

1�
0

‖fFX‖ dλ =
1�
0

|f(s)|ϕX(s)s(1/n)−1 ds <∞.

In view of (11) this is the required equivalence.

As a consequence of the previous result we have the following important
fact.

Proposition 3.5. Let X be a r.i. space. Then [T,X] = L1(νX). In par-
ticular , [T,X] = [T,Xb].

Proof. For X = L∞([0, 1]), see Proposition 2.1(d).
When X 6' L∞([0, 1]), we only have to establish [T,X] ⊂ L1(νX). So,

let f ∈ [T,X]. Then T |f | ∈ X. Let g ∈ X ′ be non-negative. Then, by (3),
1�
0

|f(s)|s(1/n)−1
s�
0

g(t) dt ds =
1�
0

g(t)
1�
t

|f(s)|s(1/n)−1 ds dt

= 〈g, T |f |〉 <∞,
since g ∈ X ′ and T |f | ∈ X. Condition (12) implies f ∈ L1(νX). Proposi-
tion 3.3(b) then implies that [T,X] = [T,Xb].

Just as important as the optimal domain space [T,X] is the operator T
itself. Proposition 5.2 of [8] implies, for every f ∈ L1(νX), that IνX (f) is the
function given by (10). In view of Proposition 3.5 we will, henceforth, inter-
changeably use both notations [T,X] and L1(νX) without further mention
that these spaces coincide, and also the fact that the operators T and IνX
are equal on [T,X] = L1(νX).
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Proposition 3.6. Let X be a r.i. space not isomorphic to L∞([0, 1]).
Let IνX : L1(νX)→ X be the integration map of νX , as in (10).

(a) For f ∈ L1(νX), we have ‖IνX (f)‖X ≤ ‖f‖νX = ‖IνX (|f |)‖X .
(b) IνX is injective.
(c) The range IνX (L1(νX)) is a dense, non-closed subspace of Xb. In

particular , IνX is not surjective.
(d) IνX is not compact.

Proof. (a) The stated inequality follows from the fact that IνX is bounded
with norm at most one. Since X∗ is a lattice and νX(A) ≥ 0, to prove the
equality we argue as in Proposition 2.1(d) to conclude that

‖f‖νX =
∥∥∥

�
|f | dνX

∥∥∥X = ‖IνX (|f |)‖X .

(b) Let f ∈ L1(νX). Then |f | ∈ L1(νX), and so IνX (|f |) ∈ X. Since
t 7→ IνX (|f |)(t) is decreasing it follows, for every 0 < t0 ≤ 1, that

1�
t0

|f(s)|s(1/n)−1 ds = IνX (|f |)(t0) <∞.

So, g(s) := s(1/n)−1f(s) is in L1([t0, 1]). Assume Iν(f) = 0 in X. Then
Iν(f)(t) = 0 for a.e. t ∈ [0, 1]. Fix t0 ∈ (0, 1). For almost all points a, b with
t0 ≤ a < b ≤ 1, we have � ba g dλ = Iν(f)(b) − Iν(f)(a) = 0. It follows that
g = 0 a.e. in [t0, 1]. Then g, and also f , is zero a.e. on [0, 1].

(c) From (10) it follows that if f ∈ L1(νX), then IνX (f) is an absolutely
continuous function on every interval [t, 1], for 0 < t ≤ 1. Hence, the Cantor
function is in X but not in the range of IνX . The density of IνX (L1(νX)) in
Xb follows from Proposition 2.2(b) and [2, III.6.3].

(d) By Proposition 3.1(a), FX is the Bochner density of the measure
νX with respect to λ. Hence, for f ∈ L1(νX) we have IνX (f) = � f dνX =

� fFX dλ, where the last integral is in the sense of Pettis.
We use the fact [19, Theorem 1] that IνX : L1(νX) → X is compact if

and only if G((0, 1]) is relatively compact in X, with G : (0, 1] → X given
by G(s) := F (s)/‖F (s)‖X . Now,

G(s) =
F (s)
‖F (s)‖

X

=
s(1/n)−1χ[0,s]

s(1/n)−1ϕX(s)
=

χ[0,s]

ϕX(s)
.

Assume the set
{
χ[0,s]

/
ϕX(s) : 0 < s ≤ 1

}
is relatively compact in X.

Then there is a sequence sn → 0+ and a function ψ ∈ X such that the
sequence χ[0,sn]/ϕX(sn) converges to ψ in X and also to ψ pointwise a.e.
Since sn → 0+, this implies ψ = 0 a.e. on [0, 1]. But this contradicts the
fact that the functions χ[0,s]

/
ϕX(s) all have norm one in X. So, IνX is not

compact.
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Remark 3.7. The extended operator T = IνX is never compact on its
optimal domain [T,X] = L1(νX). However, T : X → X is compact in most
cases of interest. This is the case at least for all spaces X with either 0 < α
or α < 1, where α and α are the Boyd indices of X [2, III.5.12]. This follows
from a result of Shimogaki [24], and the fact that T : L∞([0, 1])→ L∞([0, 1])
is compact (Remark 2.3(b)), as is T : L1([0, 1])→ L1([0, 1]) by Remark 3.2.

We end this section with a result concerning the integration map in an
important class of r.i. spaces.

Proposition 3.8. Let Λ be a Lorentz space. Then the extended operator
T : [T,Λ]→ Λ is not weakly compact.

Proof. Let ϕ be the function defining the space Λ. Consider the functions
fk(s) := ks1−(1/n)(ϕ(s))−1χ(0,1/k](s) for k ≥ 1. Direct computation (via
Proposition 3.1) shows that they are in L1(|νΛ|), where they have norm one.
Hence fk ∈ L1(νΛ) = [T,Λ], where they also have norm one (see Proposition
3.6(a)). Suppose IνΛ is weakly compact. By passing to a subsequence if
necessary, (IνΛfk) converges weakly in Λ to a function ψ ∈ Λ. By (10)
the function IνΛfk has support in the interval [0, 1/k]. It follows that for
0 < a < b ≤ 1, we have 〈IνΛfk, χ[a,b]〉 → 0. Hence, � ba ψ = 0 for every
0 < a < b ≤ 1 and so ψ = 0 a.e. on [0, 1].

The function dϕ belongs to Λ′. On the one hand 〈IνΛfk, dϕ〉 → 0. But
this contradicts, for k ≥ 1, the fact that

〈IνΛfk, dϕ〉 =
1�
0

dϕ(t)
1�
t

k

ϕ(s)
χ(0,1/k](s) ds =

1/k�
0

k

ϕ(s)

s�
0

dϕ(t) ds = 1.

4. The optimal domain for Lorentz Λ-spaces. We begin with the
question: when is [T,X] an AL-space? Recall that a Banach lattice is an
abstract L-space, for short AL-space, if the norm is additive over disjoint
elements. By a result of Kakutani every AL-space is L1(µ) for some measure
µ (see [16]). We include a “folklore” result needed later, but for which we
know of no reference.

Lemma 4.1. Let X be a r.i. space on [0, 1]. If the Lorentz space ΛX
coincides with Xb, then actually ΛX = X.

Proof. Let f ∈ X. Choose an increasing sequence {fn} of non-negative,
bounded functions that converge pointwise to |f |. Then

sup
1�
0

f∗n(s) dϕX(s) = sup ‖fn‖ΛX = sup ‖fn‖X ≤ ‖f‖X <∞.

Since {f∗n} increases pointwise to f ∗, it follows from Fatou’s lemma that
‖f‖ΛX = � 1

0 f
∗(s) dϕX(s) <∞. Hence, f ∈ ΛX .
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Theorem 4.2. Let X be r.i. Then [T,X] = L1(νX) is order isomorphic
to an AL-space if and only if X is isomorphic to a Lorentz space.

Proof. If X is isomorphic to L∞([0, 1]), then X = ΛX and, by Proposi-
tion 2.1(d), L1(νX) = L1(s(1/n)−1 ds).

Let X be a Lorentz space Λ = Λϕ. Fix f ∈ L1(|νΛ|). By Proposition
3.6(a), (10) and (11),

‖f‖L1(νΛ) =
∥∥∥

1�
(·)
|f(s)|s(1/n)−1 ds

∥∥∥
Λ

=
1�
0

1�
t

|f(s)|s(1/n)−1 ds dϕ(t)

=
1�
0

|f(s)|s(1/n)−1ϕ(s) ds = ‖f‖L1(|νΛ|).

Since L1(|νΛ|) is dense in L1(νΛ), we deduce that L1(νΛ) and L1(|νΛ|) coin-
cide, and hence L1(νΛ) is an AL-space.

Assume X has the property that L1(νX) is order isomorphic to an AL-
space. This occurs iff L1(νX) is isomorphic to L1(|νX |) via the natural
inclusion L1(|νX |) ↪→ L1(νX) [6, Proposition 2]. Denote ΛX by Λ. Then
|νX | = |νΛ|, as both have density s(1/n)−1ϕX(s) with respect to λ. Thus
L1(|νX |) coincides with L1(|νΛ|). But this last space is isomorphic to L1(νΛ).
So L1(νX) and L1(νΛ) are isomorphic.

Let f be a non-negative function in L1(νX) ' L1(νΛ). Since IνX = IνΛ ,
we will denote it simply by I. By Proposition 3.6(a) we have

‖I(f)‖X = ‖f‖L1(νX) ∼ ‖f‖L1(νΛ) = ‖I(f)‖Λ.(15)

Let P be the set of all continuous, piecewise affine functions defined on
[0, 1]. Denote by P1 those functions in P vanishing at 1. Let u ∈ P1. Then
its decreasing rearrangement u∗ is also in P1. To see this, first note that if u
∈ P1, then |u| ∈ P1. Observe that the distribution function of u is piecewise
affine, has no sets of constancy and vanishes at 1 (but is not necessarily
continuous). It follows that u∗ is piecewise affine, continuous and vanishes
at 1, that is, u∗ ∈ P1. It follows that u∗ is absolutely continuous and vanishes
at 1, that is, u∗ ∈ AC1([0, 1]). By Proposition 2.2(b), there is f ∈ L1(νX)
such that u∗ = I(f). By injectivity of the integration operator, f is unique.
The proof of Proposition 2.2(b) shows that f(s) = −(u∗)′(s)s1−(1/n). Since
u∗ is decreasing, it follows that f ≥ 0. Both X and Λ are r.i. and so, from
(15), we have

‖u‖X = ‖u∗‖X = ‖I(f)‖X ∼ ‖I(f)‖Λ = ‖u∗‖Λ = ‖u‖Λ.(16)

Hence, the norms of X and Λ are equivalent on P1.
The space P is dense in C([0, 1]) in the X-norm, since it is so in the

uniform norm. Since we are in the situation where ϕX(0+) = 0, the space
C([0, 1]) is dense, for the norm of X, in the space Xb [2, III.6.3]. So, P is
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dense in Xb. Given a function in P we can modify it near 1 to obtain a
function still in P and vanishing at 1, and so belonging to P1, which is close
in the norm of X (Xb has a.c. norm as ϕX(0+) = 0 [2, II.5.5]) to the original
function [2, I.3.2]. So P1 is dense in Xb.

It follows from (16) that the norms of X and Λ = ΛX are equivalent on
P1, which is dense in Xb. Hence, the inclusion ΛX ↪→ Xb is an isomorphism.
Then Lemma 4.1 implies that X is isomorphic to ΛX .

The following fact was established in the previous proof.

Corollary 4.3. Let X be a Lorentz space. Then [T,X] = L1(νX) is
isomorphic to L1(|νX |). In particular , L1(νL1) = L1(|νL1|) = L1(s1/n ds).

Remark 4.4. Given a r.i. space X with ϕX(0+) = 0, (11) implies for
every r.i. space Y with ϕY = ϕX (i.e. ΛX ⊂ Y ⊂MX) that |νY | = |νX |, and
so L1(|νY |) coincides with L1(|νX |). In particular,

L1(νΛX ) = L1(|νΛX |) = L1(|νX |) = L1(|νMX
|).

For a vector measure ν : B → X with values in a r.i. space X on [0, 1],
it may happen that L1(ν) ⊂ L1([0, 1]), yet L1(ν) fails to be r.i. [8, Example
5.15]. The space L1(ν) may also fail to be r.i. simply because it contains
L1([0, 1]) as a proper subspace (Corollary 4.3). Nevertheless, there is always
a largest r.i. space inside L1(ν). If L1(ν) ⊂ L1([0, 1]), this is immediate
from [3, Proposition 2.2.6]. Even if L1(ν) is not inside L1([0, 1]), a similar
construction to that in the proof of Proposition 2.2.6 in [3] still applies to
show there is a largest r.i. space inside L1(ν). Similar comments apply to
L1(|ν|). Summarizing gives

Proposition 4.5. Let X be a r.i. space on [0, 1] and ν : B → X be a
vector measure. Then there exist largest r.i. spaces continuously embedded
in both L1(νX) and L1(|νX |).

By Proposition 3.1, the weight function for L1(|νX |) is d|νX |/dλ :=
s(1/n)−1ϕX(s). The properties of this function and other related ones provide
information on various r.i. spaces inside L1(|νX |). Recall that n′ = n/(n−1)
is the conjugate exponent of n.

Proposition 4.6. Let X be a r.i. space. The following properties hold.

(a) X ⊂ L1(|νX |) iff d|νX |/dλ ∈ X ′.
(b) MX ⊂ L1(|νX |) iff d|νX |/dλ ∈ ΛX′ .
(c) L1([0, 1]) ⊂ L1(|νX |) iff Ln′,1([0, 1]) ⊂ ΛX iff d|νX |/dλ is bounded.
(d) L1(|νX |) ⊂ L1([0, 1]) iff ΛX ⊂ Ln′,1([0, 1]).

Proof. (a) X ⊂ L1(|νX |) is equivalent to
1�
0

|f(s)| d|νX |
dλ

(s) ds <∞ for every f ∈ X.
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This is precisely the condition d|νX |/dλ ∈ X ′.
(b) Since L1(|νX |) = L1(|νMX

|), by (a) we have MX ⊂ L1(|νX |) if and
only if d|νX |/dλ ∈ (MX)′ = ΛX′ .

(c) Since both spaces are Lorentz Λ-spaces, observe that Y := Ln′,1([0, 1])
⊂ ΛX iff there exists C > 0 such that ϕX(s) ≤ CϕY (s) = Cs1/n′ on [0, 1].
This is equivalent to

d|νX |
dλ

(s) = s(1/n)−1ϕX(s) ≤ C.

This last condition implies

L1([0, 1]) ⊂ L1
(
d|νX |
dλ

(s) ds
)

= L1(|νX |).

Conversely, if L1([0, 1]) ⊂ L1(|νX |) then, for a constant C > 0, we have
�
A

d|νX |
dλ

(s) ds ≤ C
�
A

ds, which implies
d|νX |
dλ

(s) ≤ C.

This is equivalent to ϕX(s) ≤ Cs1/n′ on [0, 1].
(d) Use the same proof as in (c) with inequalities reversed.

For situation (c) above, observe that the largest r.i. space inside L1(|νX |),
and hence also inside L1(νX), is L1([0, 1]).

Consider now the function Θ(t) := � t0 s(1/n)−1ϕX(s) ds = |νX |([0, t]). It
is increasing and vanishes at zero. Moreover, Θ is concave iff d|νX |/dλ is
decreasing, which is equivalent to the condition

ϕ′X(s) ≤ 1
n′
ϕX(s)
s

, s ∈ (0, 1].(17)

Writing (17) as ϕ′X(s)/ϕX(s) ≤ 1/(n′s) and integrating over any subinterval
[t1, t2] ⊂ (0, 1] we see that (17) is equivalent to the function ϕX(t)/t1/n

′
being

decreasing. Let 0 < α ≤ 1. We say that an increasing function ϕ ≥ 0 is α-
quasiconcave if ϕ(t)/tα is decreasing. In this case, sα ≤ Cϕ(s). Hence, if (17)
holds, then ΛX ⊂ Ln′,1([0, 1]), which is the condition of Proposition 4.6(d).

Proposition 4.7. Let X be r.i. with ϕX being 1/n′-quasiconcave.
Then the Lorentz space ΛΘ is the largest r.i. space inside L1(|νX |).

Proof. It suffices to show that ΛΘ is in L1(|νX |) and, if f ∈ L1(|νX |)
satisfies f∗ ∈ L1(|νX |), then f ∈ ΛΘ.

The hypothesis on ϕX ensures Θ is concave. Then Θ′(s) = s(1/n)−1ϕX(s)
is decreasing and so, by [2, II.2.2],

1�
0

|f(s)|s(1/n)−1ϕX(s) ds ≤
1�
0

f∗(s)s(1/n)−1ϕX(s) ds =
1�
0

f∗(s) dΘ(s).
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Hence, if f ∈ ΛΘ then f ∈ L1(|νX |). Moreover, if f ∈ L1(|νX |) satisfies
f∗ ∈ L1(|νX |), then ‖f∗‖L1(|νX |) = ‖f‖ΛΘ , so f ∈ ΛΘ.

Remark 4.8. In order to identify the space ΛΘ, it is useful to observe
that Θ is equivalent to the function Γ (t) := t1/nϕX(t). To see this, recall
ϕX is increasing and concave, hence quasiconcave. Then

nt1/nϕX(t) = ϕX(t)
t�
0

s(1/n)−1 ds ≥
t�
0

s(1/n)−1ϕX(s) ds

≥
t�
t/2

s(1/n)−1ϕX(s) ds ≥ t1/n

4
ϕX(t).

Example 4.9. For X = L∞([0, 1]), Proposition 2.1(d) implies that
Ln,1([0, 1]) is the largest r.i. space inside L1(νX) = L1(|νX |).

(a) Consider the spaces X = Lp([0, 1]) for n′ ≤ p < ∞. Then Θ(t)
is a multiple of t(1/n)+(1/p), which, for the given range of p, is concave.
Hence, by Proposition 4.7, the largest r.i. space inside L1(|νX |) is Lp0,1,
where p0 := np/(n+p). Actually, in view of Remark 4.4, the same conclusion
holds for X = Lp,q with n′ ≤ p <∞ and 1 ≤ q ≤ ∞.

(b) For the Lorentz spaces X = Lp,1 with n′ ≤ p < ∞, the result in
(a) also gives the largest r.i. space inside L1(νX) since, by Corollary 4.3,
L1(νX) = L1(|νX |).

(c) Let X = Lp([0, 1]) with 1 ≤ p ≤ n′. It turns out that

d|νX |
dλ

(t) = t(1/n)+(1/p)−1

is bounded. By Proposition 4.6(c) the largest r.i. space inside L1(|νX |), and
hence also inside L1(νX), is L1([0, 1]). The same argument holds forX = Lp,q
with 1 ≤ p ≤ n′ and 1 ≤ q ≤ ∞ (q 6=∞ if p = 1).

Example 4.10. LetX=L logL. Since Ln′,1([0, 1])⊂ΛX =L logL we see,
by Proposition 4.6(c), that the largest r.i. space inside L1(|νX |) is L1([0, 1]).

Remark 4.11. In Proposition 4.7 it is enough if ϕX is essentially 1/n′-
quasiconcave, that is, if condition (17) is satisfied on [0, δ] for some 0 < δ < 1.
For, in this case, there is a concave function Θ̃ which coincides with Θ on
[0, δ] and Θ̃ and Θ̃′ are equivalent to Θ and Θ′, respectively. Hence, the
spaces ΛΘ and ΛΘ̃ are isomorphic.

Example 4.12. For 1 ≤ p < ∞, consider the Zygmund spaces X =
ExpLp of functions f of pth exponential integrability, that is, with

� 1
0 exp(α|f |)p <∞ for some α = α(f) > 0 (i.e. the Orlicz space given by the

function Φ(t) = exp(tp) − 1) [2, IV.6.11]. Then ϕX(t) = log−1/p(1 + 1/t)
and so (17) is satisfied on [0, δ] for a certain δ depending on n and p.
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Hence, by Remark 4.11, the largest r.i. space inside L1(|νX |) is ΛΓ for
Γ (t) = t1/n log−1/p(1 + 1/t); see Remark 4.8.

5. Optimal domain for Marcinkiewicz spaces. We now consider
the problem of finding large r.i. spaces inside L1(νX) = [T,X]. Proposition
4.6(c) implies that L1([0, 1]) is the largest r.i. space inside L1(νX) whenever
the function d|νX |/dλ is bounded.

We need to invoke the dual operator W of the integration map IνX ,
namely Wg(s) := s(1/n)−1 � s0 g(t) dt, for g ∈ X ′. If H denotes the Hardy–
Littlewood operator, defined by Hh(s) := s−1 � s0 h(t) dt, then Wg(s) =
s1/nHg(s).

Proposition 5.1. Let X be a r.i. space. Then X ⊂ [T,X].

Proof. Direct computation shows that the operatorW is continuous from
L1([0, 1]) into L1([0, 1]) and from L∞([0, 1]) into L∞([0, 1]). Hence, by the
interpolation theorem, it maps X ′ into X ′. So, if g ∈ X ′ is non-negative
and decreasing and f ∈ X, then � 1

0 |f(s)|Wg(s) ds < ∞. Accordingly, (12)
is satisfied and so f ∈ L1(νX).

Remark 5.2. The inclusion X ⊂ [T,X] is always proper whenever T :
X → X is compact; see Remark 3.7.

Now we can consider a “missing” part in Proposition 4.6, equivalent to
the condition d|νX |/dλ ∈MX′ .

Corollary 5.3. Let X be a r.i. space. Then ΛX ⊂ L1(|νX |).

Proof. For X = ΛX , Proposition 5.1 gives ΛX ⊂ L1(νΛX ) and by Re-
mark 4.4 we have L1(νΛX ) = L1(|νX |).

Remark 5.4. The largest r.i. space inside [T,L∞([0, 1])] is Ln,1([0, 1]);
see Example 4.9. Since L∞([0, 1]) ⊂ X, we have [T,L∞([0, 1])] ⊂ [T,X]. So,
by Proposition 5.1, we have in fact X + Ln,1([0, 1]) ⊂ [T,X] [13, p. 9]. This
implies that W : X ′ → X ′ ∩ Ln′,∞.

In view of Proposition 5.1 one may also ask: when does the inclusion
MX ⊂ [T,X] hold? Proposition 4.6(b) shows that if d|νX |/dλ ∈ ΛX′ then
MX ⊂ L1(|νX |) ⊂ L1(νX).

Proposition 5.5. For X a r.i. space, MX ⊂ [T,X] iff W : X ′ → ΛX′ .

Proof. If W : X ′ → ΛX′ and f ∈ MX , we have � 1
0 |f(s)|Wg(s) ds < ∞

for every g ∈ X ′ non-negative and decreasing. Hence, (12) is satisfied and so
f ∈ L1(νX). Conversely, if MX ⊂ L1(νX), then (12) yields � 1

0 |f(s)|Wg(s) ds
<∞ for each f ∈MX and every 0 ≤ g ∈ X ′ decreasing, hence for all g ∈ X ′.
This implies Wg ∈ ΛX′ .
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We now consider the optimal domain when the kernel operator T takes
its values in a Marcinkiewicz space X = Mϕ. Recall that the lower dilation
exponent γϕ and the upper dilation exponent δϕ of the function ϕ (see [13,
p. 54]) are given by

γϕ := lim
t→0+

log sups{ϕ(st)/ϕ(s)}
log t

, δϕ := lim
t→∞

log sups{ϕ(st)/ϕ(s)}
log t

.

For ϕ increasing and concave we have 0 ≤ γϕ ≤ δϕ ≤ 1 [13, p. 54]. Since
� t0 f∗(s) ds ≥ tf∗(t), in general the norm of f in Mϕ is greater than or equal
to the expression

sup
t

t

ϕ(t)
f∗(t).(18)

However, if γϕ > 0, the norm of f ∈Mϕ is equivalent to (18) [13, pp. 114–115
and 56–57]. When ϕ = ϕX , for a r.i. space X, the dilation exponents are
the fundamental or Zippin indices of X; see [2, p. 177] and [17, p. 27].

The next lemma (extending [13, (2.40), p. 75]) is needed later.

Lemma 5.6. Let α > 0 and let ϕ be an increasing , concave function
satisfying ϕ(0) = 0 and γϕ > α. Then there exists a constant C > 0,
depending only on α and ϕ, such that

1�
0

(sαg(s))∗s−αϕ′(s) ds ≤ C
1�
0

g(s)ϕ′(s) ds,

for every decreasing function g on [0, 1].

Proof. Following the proof of [13, (2.40), p. 75], it is enough to show that
the result holds for g = χ(0,a]. In this case

1�
0

(sαχ(0,a](s))
∗s−αϕ′(s) ds =

∞∑

k=1

a/k�
a/(k+1)

(
a− s
s

)α
ϕ′(s) ds

≤
∞∑

k=1

kα
(
ϕ

(
a

k

)
− ϕ

(
a

k + 1

))

= ϕ(a) +
∞∑

k=2

ϕ

(
a

k

)
(kα − (k − 1)α)

≤ ϕ(a)C1

(
1 +

∞∑

k=2

ϕ(a/k)
ϕ(a)

kα−1
)
,

where C1 is a constant depending on α. Since γϕ > α, for any 0 < ε <
γϕ − α there exists δ > 0 such that (log t)−1 log sups{ϕ(st)/ϕ(s)} > α + ε
if 0 < t < δ. So, for every a ∈ (0, 1], we have tα+ε > ϕ(at)/ϕ(a), provided
0 < t < δ. Hence, there is k0 ≥ 1 with
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∞∑

k=2

ϕ(a/k)
ϕ(a)

kα−1 ≤ C2 =
k0∑

k=2

kα−1 +
∑

k>k0

k−ε−1 <∞.

Accordingly, for C = C1C2, which does not depend on a, we have
1�
0

(sαχ(0,a](s))
∗s−αϕ′(s) ds ≤ Cϕ(a) = C

1�
0

χ(0,a](s)ϕ
′(s) ds.

Theorem 5.7. Consider a Marcinkiewicz space Mϕ with ϕ satisfying
1/n < γϕ ≤ δϕ < 1. Then the largest r.i. space inside [T,Mϕ] is the
Marcinkiewicz space MΦ, where Φ(t) := � t0 s−1/nϕ′(s) ds. Under these con-
ditions, Φ is equivalent to Ψ(t) := t−1/nϕ(t).

Proof. The function Φ is increasing and concave. We first prove its equiv-
alence with Ψ . One inequality is immediate as

Ψ(t) = t−1/n
t�
0

ϕ′(s) ds ≤
t�
0

s−1/nϕ′(s) ds = Φ(t).

For the other inequality, using γϕ > 1/n, a direct computation shows that
γΨ > 0. Then Ψ is equivalent to the function t 7→ � t0(Ψ(s)/s) ds [13, p. 57].
This, together with ϕ′(t) ≤ ϕ(t)/t (see [17, (4.9), p. 26]), implies, for some
constant M > 0, that

Φ(t) =
t�
0

s−1/nϕ′(s) ds ≤
t�
0

Ψ(s)
s

ds ≤MΨ(t).

Hence, Φ and Ψ are equivalent. In particular, γΦ = γΨ > 0.
Let f ∈ MΦ. Let g ∈ Λϕ = (Mϕ)′ be non-negative and decreasing.

The condition δϕ < 1 ensures that the Hardy–Littlewood operator H is
continuous from Λϕ into Λϕ [13, p. 138; (4.20), p. 99; (1.20), p. 54]. Hence,
Hg ∈ Λϕ. Moreover, g decreasing impliesHg is also decreasing. Since Φ′(t) =
t−1/nϕ′(t) and γϕ > 1/n, by Lemma 5.6 we have

1�
0

(s1/nHg(s))∗ dΦ(s) ≤ C
1�
0

Hg(s) dϕ(s).

This last integral is finite because (Hg)∗ = Hg and Hg ∈ Λϕ. So s1/nHg(s)
∈ ΛΦ. Then, via the 〈ΛΦ,MΦ〉 duality, we see that

1�
0

|f(s)|s(1/n)−1
s�
0

g(t) dt ds = 〈f, s1/nHg(s)〉 ≤ ‖f‖MΦ
‖s1/nHg(s)‖ΛΦ

is finite. According to (12), we have f ∈ [T,Mϕ].
Let f ∈ [T,Mϕ] satisfy f∗ ∈ [T,Mϕ]. Then T (f∗) ∈Mϕ. By (10), T (f∗)

is decreasing and so supt(t/ϕ(t)) � 1
t f
∗(s)s(1/n)−1 ds =: A < ∞. Thus, for
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every t ∈ (0, 1],

A ≥ t/2
ϕ(t/2)

t�
t/2

f∗(s)s(1/n)−1 ds ≥ t/2
ϕ(t/2)

f∗(t)t(1/n)−1 t

2
≥ t1/n

4ϕ(t)
f∗(t)t.

Hence, supt(t/Ψ(t))f∗(t) <∞. Since Ψ and Φ are equivalent, it follows that
supt(t/Φ(t))f∗(t) < ∞. We already observed that γΦ > 0. So (18), with Φ
in place of ϕ, is equivalent to the norm of MΦ, and hence f ∈ MΦ. Since
MΦ is itself r.i., this implies MΦ is the largest r.i. space inside [T,Mϕ].

Corollary 5.8. Let ϕ be as in Theorem 5.7. Then [T,Mϕ] is not r.i.

Proof. From the proof of Theorem 5.7, Φ and t 7→ � t0 (Φ(s)/s) ds are
equivalent. This implies that f(t) := Φ(t)/t ∈ MΦ. Set fn := min{f, n}.
Then fn increases to f , but direct computation shows that ‖f −fn‖MΦ

does
not converge to zero. Hence, MΦ does not have a.c. norm. But the space
[T,Mϕ] does have a.c. norm (Proposition 3.3(a)). Hence, MΦ ( [T,Mϕ],
showing that [T,Mϕ] is not r.i.

Example 5.9. The space Lp,∞, for 1 < p <∞, is a Marcinkiewicz space
with ϕ(t) = t1/p

′
, where p′ is the conjugate exponent of p. The condition

γϕ > 1/n is precisely p > n′. If we set p0 := np/(n + p), the previous
condition is p0 > 1. The condition δϕ < 1 is p <∞, which is p0 < n. Under
these conditions, the function Φ of Theorem 5.7 is equivalent to t1/p

′
0. So,

the largest r.i. space inside [T,Lp,∞] is Lp0,∞.

Remark 5.10. For X = Lp,∞ with 1 < p ≤ n′, the function Φ in Theo-
rem 5.7 is everywhere infinite. In this case it can be shown that

sup
t
t1/pT (f∗)(t) <∞ ⇔ sup

t
t1/p0f∗(t) <∞.

For p = n′, this yields f∗ ∈ [T,Ln′,∞] iff f∗ ∈ L1,∞, that is, weak-L1 is the
largest r.i. quasi-Banach space inside [T,Ln′,∞].

Under certain circumstances, we can use the previous results to give a de-
scription of the largest r.i. space inside [T,X] when X is not a Marcinkiewicz
space, by identifying its fundamental function. Our last result is of this kind.

Theorem 5.11. Let X be a r.i. space such that ϕX is 1/n′-quasiconcave
and 0 < γϕX ≤ δϕX < 1/n′. Then the largest r.i. space inside [T,X] has
fundamental function equivalent to Γ (t) = t1/nϕX(t).

Proof. We first identify the largest r.i. spaces inside [T,ΛX ] and [T,MX ].
We are in the situation of Proposition 4.7 and so ΛΘ is the largest r.i. space
inside [T,ΛX ], with Θ equivalent to Γ ; see Remark 4.8.

The Marcinkiewicz space associated to X is MX = Mϕ with ϕ(t) :=
t/ϕX(t). The conditions 0 < γϕX ≤ δϕX < 1/n′ imply that 1/n < γϕ ≤
δϕ < 1 [2, p. 178]. We are in the situation of Theorem 5.7 and so the
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Marcinkiewicz space MΦ is the largest r.i. space inside [T,MX ], with Φ
equivalent to Ψ(t) = t/(t1/nϕX(t)).

Since Ψ(t)Γ (t) = t, we deduce that Θ and t/Φ(t) are equivalent. This
implies that MΦ is isomorphic to the Marcinkiewicz space associated to the
function t/Θ(t). Hence, ΛΘ and MΦ are (isomorphic to) the smallest and
the largest r.i. spaces with fundamental function Θ, respectively.

Let Y ⊂ [T,X] be the largest r.i. space inside [T,X]; see Proposition
4.5. Since [T,ΛX ] ⊆ [T,X] ⊆ [T,MX ], the above discussion shows that
ΛΘ ⊂ Y ⊂MΦ. So ϕY is equivalent to Θ, hence to Γ .

Remark 5.12. It is useful to observe that if ϕ is α-quasiconcave, then
δϕ ≤ α (by direct calculation). Hence, in the above theorem it suffices to
require that γϕX > 0 and ϕX is α-quasiconcave for some α < 1/n′.

Example 5.13. In view of Theorem 5.11 (and Examples 4.9 and 5.9),
if X = Lp,q for n′ < p < ∞ and 1 ≤ q ≤ ∞, then the largest r.i. space
inside [T,X] has fundamental function equivalent to t1/p0. Observe that
p = np0/(n− p0) is the Sobolev exponent corresponding to p0.
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