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Diffusion phenomenon for
second order linear evolution equations

by

Ryo Ikehata (Hiroshima) and Kenji Nishihara (Tokyo)

Abstract. We present an abstract theory of the diffusion phenomenon for second
order linear evolution equations in a Hilbert space. To derive the diffusion phenomenon, a
new device developed in Ikehata–Matsuyama [5] is applied. Several applications to damped
linear wave equations in unbounded domains are also given.

1. Introduction. Let H be a real Hilbert space with inner product (·, ·)
and norm | · |, and let A : D(A) ⊂ H → H be a nonnegative self-adjoint
operator in H with dense domain V = D(A). Then it is well known that
the fractional power A1/2 : D(A1/2)→ H is well defined with dense domain
W = D(A1/2), and A1/2 is also a nonnegative self-adjoint operator in H. In
this article we are concerned with the following abstract Cauchy problems
in H:

u′′(t) +Au(t) + u′(t) = 0, t > 0, in H,(1.1)

u(0) = u0, u′(0) = u1,(1.2)

and

v′(t) + Av(t) = 0, t > 0, in H,(1.3)

v(0) = u0 + u1,(1.4)

where u′(t) = d
dtu(t) and so on.

As solution spaces, we set

X2(0,∞) = C([0,∞);V ) ∩ C1([0,∞);W ) ∩ C2([0,∞);H),

Y1(0,∞) = C([0,∞);W ) ∩ C1((0,∞);H) ∩ C((0,∞);V ),

and also

X3(0,∞) = C([0,∞);W3)∩C1([0,∞);V )∩C2([0,∞);W )∩C3([0,∞);H),
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where W3 = D(A3/2) is a real Hilbert space with the usual graph norm. We
denote by |u|V and |v|W the V -graph norm of u and W -graph norm of v,
respectively. The space X3(0,∞) will be used in the proof of estimates for
higher order derivatives (see Lemma 2.2 below).

In 1997 Nishihara [8] described the so-called diffusion phenomenon for
quasilinear damped wave equations on 1-dimensional Euclidian space R in
a concrete context, and Han–Milani [2] extended Nishihara’s results to the
case of N -dimensional Euclidian space RN for any quasilinear damped wave
equation (see also Milani–Han [7] for another type of diffusion phenomenon).
Furthermore, in [6] Karch has discovered the asymptotic self-similarity as
t → ∞ of solutions to the equation (1.1) with A = −∆ in RN (in fact,
he deals with more general dissipative wave equations). These results imply
that the solution of a damped wave equation is asymptotically equal to that
of the corresponding heat equation as t → ∞. Recently, Nishihara [9] has
succeeded in deriving Lp-Lq estimates for the difference u(t, x) − v(t, x),
where u(t, x) and v(t, x) represent the solutions of the Cauchy problem in
R3 for a linear damped wave equation and the corresponding heat equation
with initial data like (1.4), respectively. On the other hand, quite recently,
Ikehata [4] has studied the diffusion phenomenon for the “exterior” mixed
problem for linear damped wave equations through a new device, which
has its origin in Ikehata–Matsuyama [5]. Unfortunately, the decay rate of
u(t, x)− v(t, x) obtained in [4] is not optimal.

In this paper, our purpose is to derive the “diffusion phenomenon” for
the “abstract” Cauchy problem (1.1)–(1.2) by using the device of [5], and to
consider the optimal rate of decay for u(t)− v(t) which implies the diffusion
phenomenon in the abstract framework. We emphasize that the results in
[5] cannot be applied in the abstract setting.

Our main result reads as follows.

Theorem 1.1. Let [u0, u1] ∈ V ×W . Then the solutions u ∈ X2(0,∞) to
the problem (1.1)–(1.2) and v ∈ Y1(0,∞) to the problem (1.3)–(1.4) satisfy

|u(t)− v(t)| ≤ CI0(1 + t)−1(log(2 + t))(1+ε)/2

for any ε > 0, where
I0 = |u0|V + |u1|W .

Remark 1.1. For the initial data [u0, u1] in Theorem 1.1, both u(t) and
v(t) are expected to be only bounded. However, basing on Nishihara’s work
[9, Theorem 1.1], we conjecture that the optimal estimate which implies the
diffusion phenomenon for (1.1)–(1.2) is

|u(t)− v(t)| ≤ C(1 + t)−1.

Hence the estimate we obtained is almost optimal.
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In order to illustrate our results, let us take

H = L2(Ω), A = −∆ with V = H2(Ω) ∩H1
0 (Ω),

where Ω ⊂ RN is an unbounded domain with smooth boundary ∂Ω, or
Ω = RN . Then the problems (1.1)–(1.4) are the following mixed problems:

utt −∆u+ ut = 0 in (0,∞)×Ω,(1.5)

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,(1.6)

u|∂Ω = 0 if ∂Ω 6= ∅,(1.7)

vt −∆v = 0 in (0,∞)×Ω,(1.8)

v(0, x) = u0(x) + u1(x) in Ω,(1.9)

v|∂Ω = 0 if ∂Ω 6= ∅.(1.10)

Furthermore, if we take

H = L2(Ω), A = −∆ with V =
{
u ∈ H2(Ω) :

∂u

∂ν
= 0 on ∂Ω

}
,

where ν(x) represents the usual unit outward normal vector at x ∈ ∂Ω, then
the problems (1.1)–(1.4) are the initial-value problems with homogeneous
Neumann boundary condition corresponding to (1.5)–(1.6) and (1.8)–(1.9).

2. Proof of Theorem 1.1. We shall prove Theorem 1.1 using a new
device, which has its origin in [5]. Our argument is based on the following
well-posedness result (cf. Ikawa [3] and Cazenave–Haraux [1]).

Proposition 2.1. For each (u0, u1) ∈ V × W , there exists a unique
solution u ∈ X2(0,∞) to the problem (1.1)–(1.2) satisfying

(2.1) Eu(t) +
t�
0

|u′(τ)|2 dτ = Eu(0),

where
Eu(t) =

1
2

(|u′(t)|2 + |A1/2u(t)|2).

If , in particular , (u0, u1) ∈ W3 × V , then we have the additional property :
u ∈ X3(0,∞).

Furthermore, for each v0 = u0 + u1 ∈ W , there exists a unique solution
v ∈ Y1(0,∞) to the problem (1.3)–(1.4).

To prove Theorem 1.1, we set

w(t) = u(t)− v(t).

Then w becomes the solution to the problem

w′(t) +Aw(t) = −u′′(t), t ∈ (0,∞), in H,(2.2)

w(0) = −u1.
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Set furthermore

Z(t) =
t�
0

w(s) ds,

following [5]. Then Z = Z(t) satisfies

Z ′(t) +AZ(t) = −u′(t), t ∈ (0,∞), in H,(2.3)

Z(0) = 0,(2.4)

where we have used the special form (1.4) of the initial data.
To analyse (2.3) and (2.2) we need the information on u′(t) and u′′(t),

which is summed up in � t0(1 + τ)|u′(τ)|2 dτ ≤ C and � t0(1 + τ)3|u′′(τ)|2 dτ
≤ C. So, we shall prepare several facts concerning (1.1)–(1.4).

Lemma 2.1. Let u ∈ X2(0,∞) be a solution to the problem (1.1)–(1.2)
and v ∈ Y1(0,∞) be a solution to (1.3)–(1.4). Then

(1 + t)Eu(t) +
t�
0

(1 + τ)|u′(τ)|2 dt ≤ C(|u0|2W + |u1|2),(2.5)

t�
0

(1 + τ)|v′(τ)|2 dτ ≤ C|v0|2W ,(2.6)

with some constant C > 0, where v0 = u0 + u1.

Proof. First, we shall prove (2.5). It follows from Proposition 2.1 that

(2.7)
d

dt
Eu(t) + |u′(t)|2 = 0.

Taking the inner product of both sides of (1.1) with u′(t)+ 1
2u(t), we obtain

0 =
1
2
d

dt

(
|u′(t)|2 + (u′(t), u(t)) +

1
2
|u(t)|2 + |A1/2u(t)|2

)
(2.8)

+
1
2

(|u′(t)|2 + |A1/2u(t)|2)

=:
d

dt
Ju(t) +Eu(t).

We note that Ju(t) is equivalent to Eu(t) + |u(t)|2, that is,

(2.9) C−1(Eu(t) + |u(t)|2) ≤ Ju(t) ≤ C(Eu(t) + |u(t)|2).

Integrating (2.8) over [0, t], we have

(2.10) Ju(t) +
t�
0

Eu(τ) dτ ≤ Ju(0) ≤ C(|u0|2W + |u1|2).
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Hence, multiplying (2.7) by 1+ t and integrating the resulting equation over
[0, t], we get

(1 + t)Eu(t) +
t�
0

(1 + τ)|u′(τ)|2 dτ ≤ Eu(0) +
t�
0

Eu(τ) dτ

≤ C(|u0|2W + |u1|2),

which shows (2.5).
Next, we shall prove (2.6). Taking the inner product of both sides of

(1.3) with v′(t) and integrating it over [0, t] we obtain

|v′(t)|2 = −1
2
d

dt
|A1/2v(t)|2.

Thus, we see that

(2.11)
t�
0

(1 + τ)|v′(τ)|2dτ = −1
2

t�
0

(1 + τ)
d

dτ
|A1/2v(τ)|2 dτ

= −1
2

(1 + t)|A1/2v(t)|2 +
1
2
|A1/2v0|2 +

1
2

t�
0

|A1/2v(τ)|2 dτ.

On the other hand, taking the inner product of both sides of (1.3) with v(t)
and integrating it over [0, t] we see that

(2.12)
1
2
|v(t)|2 +

t�
0

|A1/2v(τ)|2 dτ =
1
2
|v0|2.

Therefore, (2.11) and (2.12) imply the desired estimate (2.6).

Lemma 2.2. The solution u ∈ X2(0,∞) of (1.1)–(1.2) satisfies

(2.13)
t�
0

(1 + τ)3|u′′(τ)|2 dτ ≤ CI2
0 .

Proof. We may assume that u(t) is sufficiently smooth, say (u0, u1) ∈
W3 × V , because it can be approximated by smooth solutions {vn(t)} ⊂
X3(0,∞) (n = 1, 2, . . .) to the problem (1.1)–(1.2) in the X2(0,∞) topology.

Now for the solution u ∈ X3(0,∞), we set a(t) = u′(t). Then a(t) be-
comes the strong solution to

a′′(t) +Aa(t) + a′(t) = 0, t > 0, in H,(2.14)

a(0) = u1, a′(0) = −Au0 − u1.(2.15)

By applying Proposition 2.1 to the problem (2.14)–(2.15) we have

(2.16)
d

dt
Eu′(t) + |u′′(t)|2 = 0
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and also

(2.17)
d

dt
Ju′(t) +Eu′(t) = 0.

Noting (2.5) and (2.9) and multiplying (2.17) by (1 + t)k, k = 0, 1, 2, we
iteratively have

Ju′(t) +
t�
0

Eu′(τ) dτ ≤ Ju′(0) ≤ CI2
0 ,

(1 + t)Ju′(t) +
t�
0

(1 + τ)Eu′(τ) dτ ≤ Ju′(0) +
t�
0

Ju′(τ) dτ

≤ C
(
I2
0 +

t�
0

(Eu′(τ) + |u′(τ)|2) dτ
)
≤ CI2

0 ,

and

(2.18) (1 + t)2Ju′(t) +
t�
0

(1 + τ)2Eu′(τ) dτ ≤ Ju′(0) + 2
t�
0

(1 + τ)Ju′(τ) dτ

≤ C
(
I2
0 + 2

t�
0

(1 + τ)(Eu′(τ) + |u′(τ)|2) dτ
)
≤ CI2

0 .

Using (2.18) we multiply (2.16) by (1 + t)3 and integrate the resulting equa-
tion to obtain

(1 + t)3Eu′(t) +
t�
0

(1 + τ)3|u′′(τ)|2 dτ ≤ Eu′(0) + 3
t�
0

(1 + τ)2Eu′(τ) dτ ≤ CI2
0 ,

which shows (2.13).

The following lemmas can also be shown by the device of [5] basing on
Lemmas 2.1–2.2.

Lemma 2.3. Under the assumptions of Theorem 1.1,

(2.19) (log(e+ t))−1−ε|Z(t)|2 +
t�
0

(log(e+ τ))−1−ε|A1/2Z(τ)|2 dτ

≤ C(|u0|2W + |u1|2),

where Z(t) is the function defined in (2.3).

Proof. Taking the inner product of both sides of (2.3) with Z(t), we have

(2.20)
1
2
d

dt
|Z(t)|2 + |A1/2Z(t)|2 = −(u′(t), Z(t)) ≤ |u′(t)| |Z(t)|.
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Multiplying (2.20) by (log(e+ t))−1−ε, we obtain

1
2
d

dt
{(log(e+ t))−1−ε|Z(t)|2}+

1
2

(1 + ε)(log(e+ t))−2−ε 1
e+ t

|Z(t)|2

+ (log(e+ t))−1−ε|A1/2Z(t)|2

≤ (1 + t)1/2|u′(t)|(1 + t)−1/2(log(e+ t))−(1+ε)/2−(1+ε)/2|Z(t)|

≤ 1
2

(1 + t)|u′(t)|2 +
1
2

(1 + t)−1(log(e+ t))−1−ε(log(e+ t))−1−ε|Z(t)|2,
which implies, by Lemma 2.1,

1
2

(log(e+ t))−1−ε|Z(t)|2 +
t�
0

(log(e+ τ))−1−ε|A1/2Z(τ)|2 dτ

≤ C(|u0|2W + |u1|2)

+
t�
0

(1 + τ)−1(log(e+ τ))−1−ε · 1
2

(log(e+ τ))−1−ε|Z(τ)|2 dτ.

The desired estimate follows from the Gronwall inequality, because

(2.21) (1 + t)−1(log(e+ t))−1−ε ∈ L1(0,∞).

Lemma 2.4. Under the assumptions of Theorem 1.1,

(2.22)
t�
0

e+ τ

(log(e+ τ))1+ε |Z
′(τ)|2 dτ +

e+ t

(log(e+ t))1+ε |A
1/2Z(t)|2 ≤ CI2

0 .

Proof. Taking the inner product of both sides of (2.3) with Z ′(t), we
have

|Z ′(t)|2 +
1
2
d

dt
|A1/2Z(t)|2 = −(u′(t), Z ′(t)).

This implies

(2.23) |Z ′(t)|2 +
d

dt
|A1/2Z(t)|2 ≤ |u′(t)|2.

Next, multiplying both sides of (2.23) by (e+ t)(log(e+ t))−1−ε we see that

(e+ t)(log(e+ t))−1−ε|Z ′(t)|2 +
d

dt
{(e+ t)(log(e+ t))−1−ε|A1/2Z(t)|2}

≤ (log(e+ t))−1−ε
(

1− 1 + ε

log(e+ t)

)
|A1/2Z(t)|2

+ (e+ t)(log(e+ t))−1−ε|u′(t)|2.
By integrating over [0, t] and using (2.5) and Lemma 2.3, we obtain the
desired estimate.

Since Z ′(t) = w(t), as a corollary we have
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Corollary 2.1. Under the assumptions of Lemma 2.4,

t�
0

(e+ τ)(log(e+ τ))−1−ε|w(τ)|2 dτ ≤ CI2
0 .

Now let us prove Theorem 1.1.

Proof of Theorem 1.1. Similarly to the proof of Lemma 2.3, taking the
inner product of both sides of (2.2) with (e+ t)2(log(e+ t))−1−εw(t), we see
that

(e+ t)2(log(e+ t))−1−ε

2
d

dt
|w(t)|2 + (e+ t)2(log(e+ t))−1−ε|A1/2w(t)|2

= −(e+ t)2(log(e+ t))−1−ε(u′′(t), w(t)),

so that

1
2
d

dt
{(e+ t)2(log(e+ t))−1−ε|w(t)|2}+ (e+ t)2(log(e+ t))−1−ε|A1/2w(t)|2

=
{

(e+ t)(log(e+ t))−1−ε − 1 + ε

2
(e+ t)(log(e+ t))−2−ε

}
|w(t)|2

+ (e+ t)3/2|u′′(t)| · (e+ t)−1/2(log(e+ t))−(1+ε)/2

× (e+ t)(log(e+ t))−(1+ε)/2|w(t)|

≤ (e+ t)(log(e+ t))−1−ε|w(t)|2 +
1
2

(e+ t)3|u′′(t)|2

+ (e+ t)−1(log(e+ t))−(1+ε) · 1
2

(e+ t)2(log(e+ t))−(1+ε)|w(t)|2.

Integrating over [0, t], and using Lemma 2.2 and Corollary 2.1, we get

(e+ t)2

2(log (e+ t))1+ε |w(t)|2 +
t�
0

(e+ τ)2

2(log (e+ τ))1+ε |A
1/2w(τ)|2 dτ

≤ CI2
0 +

t�
0

(e+ τ)−1(log (e+ τ))−1−ε · (e+ τ)2

2(log (e+ τ))1+ε |w(τ)|2 dτ.

By (2.21) the Gronwall inequality yields the desired estimate.
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