# Diffusion phenomenon for second order linear evolution equations 

by<br>Ryo Ikehata (Hiroshima) and Kenji Nishihara (Tokyo)


#### Abstract

We present an abstract theory of the diffusion phenomenon for second order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a new device developed in Ikehata-Matsuyama [5] is applied. Several applications to damped linear wave equations in unbounded domains are also given.


1. Introduction. Let $H$ be a real Hilbert space with inner product $(\cdot, \cdot)$ and norm $|\cdot|$, and let $A: D(A) \subset H \rightarrow H$ be a nonnegative self-adjoint operator in $H$ with dense domain $V=D(A)$. Then it is well known that the fractional power $A^{1 / 2}: D\left(A^{1 / 2}\right) \rightarrow H$ is well defined with dense domain $W=D\left(A^{1 / 2}\right)$, and $A^{1 / 2}$ is also a nonnegative self-adjoint operator in $H$. In this article we are concerned with the following abstract Cauchy problems in $H$ :

$$
\begin{align*}
& u^{\prime \prime}(t)+A u(t)+u^{\prime}(t)=0, \quad t>0, \quad \text { in } H,  \tag{1.1}\\
& u(0)=u_{0}, \quad u^{\prime}(0)=u_{1} \tag{1.2}
\end{align*}
$$

and

$$
\begin{align*}
& v^{\prime}(t)+A v(t)=0, \quad t>0, \quad \text { in } H,  \tag{1.3}\\
& v(0)=u_{0}+u_{1} \tag{1.4}
\end{align*}
$$

where $u^{\prime}(t)=\frac{d}{d t} u(t)$ and so on.
As solution spaces, we set

$$
\begin{aligned}
X_{2}(0, \infty) & =C([0, \infty) ; V) \cap C^{1}([0, \infty) ; W) \cap C^{2}([0, \infty) ; H), \\
Y_{1}(0, \infty) & =C([0, \infty) ; W) \cap C^{1}((0, \infty) ; H) \cap C((0, \infty) ; V)
\end{aligned}
$$

and also
$X_{3}(0, \infty)=C\left([0, \infty) ; W_{3}\right) \cap C^{1}([0, \infty) ; V) \cap C^{2}([0, \infty) ; W) \cap C^{3}([0, \infty) ; H)$,

[^0]where $W_{3}=D\left(A^{3 / 2}\right)$ is a real Hilbert space with the usual graph norm. We denote by $|u|_{V}$ and $|v|_{W}$ the $V$-graph norm of $u$ and $W$-graph norm of $v$, respectively. The space $X_{3}(0, \infty)$ will be used in the proof of estimates for higher order derivatives (see Lemma 2.2 below).

In 1997 Nishihara [8] described the so-called diffusion phenomenon for quasilinear damped wave equations on 1-dimensional Euclidian space $\mathbb{R}$ in a concrete context, and Han-Milani [2] extended Nishihara's results to the case of $N$-dimensional Euclidian space $\mathbb{R}^{N}$ for any quasilinear damped wave equation (see also Milani-Han [7] for another type of diffusion phenomenon). Furthermore, in [6] Karch has discovered the asymptotic self-similarity as $t \rightarrow \infty$ of solutions to the equation (1.1) with $A=-\Delta$ in $\mathbb{R}^{N}$ (in fact, he deals with more general dissipative wave equations). These results imply that the solution of a damped wave equation is asymptotically equal to that of the corresponding heat equation as $t \rightarrow \infty$. Recently, Nishihara [9] has succeeded in deriving $L^{p}-L^{q}$ estimates for the difference $u(t, x)-v(t, x)$, where $u(t, x)$ and $v(t, x)$ represent the solutions of the Cauchy problem in $\mathbb{R}^{3}$ for a linear damped wave equation and the corresponding heat equation with initial data like (1.4), respectively. On the other hand, quite recently, Ikehata [4] has studied the diffusion phenomenon for the "exterior" mixed problem for linear damped wave equations through a new device, which has its origin in Ikehata-Matsuyama [5]. Unfortunately, the decay rate of $u(t, x)-v(t, x)$ obtained in [4] is not optimal.

In this paper, our purpose is to derive the "diffusion phenomenon" for the "abstract" Cauchy problem (1.1)-(1.2) by using the device of [5], and to consider the optimal rate of decay for $u(t)-v(t)$ which implies the diffusion phenomenon in the abstract framework. We emphasize that the results in [5] cannot be applied in the abstract setting.

Our main result reads as follows.
Theorem 1.1. Let $\left[u_{0}, u_{1}\right] \in V \times W$. Then the solutions $u \in X_{2}(0, \infty)$ to the problem (1.1)-(1.2) and $v \in Y_{1}(0, \infty)$ to the problem (1.3)-(1.4) satisfy

$$
|u(t)-v(t)| \leq C I_{0}(1+t)^{-1}(\log (2+t))^{(1+\varepsilon) / 2}
$$

for any $\varepsilon>0$, where

$$
I_{0}=\left|u_{0}\right|_{V}+\left|u_{1}\right|_{W}
$$

Remark 1.1. For the initial data $\left[u_{0}, u_{1}\right.$ ] in Theorem 1.1, both $u(t)$ and $v(t)$ are expected to be only bounded. However, basing on Nishihara's work [9, Theorem 1.1], we conjecture that the optimal estimate which implies the diffusion phenomenon for (1.1)-(1.2) is

$$
|u(t)-v(t)| \leq C(1+t)^{-1}
$$

Hence the estimate we obtained is almost optimal.

In order to illustrate our results, let us take

$$
H=L^{2}(\Omega), \quad A=-\Delta \quad \text { with } \quad V=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

where $\Omega \subset \mathbb{R}^{N}$ is an unbounded domain with smooth boundary $\partial \Omega$, or $\Omega=\mathbb{R}^{N}$. Then the problems (1.1)-(1.4) are the following mixed problems:

$$
\begin{align*}
& u_{t t}-\Delta u+u_{t}=0 \quad \text { in }(0, \infty) \times \Omega  \tag{1.5}\\
& u(0, x)=u_{0}(x), \quad u_{t}(0, x)=u_{1}(x) \quad \text { in } \Omega,  \tag{1.6}\\
& \left.u\right|_{\partial \Omega}=0 \quad \text { if } \partial \Omega \neq \emptyset  \tag{1.7}\\
& \quad v_{t}-\Delta v=0 \quad \text { in }(0, \infty) \times \Omega  \tag{1.8}\\
& v(0, x)=u_{0}(x)+u_{1}(x) \quad \text { in } \Omega,  \tag{1.9}\\
& \left.v\right|_{\partial \Omega}=0 \quad \text { if } \partial \Omega \neq \emptyset . \tag{1.10}
\end{align*}
$$

Furthermore, if we take

$$
H=L^{2}(\Omega), \quad A=-\Delta \quad \text { with } \quad V=\left\{u \in H^{2}(\Omega): \frac{\partial u}{\partial \nu}=0 \text { on } \partial \Omega\right\}
$$

where $\nu(x)$ represents the usual unit outward normal vector at $x \in \partial \Omega$, then the problems (1.1)-(1.4) are the initial-value problems with homogeneous Neumann boundary condition corresponding to (1.5)-(1.6) and (1.8)-(1.9).
2. Proof of Theorem 1.1. We shall prove Theorem 1.1 using a new device, which has its origin in [5]. Our argument is based on the following well-posedness result (cf. Ikawa [3] and Cazenave-Haraux [1]).

Proposition 2.1. For each $\left(u_{0}, u_{1}\right) \in V \times W$, there exists a unique solution $u \in X_{2}(0, \infty)$ to the problem (1.1)-(1.2) satisfying

$$
\begin{equation*}
E_{u}(t)+\int_{0}^{t}\left|u^{\prime}(\tau)\right|^{2} d \tau=E_{u}(0) \tag{2.1}
\end{equation*}
$$

where

$$
E_{u}(t)=\frac{1}{2}\left(\left|u^{\prime}(t)\right|^{2}+\left|A^{1 / 2} u(t)\right|^{2}\right)
$$

If, in particular, $\left(u_{0}, u_{1}\right) \in W_{3} \times V$, then we have the additional property: $u \in X_{3}(0, \infty)$.

Furthermore, for each $v_{0}=u_{0}+u_{1} \in W$, there exists a unique solution $v \in Y_{1}(0, \infty)$ to the problem (1.3)-(1.4).

To prove Theorem 1.1, we set

$$
w(t)=u(t)-v(t)
$$

Then $w$ becomes the solution to the problem

$$
\begin{align*}
& w^{\prime}(t)+A w(t)=-u^{\prime \prime}(t), \quad t \in(0, \infty), \quad \text { in } H,  \tag{2.2}\\
& w(0)=-u_{1}
\end{align*}
$$

Set furthermore

$$
Z(t)=\int_{0}^{t} w(s) d s
$$

following [5]. Then $Z=Z(t)$ satisfies

$$
\begin{align*}
& Z^{\prime}(t)+A Z(t)=-u^{\prime}(t), \quad t \in(0, \infty), \quad \text { in } H,  \tag{2.3}\\
& Z(0)=0 \tag{2.4}
\end{align*}
$$

where we have used the special form (1.4) of the initial data.
To analyse (2.3) and (2.2) we need the information on $u^{\prime}(t)$ and $u^{\prime \prime}(t)$, which is summed up in $\int_{0}^{t}(1+\tau)\left|u^{\prime}(\tau)\right|^{2} d \tau \leq C$ and $\int_{0}^{t}(1+\tau)^{3}\left|u^{\prime \prime}(\tau)\right|^{2} d \tau$ $\leq C$. So, we shall prepare several facts concerning (1.1)-(1.4).

Lemma 2.1. Let $u \in X_{2}(0, \infty)$ be a solution to the problem (1.1)-(1.2) and $v \in Y_{1}(0, \infty)$ be a solution to (1.3)-(1.4). Then

$$
\begin{align*}
(1+t) E_{u}(t)+ & \int_{0}^{t}(1+\tau)\left|u^{\prime}(\tau)\right|^{2} d t \leq C\left(\left|u_{0}\right|_{W}^{2}+\left|u_{1}\right|^{2}\right)  \tag{2.5}\\
& \int_{0}^{t}(1+\tau)\left|v^{\prime}(\tau)\right|^{2} d \tau \leq C\left|v_{0}\right|_{W}^{2} \tag{2.6}
\end{align*}
$$

with some constant $C>0$, where $v_{0}=u_{0}+u_{1}$.
Proof. First, we shall prove (2.5). It follows from Proposition 2.1 that

$$
\begin{equation*}
\frac{d}{d t} E_{u}(t)+\left|u^{\prime}(t)\right|^{2}=0 \tag{2.7}
\end{equation*}
$$

Taking the inner product of both sides of (1.1) with $u^{\prime}(t)+\frac{1}{2} u(t)$, we obtain

$$
\begin{align*}
0= & \frac{1}{2} \frac{d}{d t}\left(\left|u^{\prime}(t)\right|^{2}+\left(u^{\prime}(t), u(t)\right)+\frac{1}{2}|u(t)|^{2}+\left|A^{1 / 2} u(t)\right|^{2}\right)  \tag{2.8}\\
& +\frac{1}{2}\left(\left|u^{\prime}(t)\right|^{2}+\left|A^{1 / 2} u(t)\right|^{2}\right) \\
= & : \frac{d}{d t} J_{u}(t)+E_{u}(t)
\end{align*}
$$

We note that $J_{u}(t)$ is equivalent to $E_{u}(t)+|u(t)|^{2}$, that is,

$$
\begin{equation*}
C^{-1}\left(E_{u}(t)+|u(t)|^{2}\right) \leq J_{u}(t) \leq C\left(E_{u}(t)+|u(t)|^{2}\right) \tag{2.9}
\end{equation*}
$$

Integrating (2.8) over $[0, t]$, we have

$$
\begin{equation*}
J_{u}(t)+\int_{0}^{t} E_{u}(\tau) d \tau \leq J_{u}(0) \leq C\left(\left|u_{0}\right|_{W}^{2}+\left|u_{1}\right|^{2}\right) \tag{2.10}
\end{equation*}
$$

Hence, multiplying (2.7) by $1+t$ and integrating the resulting equation over $[0, t]$, we get

$$
\begin{aligned}
(1+t) E_{u}(t)+\int_{0}^{t}(1+\tau)\left|u^{\prime}(\tau)\right|^{2} d \tau & \leq E_{u}(0)+\int_{0}^{t} E_{u}(\tau) d \tau \\
& \leq C\left(\left|u_{0}\right|_{W}^{2}+\left|u_{1}\right|^{2}\right)
\end{aligned}
$$

which shows (2.5).
Next, we shall prove (2.6). Taking the inner product of both sides of (1.3) with $v^{\prime}(t)$ and integrating it over $[0, t]$ we obtain

$$
\left|v^{\prime}(t)\right|^{2}=-\frac{1}{2} \frac{d}{d t}\left|A^{1 / 2} v(t)\right|^{2}
$$

Thus, we see that

$$
\begin{align*}
\int_{0}^{t}(1 & +\tau)\left|v^{\prime}(\tau)\right|^{2} d \tau=-\frac{1}{2} \int_{0}^{t}(1+\tau) \frac{d}{d \tau}\left|A^{1 / 2} v(\tau)\right|^{2} d \tau  \tag{2.11}\\
& =-\frac{1}{2}(1+t)\left|A^{1 / 2} v(t)\right|^{2}+\frac{1}{2}\left|A^{1 / 2} v_{0}\right|^{2}+\frac{1}{2} \int_{0}^{t}\left|A^{1 / 2} v(\tau)\right|^{2} d \tau
\end{align*}
$$

On the other hand, taking the inner product of both sides of (1.3) with $v(t)$ and integrating it over $[0, t]$ we see that

$$
\begin{equation*}
\frac{1}{2}|v(t)|^{2}+\int_{0}^{t}\left|A^{1 / 2} v(\tau)\right|^{2} d \tau=\frac{1}{2}\left|v_{0}\right|^{2} \tag{2.12}
\end{equation*}
$$

Therefore, (2.11) and (2.12) imply the desired estimate (2.6).
Lemma 2.2. The solution $u \in X_{2}(0, \infty)$ of (1.1)-(1.2) satisfies

$$
\begin{equation*}
\int_{0}^{t}(1+\tau)^{3}\left|u^{\prime \prime}(\tau)\right|^{2} d \tau \leq C I_{0}^{2} \tag{2.13}
\end{equation*}
$$

Proof. We may assume that $u(t)$ is sufficiently smooth, say $\left(u_{0}, u_{1}\right) \in$ $W_{3} \times V$, because it can be approximated by smooth solutions $\left\{v_{n}(t)\right\} \subset$ $X_{3}(0, \infty)(n=1,2, \ldots)$ to the problem (1.1)-(1.2) in the $X_{2}(0, \infty)$ topology.

Now for the solution $u \in X_{3}(0, \infty)$, we set $a(t)=u^{\prime}(t)$. Then $a(t)$ becomes the strong solution to

$$
\begin{align*}
& a^{\prime \prime}(t)+A a(t)+a^{\prime}(t)=0, \quad t>0, \quad \text { in } H,  \tag{2.14}\\
& a(0)=u_{1}, \quad a^{\prime}(0)=-A u_{0}-u_{1} \tag{2.15}
\end{align*}
$$

By applying Proposition 2.1 to the problem (2.14)-(2.15) we have

$$
\begin{equation*}
\frac{d}{d t} E_{u^{\prime}}(t)+\left|u^{\prime \prime}(t)\right|^{2}=0 \tag{2.16}
\end{equation*}
$$

and also

$$
\begin{equation*}
\frac{d}{d t} J_{u^{\prime}}(t)+E_{u^{\prime}}(t)=0 \tag{2.17}
\end{equation*}
$$

Noting (2.5) and (2.9) and multiplying (2.17) by $(1+t)^{k}, k=0,1,2$, we iteratively have

$$
\begin{gathered}
J_{u^{\prime}}(t)+\int_{0}^{t} E_{u^{\prime}}(\tau) d \tau \leq J_{u^{\prime}}(0) \leq C I_{0}^{2} \\
(1+t) J_{u^{\prime}}(t)+\int_{0}^{t}(1+\tau) E_{u^{\prime}}(\tau) d \tau \leq J_{u^{\prime}}(0)+\int_{0}^{t} J_{u^{\prime}}(\tau) d \tau \\
\leq C\left(I_{0}^{2}+\int_{0}^{t}\left(E_{u^{\prime}}(\tau)+\left|u^{\prime}(\tau)\right|^{2}\right) d \tau\right) \leq C I_{0}^{2}
\end{gathered}
$$

and

$$
\begin{align*}
(1+t)^{2} J_{u^{\prime}}(t)+ & \int_{0}^{t}(1+\tau)^{2} E_{u^{\prime}}(\tau) d \tau \leq J_{u^{\prime}}(0)+2 \int_{0}^{t}(1+\tau) J_{u^{\prime}}(\tau) d \tau  \tag{2.18}\\
& \leq C\left(I_{0}^{2}+2 \int_{0}^{t}(1+\tau)\left(E_{u^{\prime}}(\tau)+\left|u^{\prime}(\tau)\right|^{2}\right) d \tau\right) \leq C I_{0}^{2}
\end{align*}
$$

Using (2.18) we multiply (2.16) by $(1+t)^{3}$ and integrate the resulting equation to obtain

$$
(1+t)^{3} E_{u^{\prime}}(t)+\int_{0}^{t}(1+\tau)^{3}\left|u^{\prime \prime}(\tau)\right|^{2} d \tau \leq E_{u^{\prime}}(0)+3 \int_{0}^{t}(1+\tau)^{2} E_{u^{\prime}}(\tau) d \tau \leq C I_{0}^{2}
$$

which shows (2.13).
The following lemmas can also be shown by the device of [5] basing on Lemmas 2.1-2.2.

Lemma 2.3. Under the assumptions of Theorem 1.1,

$$
\begin{align*}
(\log (e+t))^{-1-\varepsilon}|Z(t)|^{2}+\int_{0}^{t}(\log (e+\tau))^{-1-\varepsilon} \mid & \left.A^{1 / 2} Z(\tau)\right|^{2} d \tau  \tag{2.19}\\
& \leq C\left(\left|u_{0}\right|_{W}^{2}+\left|u_{1}\right|^{2}\right)
\end{align*}
$$

where $Z(t)$ is the function defined in (2.3).
Proof. Taking the inner product of both sides of $(2.3)$ with $Z(t)$, we have

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|Z(t)|^{2}+\left|A^{1 / 2} Z(t)\right|^{2}=-\left(u^{\prime}(t), Z(t)\right) \leq\left|u^{\prime}(t)\right||Z(t)| \tag{2.20}
\end{equation*}
$$

Multiplying (2.20) by $(\log (e+t))^{-1-\varepsilon}$, we obtain

$$
\begin{aligned}
& \begin{array}{l}
\frac{1}{2} \frac{d}{d t}
\end{array}\left\{(\log (e+t))^{-1-\varepsilon}|Z(t)|^{2}\right\}+\frac{1}{2}(1+\varepsilon)(\log (e+t))^{-2-\varepsilon} \frac{1}{e+t}|Z(t)|^{2} \\
& \quad+(\log (e+t))^{-1-\varepsilon}\left|A^{1 / 2} Z(t)\right|^{2} \\
& \leq(1+t)^{1 / 2}\left|u^{\prime}(t)\right|(1+t)^{-1 / 2}(\log (e+t))^{-(1+\varepsilon) / 2-(1+\varepsilon) / 2}|Z(t)| \\
& \leq \frac{1}{2}(1+t)\left|u^{\prime}(t)\right|^{2}+\frac{1}{2}(1+t)^{-1}(\log (e+t))^{-1-\varepsilon}(\log (e+t))^{-1-\varepsilon}|Z(t)|^{2},
\end{aligned}
$$

which implies, by Lemma 2.1,

$$
\begin{aligned}
& \frac{1}{2}(\log (e+t))^{-1-\varepsilon}|Z(t)|^{2}+\int_{0}^{t}(\log (e+\tau))^{-1-\varepsilon}\left|A^{1 / 2} Z(\tau)\right|^{2} d \tau \\
& \leq \\
& C\left(\left|u_{0}\right|_{W}^{2}+\left|u_{1}\right|^{2}\right) \\
& \quad+\int_{0}^{t}(1+\tau)^{-1}(\log (e+\tau))^{-1-\varepsilon} \cdot \frac{1}{2}(\log (e+\tau))^{-1-\varepsilon}|Z(\tau)|^{2} d \tau
\end{aligned}
$$

The desired estimate follows from the Gronwall inequality, because

$$
\begin{equation*}
(1+t)^{-1}(\log (e+t))^{-1-\varepsilon} \in L^{1}(0, \infty) \tag{2.21}
\end{equation*}
$$

Lemma 2.4. Under the assumptions of Theorem 1.1,

$$
\begin{equation*}
\int_{0}^{t} \frac{e+\tau}{(\log (e+\tau))^{1+\varepsilon}}\left|Z^{\prime}(\tau)\right|^{2} d \tau+\frac{e+t}{(\log (e+t))^{1+\varepsilon}}\left|A^{1 / 2} Z(t)\right|^{2} \leq C I_{0}^{2} \tag{2.22}
\end{equation*}
$$

Proof. Taking the inner product of both sides of (2.3) with $Z^{\prime}(t)$, we have

$$
\left|Z^{\prime}(t)\right|^{2}+\frac{1}{2} \frac{d}{d t}\left|A^{1 / 2} Z(t)\right|^{2}=-\left(u^{\prime}(t), Z^{\prime}(t)\right)
$$

This implies

$$
\begin{equation*}
\left|Z^{\prime}(t)\right|^{2}+\frac{d}{d t}\left|A^{1 / 2} Z(t)\right|^{2} \leq\left|u^{\prime}(t)\right|^{2} \tag{2.23}
\end{equation*}
$$

Next, multiplying both sides of (2.23) by $(e+t)(\log (e+t))^{-1-\varepsilon}$ we see that

$$
\begin{aligned}
(e+t)(\log (e+t))^{-1-\varepsilon}\left|Z^{\prime}(t)\right|^{2} & +\frac{d}{d t}\left\{(e+t)(\log (e+t))^{-1-\varepsilon}\left|A^{1 / 2} Z(t)\right|^{2}\right\} \\
\leq & (\log (e+t))^{-1-\varepsilon}\left(1-\frac{1+\varepsilon}{\log (e+t)}\right)\left|A^{1 / 2} Z(t)\right|^{2} \\
& +(e+t)(\log (e+t))^{-1-\varepsilon}\left|u^{\prime}(t)\right|^{2} .
\end{aligned}
$$

By integrating over $[0, t]$ and using (2.5) and Lemma 2.3, we obtain the desired estimate.

Since $Z^{\prime}(t)=w(t)$, as a corollary we have

Corollary 2.1. Under the assumptions of Lemma 2.4,

$$
\int_{0}^{t}(e+\tau)(\log (e+\tau))^{-1-\varepsilon}|w(\tau)|^{2} d \tau \leq C I_{0}^{2}
$$

Now let us prove Theorem 1.1.
Proof of Theorem 1.1. Similarly to the proof of Lemma 2.3, taking the inner product of both sides of (2.2) with $(e+t)^{2}(\log (e+t))^{-1-\varepsilon} w(t)$, we see that

$$
\begin{aligned}
\frac{(e+t)^{2}(\log (e+t))^{-1-\varepsilon}}{2} \frac{d}{d t}|w(t)|^{2} & +(e+t)^{2}(\log (e+t))^{-1-\varepsilon}\left|A^{1 / 2} w(t)\right|^{2} \\
& =-(e+t)^{2}(\log (e+t))^{-1-\varepsilon}\left(u^{\prime \prime}(t), w(t)\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\{(e+ & \left.t)^{2}(\log (e+t))^{-1-\varepsilon}|w(t)|^{2}\right\}+(e+t)^{2}(\log (e+t))^{-1-\varepsilon}\left|A^{1 / 2} w(t)\right|^{2} \\
= & \left\{(e+t)(\log (e+t))^{-1-\varepsilon}-\frac{1+\varepsilon}{2}(e+t)(\log (e+t))^{-2-\varepsilon}\right\}|w(t)|^{2} \\
& +(e+t)^{3 / 2}\left|u^{\prime \prime}(t)\right| \cdot(e+t)^{-1 / 2}(\log (e+t))^{-(1+\varepsilon) / 2} \\
& \times(e+t)(\log (e+t))^{-(1+\varepsilon) / 2}|w(t)| \\
\leq & (e+t)(\log (e+t))^{-1-\varepsilon}|w(t)|^{2}+\frac{1}{2}(e+t)^{3}\left|u^{\prime \prime}(t)\right|^{2} \\
& +(e+t)^{-1}(\log (e+t))^{-(1+\varepsilon)} \cdot \frac{1}{2}(e+t)^{2}(\log (e+t))^{-(1+\varepsilon)}|w(t)|^{2}
\end{aligned}
$$

Integrating over $[0, t]$, and using Lemma 2.2 and Corollary 2.1, we get

$$
\begin{aligned}
& \frac{(e+t)^{2}}{2(\log (e+t))^{1+\varepsilon}}|w(t)|^{2}+\int_{0}^{t} \frac{(e+\tau)^{2}}{2(\log (e+\tau))^{1+\varepsilon}}\left|A^{1 / 2} w(\tau)\right|^{2} d \tau \\
& \quad \leq C I_{0}^{2}+\int_{0}^{t}(e+\tau)^{-1}(\log (e+\tau))^{-1-\varepsilon} \cdot \frac{(e+\tau)^{2}}{2(\log (e+\tau))^{1+\varepsilon}}|w(\tau)|^{2} d \tau
\end{aligned}
$$

By (2.21) the Gronwall inequality yields the desired estimate.
Acknowledgements. The work of the first author was supported in part by Grant-in-Aid for Scientific Research (C)(2) 14540208 of JSPS. The work of the second author was supported in part by Grant-in-Aid for Scientific Research (C)(2) 13640223 of JSPS.

## References

[1] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Ser. Math. Appl. 13, Oxford Sci. Publ., 1998.
[2] Y. Han and A. Milani, On the diffusion phenomenon of quasilinear hyperbolic waves, Bull. Sci. Math. 124 (2000), 415-433.
[3] M. Ikawa, Mixed problem for hyperbolic equations of second order, J. Math. Soc. Japan 20 (1968), 580-608.
[4] R. Ikehata, Diffusion phenomenon for linear dissipative wave equations in an exterior domain, J. Differential Equations 186 (2002), 633-651.
[5] R. Ikehata and T. Matsuyama, $L^{2}$-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Jpn. 55 (2002), 33-42.
[6] G. Karch, Selfsimilar profiles in large time asymptotics of solutions to damped wave equations, Studia Math. 143 (2000), 175-197.
[7] A. Milani and Y. Han, $L^{1}$ decay estimates for dissipative wave equations, Math. Methods Appl. Sci. 24 (2001), 319-338.
[8] K. Nishihara, Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping, J. Differential Equations 137 (1997), 384-395.
[9] -, $L^{p}$ - $L^{q}$ estimates of solutions to the damped wave equation in 3-dimensional space and their application, Math. Z., in press.

Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: ikehatar@hiroshima-u.ac.jp

School of Political Sciences and Economics
Waseda University
Tokyo 169-8050, Japan
E-mail: kenji@waseda.jp


[^0]:    2000 Mathematics Subject Classification: 35B40, 35E15, 34G10, 35L90.
    Key words and phrases: dissipative wave equations; heat equations; asymptotic profile; optimum decay rate.

