Diffusion phenomenon for second order linear evolution equations

by

RYO IKEHATA (Hiroshima) and KENJI NISHIHARA (Tokyo)

Abstract. We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata–Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.

1. Introduction. Let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $|\cdot|$, and let $A: D(A) \subset H \to H$ be a nonnegative self-adjoint operator in H with dense domain V = D(A). Then it is well known that the fractional power $A^{1/2}: D(A^{1/2}) \to H$ is well defined with dense domain $W = D(A^{1/2})$, and $A^{1/2}$ is also a nonnegative self-adjoint operator in H. In this article we are concerned with the following abstract Cauchy problems in H:

(1.1)
$$u''(t) + Au(t) + u'(t) = 0, \quad t > 0, \quad \text{in } H,$$

(1.2)
$$u(0) = u_0, \quad u'(0) = u_1,$$

and

(1.3)
$$v'(t) + Av(t) = 0, \quad t > 0, \quad \text{in } H,$$

(1.4)
$$v(0) = u_0 + u_1,$$

where $u'(t) = \frac{d}{dt}u(t)$ and so on.

As solution spaces, we set

$$X_2(0,\infty) = C([0,\infty);V) \cap C^1([0,\infty);W) \cap C^2([0,\infty);H),$$

$$Y_1(0,\infty) = C([0,\infty);W) \cap C^1((0,\infty);H) \cap C((0,\infty);V),$$

and also

$$X_3(0,\infty) = C([0,\infty); W_3) \cap C^1([0,\infty); V) \cap C^2([0,\infty); W) \cap C^3([0,\infty); H),$$

²⁰⁰⁰ Mathematics Subject Classification: 35B40, 35E15, 34G10, 35L90.

Key words and phrases: dissipative wave equations; heat equations; asymptotic profile; optimum decay rate.

where $W_3 = D(A^{3/2})$ is a real Hilbert space with the usual graph norm. We denote by $|u|_V$ and $|v|_W$ the V-graph norm of u and W-graph norm of v, respectively. The space $X_3(0,\infty)$ will be used in the proof of estimates for higher order derivatives (see Lemma 2.2 below).

In 1997 Nishihara [8] described the so-called diffusion phenomenon for quasilinear damped wave equations on 1-dimensional Euclidian space \mathbb{R} in a concrete context, and Han–Milani [2] extended Nishihara's results to the case of N-dimensional Euclidian space \mathbb{R}^N for any quasilinear damped wave equation (see also Milani–Han [7] for another type of diffusion phenomenon). Furthermore, in [6] Karch has discovered the asymptotic self-similarity as $t \to \infty$ of solutions to the equation (1.1) with $A = -\Delta$ in \mathbb{R}^N (in fact, he deals with more general dissipative wave equations). These results imply that the solution of a damped wave equation is asymptotically equal to that of the corresponding heat equation as $t \to \infty$. Recently, Nishihara [9] has succeeded in deriving $L^{p}-L^{q}$ estimates for the difference u(t,x) - v(t,x). where u(t,x) and v(t,x) represent the solutions of the Cauchy problem in \mathbb{R}^3 for a linear damped wave equation and the corresponding heat equation with initial data like (1.4), respectively. On the other hand, quite recently, Ikehata [4] has studied the diffusion phenomenon for the "exterior" mixed problem for linear damped wave equations through a new device, which has its origin in Ikehata–Matsuyama [5]. Unfortunately, the decay rate of u(t,x) - v(t,x) obtained in [4] is not optimal.

In this paper, our purpose is to derive the "diffusion phenomenon" for the "abstract" Cauchy problem (1.1)-(1.2) by using the device of [5], and to consider the optimal rate of decay for u(t) - v(t) which implies the diffusion phenomenon in the abstract framework. We emphasize that the results in [5] cannot be applied in the abstract setting.

Our main result reads as follows.

THEOREM 1.1. Let $[u_0, u_1] \in V \times W$. Then the solutions $u \in X_2(0, \infty)$ to the problem (1.1)–(1.2) and $v \in Y_1(0, \infty)$ to the problem (1.3)–(1.4) satisfy

$$|u(t) - v(t)| \le CI_0(1+t)^{-1}(\log(2+t))^{(1+\varepsilon)/2}$$

for any $\varepsilon > 0$, where

$$I_0 = |u_0|_V + |u_1|_W.$$

REMARK 1.1. For the initial data $[u_0, u_1]$ in Theorem 1.1, both u(t) and v(t) are expected to be only bounded. However, basing on Nishihara's work [9, Theorem 1.1], we conjecture that the optimal estimate which implies the diffusion phenomenon for (1.1)-(1.2) is

$$|u(t) - v(t)| \le C(1+t)^{-1}.$$

Hence the estimate we obtained is almost optimal.

In order to illustrate our results, let us take

$$H = L^2(\Omega), \quad A = -\Delta \quad \text{with} \quad V = H^2(\Omega) \cap H^1_0(\Omega),$$

where $\Omega \subset \mathbb{R}^N$ is an unbounded domain with smooth boundary $\partial \Omega$, or $\Omega = \mathbb{R}^N$. Then the problems (1.1)–(1.4) are the following mixed problems:

(1.5)
$$u_{tt} - \Delta u + u_t = 0 \quad \text{in } (0, \infty) \times \Omega,$$

(1.6)
$$u(0,x) = u_0(x), \quad u_t(0,x) = u_1(x) \quad \text{in } \Omega,$$

(1.7) $u|_{\partial\Omega} = 0 \quad \text{if } \partial\Omega \neq \emptyset,$

(1.8)
$$v_t - \Delta v = 0 \quad \text{in } (0, \infty) \times \Omega,$$

(1.9)
$$v(0,x) = u_0(x) + u_1(x)$$
 in Ω ,

(1.10)
$$v|_{\partial\Omega} = 0 \quad \text{if } \partial\Omega \neq \emptyset.$$

Furthermore, if we take

$$H = L^{2}(\Omega), \quad A = -\Delta \quad \text{with} \quad V = \bigg\{ u \in H^{2}(\Omega) : \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial \Omega \bigg\},$$

where $\nu(x)$ represents the usual unit outward normal vector at $x \in \partial \Omega$, then the problems (1.1)–(1.4) are the initial-value problems with homogeneous Neumann boundary condition corresponding to (1.5)–(1.6) and (1.8)–(1.9).

2. Proof of Theorem 1.1. We shall prove Theorem 1.1 using a new device, which has its origin in [5]. Our argument is based on the following well-posedness result (cf. Ikawa [3] and Cazenave–Haraux [1]).

PROPOSITION 2.1. For each $(u_0, u_1) \in V \times W$, there exists a unique solution $u \in X_2(0, \infty)$ to the problem (1.1)–(1.2) satisfying

(2.1)
$$E_u(t) + \int_0^t |u'(\tau)|^2 d\tau = E_u(0),$$

where

$$E_u(t) = \frac{1}{2} \left(|u'(t)|^2 + |A^{1/2}u(t)|^2 \right).$$

If, in particular, $(u_0, u_1) \in W_3 \times V$, then we have the additional property: $u \in X_3(0, \infty)$.

Furthermore, for each $v_0 = u_0 + u_1 \in W$, there exists a unique solution $v \in Y_1(0, \infty)$ to the problem (1.3)–(1.4).

To prove Theorem 1.1, we set

$$w(t) = u(t) - v(t).$$

Then w becomes the solution to the problem

(2.2)
$$w'(t) + Aw(t) = -u''(t), \quad t \in (0, \infty), \quad \text{in } H,$$

 $w(0) = -u_1.$

Set furthermore

$$Z(t) = \int_{0}^{t} w(s) \, ds,$$

following [5]. Then Z = Z(t) satisfies

(2.3)
$$Z'(t) + AZ(t) = -u'(t), \quad t \in (0, \infty), \quad \text{in } H,$$

(2.4) Z(0) = 0,

where we have used the special form (1.4) of the initial data.

To analyse (2.3) and (2.2) we need the information on u'(t) and u''(t), which is summed up in $\int_0^t (1+\tau)|u'(\tau)|^2 d\tau \leq C$ and $\int_0^t (1+\tau)^3 |u''(\tau)|^2 d\tau \leq C$. So, we shall prepare several facts concerning (1.1)–(1.4).

LEMMA 2.1. Let $u \in X_2(0,\infty)$ be a solution to the problem (1.1)–(1.2) and $v \in Y_1(0,\infty)$ be a solution to (1.3)–(1.4). Then

(2.5)
$$(1+t)E_{u}(t) + \int_{0}^{t} (1+\tau)|u'(\tau)|^{2} dt \leq C(|u_{0}|_{W}^{2} + |u_{1}|^{2}),$$

(2.6)
$$\int_{0}^{t} (1+\tau)|v'(\tau)|^{2} d\tau \leq C|v_{0}|_{W}^{2},$$

with some constant C > 0, where $v_0 = u_0 + u_1$.

Proof. First, we shall prove (2.5). It follows from Proposition 2.1 that

(2.7)
$$\frac{d}{dt}E_u(t) + |u'(t)|^2 = 0$$

Taking the inner product of both sides of (1.1) with $u'(t) + \frac{1}{2}u(t)$, we obtain

$$(2.8) \qquad 0 = \frac{1}{2} \frac{d}{dt} \left(|u'(t)|^2 + (u'(t), u(t)) + \frac{1}{2} |u(t)|^2 + |A^{1/2}u(t)|^2 \right) + \frac{1}{2} (|u'(t)|^2 + |A^{1/2}u(t)|^2) =: \frac{d}{dt} J_u(t) + E_u(t).$$

We note that $J_u(t)$ is equivalent to $E_u(t) + |u(t)|^2$, that is,

(2.9)
$$C^{-1}(E_u(t) + |u(t)|^2) \le J_u(t) \le C(E_u(t) + |u(t)|^2).$$

Integrating (2.8) over [0, t], we have

(2.10)
$$J_u(t) + \int_0^t E_u(\tau) \, d\tau \le J_u(0) \le C(|u_0|_W^2 + |u_1|^2).$$

156

Hence, multiplying (2.7) by 1+t and integrating the resulting equation over [0, t], we get

$$(1+t)E_u(t) + \int_0^t (1+\tau)|u'(\tau)|^2 d\tau \le E_u(0) + \int_0^t E_u(\tau) d\tau$$
$$\le C(|u_0|_W^2 + |u_1|^2),$$

which shows (2.5).

Next, we shall prove (2.6). Taking the inner product of both sides of (1.3) with v'(t) and integrating it over [0, t] we obtain

$$|v'(t)|^2 = -\frac{1}{2} \frac{d}{dt} |A^{1/2}v(t)|^2.$$

Thus, we see that

$$(2.11) \qquad \int_{0}^{t} (1+\tau)|v'(\tau)|^{2} d\tau = -\frac{1}{2} \int_{0}^{t} (1+\tau) \frac{d}{d\tau} |A^{1/2}v(\tau)|^{2} d\tau$$
$$= -\frac{1}{2} (1+t)|A^{1/2}v(t)|^{2} + \frac{1}{2} |A^{1/2}v_{0}|^{2} + \frac{1}{2} \int_{0}^{t} |A^{1/2}v(\tau)|^{2} d\tau.$$

On the other hand, taking the inner product of both sides of (1.3) with v(t)and integrating it over [0, t] we see that

(2.12)
$$\frac{1}{2}|v(t)|^2 + \int_0^t |A^{1/2}v(\tau)|^2 d\tau = \frac{1}{2}|v_0|^2.$$

Therefore, (2.11) and (2.12) imply the desired estimate (2.6).

LEMMA 2.2. The solution $u \in X_2(0,\infty)$ of (1.1)–(1.2) satisfies

(2.13)
$$\int_{0}^{t} (1+\tau)^{3} |u''(\tau)|^{2} d\tau \leq C I_{0}^{2}.$$

Proof. We may assume that u(t) is sufficiently smooth, say $(u_0, u_1) \in W_3 \times V$, because it can be approximated by smooth solutions $\{v_n(t)\} \subset X_3(0,\infty)$ (n = 1, 2, ...) to the problem (1.1)–(1.2) in the $X_2(0,\infty)$ topology.

Now for the solution $u \in X_3(0,\infty)$, we set a(t) = u'(t). Then a(t) becomes the strong solution to

(2.14)
$$a''(t) + Aa(t) + a'(t) = 0, \quad t > 0, \quad \text{in } H,$$

(2.15)
$$a(0) = u_1, \quad a'(0) = -Au_0 - u_1.$$

By applying Proposition 2.1 to the problem (2.14)-(2.15) we have

(2.16)
$$\frac{d}{dt}E_{u'}(t) + |u''(t)|^2 = 0$$

and also

(2.17)
$$\frac{d}{dt}J_{u'}(t) + E_{u'}(t) = 0.$$

Noting (2.5) and (2.9) and multiplying (2.17) by $(1+t)^k$, k = 0, 1, 2, we iteratively have

$$J_{u'}(t) + \int_{0}^{t} E_{u'}(\tau) d\tau \le J_{u'}(0) \le CI_{0}^{2},$$

(1+t) $J_{u'}(t) + \int_{0}^{t} (1+\tau)E_{u'}(\tau) d\tau \le J_{u'}(0) + \int_{0}^{t} J_{u'}(\tau) d\tau$
$$\le C\left(I_{0}^{2} + \int_{0}^{t} (E_{u'}(\tau) + |u'(\tau)|^{2}) d\tau\right) \le CI_{0}^{2},$$

and

$$(2.18) \quad (1+t)^2 J_{u'}(t) + \int_0^t (1+\tau)^2 E_{u'}(\tau) \, d\tau \le J_{u'}(0) + 2 \int_0^t (1+\tau) J_{u'}(\tau) \, d\tau \\ \le C \Big(I_0^2 + 2 \int_0^t (1+\tau) (E_{u'}(\tau) + |u'(\tau)|^2) \, d\tau \Big) \le C I_0^2 \Big)$$

Using (2.18) we multiply (2.16) by $(1+t)^3$ and integrate the resulting equation to obtain

$$(1+t)^{3}E_{u'}(t) + \int_{0}^{t} (1+\tau)^{3} |u''(\tau)|^{2} d\tau \leq E_{u'}(0) + 3\int_{0}^{t} (1+\tau)^{2}E_{u'}(\tau) d\tau \leq CI_{0}^{2},$$

which shows (2.13).

The following lemmas can also be shown by the device of [5] basing on Lemmas 2.1-2.2.

LEMMA 2.3. Under the assumptions of Theorem 1.1,

(2.19)
$$(\log(e+t))^{-1-\varepsilon} |Z(t)|^2 + \int_0^t (\log(e+\tau))^{-1-\varepsilon} |A^{1/2}Z(\tau)|^2 d\tau \le C(|u_0|_W^2 + |u_1|^2),$$

where Z(t) is the function defined in (2.3).

Proof. Taking the inner product of both sides of (2.3) with Z(t), we have

(2.20)
$$\frac{1}{2} \frac{d}{dt} |Z(t)|^2 + |A^{1/2}Z(t)|^2 = -(u'(t), Z(t)) \le |u'(t)| |Z(t)|.$$

158

Multiplying (2.20) by
$$(\log(e+t))^{-1-\varepsilon}$$
, we obtain

$$\frac{1}{2} \frac{d}{dt} \{ (\log(e+t))^{-1-\varepsilon} |Z(t)|^2 \} + \frac{1}{2} (1+\varepsilon) (\log(e+t))^{-2-\varepsilon} \frac{1}{e+t} |Z(t)|^2 + (\log(e+t))^{-1-\varepsilon} |A^{1/2}Z(t)|^2 \le (1+t)^{1/2} |u'(t)| (1+t)^{-1/2} (\log(e+t))^{-(1+\varepsilon)/2-(1+\varepsilon)/2} |Z(t)| \le \frac{1}{2} (1+t) |u'(t)|^2 + \frac{1}{2} (1+t)^{-1} (\log(e+t))^{-1-\varepsilon} (\log(e+t))^{-1-\varepsilon} |Z(t)|^2,$$

which implies, by Lemma 2.1,

$$\begin{aligned} \frac{1}{2} \left(\log(e+t) \right)^{-1-\varepsilon} |Z(t)|^2 &+ \int_0^t (\log(e+\tau))^{-1-\varepsilon} |A^{1/2} Z(\tau)|^2 \, d\tau \\ &\leq C(|u_0|_W^2 + |u_1|^2) \\ &+ \int_0^t (1+\tau)^{-1} (\log(e+\tau))^{-1-\varepsilon} \cdot \frac{1}{2} \left(\log(e+\tau) \right)^{-1-\varepsilon} |Z(\tau)|^2 \, d\tau. \end{aligned}$$

The desired estimate follows from the Gronwall inequality, because

(2.21)
$$(1+t)^{-1}(\log(e+t))^{-1-\varepsilon} \in L^1(0,\infty).$$

LEMMA 2.4. Under the assumptions of Theorem 1.1,

(2.22)
$$\int_{0}^{t} \frac{e+\tau}{(\log(e+\tau))^{1+\varepsilon}} |Z'(\tau)|^2 d\tau + \frac{e+t}{(\log(e+t))^{1+\varepsilon}} |A^{1/2}Z(t)|^2 \le CI_0^2.$$

Proof. Taking the inner product of both sides of (2.3) with Z'(t), we have

$$|Z'(t)|^{2} + \frac{1}{2} \frac{d}{dt} |A^{1/2}Z(t)|^{2} = -(u'(t), Z'(t)).$$

This implies

(2.23)
$$|Z'(t)|^2 + \frac{d}{dt} |A^{1/2} Z(t)|^2 \le |u'(t)|^2.$$

Next, multiplying both sides of (2.23) by $(e+t)(\log(e+t))^{-1-\varepsilon}$ we see that

$$\begin{aligned} (e+t)(\log(e+t))^{-1-\varepsilon}|Z'(t)|^2 &+ \frac{d}{dt}\{(e+t)(\log(e+t))^{-1-\varepsilon}|A^{1/2}Z(t)|^2\} \\ &\leq (\log(e+t))^{-1-\varepsilon} \left(1 - \frac{1+\varepsilon}{\log(e+t)}\right)|A^{1/2}Z(t)|^2 \\ &+ (e+t)(\log(e+t))^{-1-\varepsilon}|u'(t)|^2. \end{aligned}$$

By integrating over [0,t] and using (2.5) and Lemma 2.3, we obtain the desired estimate. \blacksquare

Since Z'(t) = w(t), as a corollary we have

COROLLARY 2.1. Under the assumptions of Lemma 2.4,

$$\int_{0}^{t} (e+\tau) (\log(e+\tau))^{-1-\varepsilon} |w(\tau)|^2 \, d\tau \le C I_0^2.$$

Now let us prove Theorem 1.1.

Proof of Theorem 1.1. Similarly to the proof of Lemma 2.3, taking the inner product of both sides of (2.2) with $(e+t)^2(\log(e+t))^{-1-\varepsilon}w(t)$, we see that

$$\frac{(e+t)^2(\log(e+t))^{-1-\varepsilon}}{2} \frac{d}{dt} |w(t)|^2 + (e+t)^2(\log(e+t))^{-1-\varepsilon} |A^{1/2}w(t)|^2$$
$$= -(e+t)^2(\log(e+t))^{-1-\varepsilon} (u''(t), w(t)),$$

so that

$$\begin{split} \frac{1}{2} \frac{d}{dt} \{ (e+t)^2 (\log(e+t))^{-1-\varepsilon} |w(t)|^2 \} + (e+t)^2 (\log(e+t))^{-1-\varepsilon} |A^{1/2}w(t)|^2 \\ &= \left\{ (e+t) (\log(e+t))^{-1-\varepsilon} - \frac{1+\varepsilon}{2} (e+t) (\log(e+t))^{-2-\varepsilon} \right\} |w(t)|^2 \\ &+ (e+t)^{3/2} |u''(t)| \cdot (e+t)^{-1/2} (\log(e+t))^{-(1+\varepsilon)/2} \\ &\times (e+t) (\log(e+t))^{-(1+\varepsilon)/2} |w(t)| \\ &\leq (e+t) (\log(e+t))^{-1-\varepsilon} |w(t)|^2 + \frac{1}{2} (e+t)^3 |u''(t)|^2 \\ &+ (e+t)^{-1} (\log(e+t))^{-(1+\varepsilon)} \cdot \frac{1}{2} (e+t)^2 (\log(e+t))^{-(1+\varepsilon)} |w(t)|^2. \end{split}$$

Integrating over [0, t], and using Lemma 2.2 and Corollary 2.1, we get

$$\frac{(e+t)^2}{2(\log(e+t))^{1+\varepsilon}} |w(t)|^2 + \int_0^t \frac{(e+\tau)^2}{2(\log(e+\tau))^{1+\varepsilon}} |A^{1/2}w(\tau)|^2 d\tau$$
$$\leq CI_0^2 + \int_0^t (e+\tau)^{-1} (\log(e+\tau))^{-1-\varepsilon} \cdot \frac{(e+\tau)^2}{2(\log(e+\tau))^{1+\varepsilon}} |w(\tau)|^2 d\tau.$$

By (2.21) the Gronwall inequality yields the desired estimate.

Acknowledgements. The work of the first author was supported in part by Grant-in-Aid for Scientific Research (C)(2) 14540208 of JSPS. The work of the second author was supported in part by Grant-in-Aid for Scientific Research (C)(2) 13640223 of JSPS.

160

References

- T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl. 13, Oxford Sci. Publ., 1998.
- Y. Han and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math. 124 (2000), 415–433.
- [3] M. Ikawa, Mixed problem for hyperbolic equations of second order, J. Math. Soc. Japan 20 (1968), 580–608.
- R. Ikehata, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations 186 (2002), 633–651.
- [5] R. Ikehata and T. Matsuyama, L^2 -behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Jpn. 55 (2002), 33–42.
- G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math. 143 (2000), 175–197.
- [7] A. Milani and Y. Han, L¹ decay estimates for dissipative wave equations, Math. Methods Appl. Sci. 24 (2001), 319–338.
- [8] K. Nishihara, Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations 137 (1997), 384–395.
- [9] $-, L^p L^q$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., in press.

Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan E-mail: ikehatar@hiroshima-u.ac.jp School of Political Sciences and Economics Waseda University Tokyo 169-8050, Japan E-mail: kenji@waseda.jp

Received July 15, 2002

(4988)