Mean ergodicity for compact operators

by

HEYDAR RADJAVI (Halifax), PING-KWAN TAM (Hong Kong) and Kok-Keong Tan (Halifax)

Abstract. A mean ergodic theorem is proved for a compact operator on a Banach space without assuming mean-boundedness. Some related results are also presented.

1. Introduction. In the literature, mean ergodic theorems for linear operators usually deal with operators which are power bounded (see, e.g., [YK] and [Z]). However, already in 1945, Hille [H] gave an example of an operator T on $X = L_1[0, 1]$ which is mean ergodic (i.e., the sequence of averages $(n^{-1}\sum_{j=1}^{n}T^{j}x)_{n=1}^{\infty}$ converges strongly for every $x \in X$) but not powerbounded. By the Banach–Steinhaus theorem, a necessary condition for mean ergodicity is mean-boundedness, i.e., $\sup_n n^{-1} \|\sum_{j=1}^n T^j\| < \infty$ (which is C-mean-boundedness in [E]). Also the strong (resp. weak) convergence of $(n^{-1}\sum_{j=1}^{n}T^{j}x)_{n=1}^{\infty}$ clearly implies that $(n^{-1}T^{n}x)_{n=1}^{\infty} \to 0$ strongly (resp. weakly). In the treatment of mean ergodic theory in the book of Dunford and Schwartz [DS], the operator T is assumed to be mean-bounded (Theorem VIII.5.1, p. 661), or the sequence $(n^{-1}T^n)_{n=1}^{\infty}$ is assumed to converge to zero weakly (Theorem VIII.8.3, p. 711). In 1985, Émilion [E] gave an example of a positive operator on L_p (1 which is mean ergodic andnot power-bounded; he also showed by an example (due to I. Assani) that mean-boundedness of a compact operator T does not imply $(n^{-1}||T^n||)_{n=1}^{\infty}$ $\rightarrow 0$. More recently, Derriennic [D] constructed a mean ergodic operator T on a Hilbert space such that $||T^n|| \ge n$ for every positive integer n; moreover, T^* is weakly mean ergodic (i.e., the averages converge weakly for every point of the Hilbert space) but not mean ergodic. Moreover, Yoshimoto [Y1, Y2] obtained, under the assumption that $(n^{-w} || T^n ||)_{n=1}^{\infty} \to 0$ (resp.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47B07, 47A35.

Key words and phrases: compact operator, mean ergodic theorem, fixed point.

The work of P. K. Tam and K. K. Tan is partially supported by a research grant from The Chinese University of Hong Kong.

H. Radjavi and K. K. Tan are partially supported by research grants from NSERC of Canada.

 $(n^{-w}T^n)_{n=1}^{\infty} \to 0$ in the strong operator topology), the equivalence between the convergence of $C_n^{(\alpha)}[T]$ in the uniform operator norm (resp., in the strong operator topology) and that of the so-called Dirichlet methods (which generalize the Abel method), where $w = \min(1, \alpha)$, and $C_n^{(1)}[T] = n^{-1} \sum_{j=0}^{n-1} T^j$.

In this paper, under a fairly weak condition (cf. Proposition 2.1(4) below), we shall first obtain a general mean ergodic theorem for operators Twhich are not necessarily mean-bounded nor satisfy $(n^{-1}T^n)_{n=1}^{\infty} \to 0$ on Xuniformly, operator strongly, or operator weakly (cf. also Proposition 2.2). We next obtain a mean ergodic theorem for compact operators on a Banach space, which need not be mean-bounded nor satisfy $(n^{-1}T^n)_{n=1}^{\infty} \to 0$ on Xuniformly, operator strongly or operator weakly (cf. Theorem 2.3 and its corollaries below). Finally, in Theorem 2.10, we present a relation between our condition and power-boundedness.

2. Ergodic theorems. If $(X, \|\cdot\|)$ is a normed space, we denote by $\mathcal{B}(X)$ the space of all bounded linear operators on X. If $A \in \mathcal{B}(X)$, then $x \in X$ is called a *fixed point* of A if Ax = x, and $\sigma(A)$ denotes the spectrum of A.

We begin with the following result:

PROPOSITION 2.1. Let $(X, \|\cdot\|)$ be a (real or complex) normed space, $A \in \mathcal{B}(X)$ and $x \in X$. Denote by I the identity operator on X, and (I - A)Xthe norm closure of (I - A)X in X.

(1) If for some subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$, $n_k^{-1} \sum_{j=1}^{n_k} A^j x \to 0$ weakly as $k \to \infty$, then $x \in \overline{(I-A)X}$.

(2) If $n^{-1}A^n x \to 0$ weakly as $n \to \infty$ and $n_k^{-1}\sum_{j=1}^{n_k} A^j x \to \overline{x}$ weakly as $k \to \infty$ for some subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$, then $A\overline{x} = \overline{x}$, and $x - \overline{x} \in \overline{(I-A)X}$.

(3) If x = (I - A)y with $n^{-1}A^n y \to 0$ weakly (resp. strongly) as $n \to \infty$, then $n^{-1}\sum_{j=1}^n A^j x \to 0$ weakly (resp. strongly) as $n \to \infty$.

(4) Suppose $n^{-1}A^n x \to 0$ weakly as $n \to \infty$ and for some subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$, $n_k^{-1} \sum_{j=1}^{n_k} A^j x \to \overline{x}$ weakly as $k \to \infty$. If (*) $x - \overline{x} = (I - A)y$ with $n^{-1} ||A^n y|| \to 0$ as $n \to \infty$,

(*) $x - \overline{x} = (I - A)y$ with $n^{-1} ||A^n y|| \to 0$ as $n \to \infty$, then $||n^{-1} \sum_{j=1}^n A^j x - \overline{x}|| \to 0$ as $n \to \infty$.

Proof. (1) Note that

$$(I-A)\left(I + \frac{n_k - 1}{n_k}A + \frac{n_k - 2}{n_k}A^2 + \dots + \frac{1}{n_k}A^{n_k - 1}\right)x$$
$$= \left[I - \frac{1}{n_k}\left(A + A^2 + \dots + A^{n_k}\right)\right]x \to x \quad \text{weakly as } k \to \infty.$$

The desired conclusion follows.

(2) By our assumption, setting $x_n = n^{-1} \sum_{j=1}^n A^j x$, we have

$$Ax_{n_k} = \frac{1}{n_k} \sum_{j=2}^{n_k+1} A^k x = \frac{1}{n_k} \Big[\Big(\sum_{j=1}^{n_k} A^k x \Big) + A^{n_k+1} x - A x \Big]$$

= $x_{n_k} + \frac{1}{n_k} (A^{n_k+1} x) - \frac{1}{n_k} A x \to \overline{x}$ weakly as $k \to \infty$.

Since A is also weakly continuous, $Ax_{n_k} \to A\overline{x}$ weakly as $k \to \infty$; thus we conclude that $A\overline{x} = \overline{x}$. Therefore

$$\frac{1}{n_k}\sum_{j=1}^{n_k} A^j(x-\overline{x}) = \frac{1}{n_k}\sum_{j=1}^{n_k} A^j x - \overline{x} \to 0 \quad \text{weakly as } k \to \infty.$$

By (1), $x - \overline{x} \in \overline{(I - A)X}$. (3) Since

$$\begin{aligned} \frac{1}{n}\sum_{j=1}^{n}A^{j}x &= \frac{1}{n}\sum_{j=1}^{n}A^{j}(I-A)y = \frac{1}{n}\sum_{j=1}^{n}A^{j}y - \frac{1}{n}\sum_{j=1}^{n}A^{j+1}y \\ &= \frac{1}{n}Ay - \frac{1}{n}A^{n+1}y, \end{aligned}$$

the desired conclusions hold.

(4) By (2), $A\overline{x} = \overline{x}$. Thus by (3), we have

$$\frac{1}{n}\sum_{j=1}^{n}A^{j}x - \overline{x} = \frac{1}{n}\sum_{j=1}^{n}A^{j}(x - \overline{x}) \to 0 \quad \text{strongly as } n \to \infty. \blacksquare$$

PROPOSITION 2.2. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space, $A \in \mathcal{B}(X)$ and $x \in X$. Suppose I - A is one-to-one and has closed range, $\|A^n x\|/n \to 0$ as $n \to \infty$ and $n_k^{-1} \sum_{j=1}^{n_k} A^j x \to \overline{x}$ weakly as $k \to \infty$ for a subsequence $(n_k)_{k=1}^{\infty}$ of $(n)_{n=1}^{\infty}$. Then there exists $y \in X$ satisfying the condition (*) of Proposition 2.1 above, and $\|n^{-1} \sum_{j=1}^{n} A^j x - \overline{x}\| \to 0$ as $n \to \infty$.

Proof. By Proposition 2.1(2), $A\overline{x} = \overline{x}$ and $x - \overline{x} \in (\overline{I-A})\overline{X}$. As $||A^n x||/n \to 0$ as $n \to \infty$, we have $||A^n (x - \overline{x})||/n \to 0$ as $n \to \infty$. Since I - A has closed range and is one-to-one, there is a (unique) $y \in X$ such that $(I - A)y = x - \overline{x}$. Since (I - A)X is (closed in X, hence) a Banach space, by the open mapping theorem $(I - A)^{-1} : (I - A)X \to X$ is bounded. Thus

$$\frac{\|A^n y\|}{n} = \frac{\|(I-A)^{-1}A^n(x-\overline{x})\|}{n} \\ \le \|(I-A)^{-1}\| \frac{\|A^n(x-\overline{x})\|}{n} \to 0 \quad \text{as } n \to \infty.$$

By Proposition 2.1(4), $\|n^{-1}\sum_{j=1}^n A^j x - \overline{x}\| \to 0$ as $n \to \infty$.

We now present our main result:

THEOREM 2.3. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space, $A \in \mathcal{B}(X)$ be a compact operator and $x \in X$ be such that $\|A^n x\|/n \to 0$ as $n \to \infty$. If the sequence $(n^{-1} \sum_{j=1}^n A^j x)_{n=1}^\infty$ is bounded, then it converges strongly to a fixed point of A.

Proof. As A is compact and the sequence $(n^{-1}\sum_{j=1}^{n} A^j x)_{n=1}^{\infty}$ is bounded, every subsequence of the sequence $(n^{-1}\sum_{j=2}^{n+1} A^j x)_{n=1}^{\infty}$ has a convergent subsequence. Because $||A^n x||/n \to 0$ and

$$\frac{1}{n}\sum_{j=1}^{n}A^{j}x = \frac{1}{n}\sum_{j=2}^{n+1}A^{j}x + \frac{1}{n}\left(Ax - A^{n+1}x\right),$$

every subsequence of the sequence $(n^{-1}\sum_{j=1}^{n} A^{j}x)_{n=1}^{\infty}$ also has a convergent subsequence.

CASE 1: A has no non-zero fixed point. Let $(n_k)_{k=1}^{\infty}$ be any subsequence of $(n)_{n=1}^{\infty}$ and $\overline{x} \in X$ such that $n_k^{-1} \sum_{j=1}^{n_k} A^j x \to \overline{x}$ as $k \to \infty$. By Proposition 2.1(2), $A\overline{x} = \overline{x}$. Since A has no non-zero fixed point, we must have $\overline{x} = 0$. It follows that $n^{-1} \sum_{j=1}^{n} A^j x \to 0$ as $n \to \infty$.

CASE 2: A has non-zero fixed points.

SUBCASE 1. Suppose X is a complex Banach space. Let $\sigma_2 = \sigma(A) \setminus \{1\}$. Then there is a Riesz decomposition of $X = X_1 \oplus X_2$, where X_1 and X_2 are closed A-invariant subspaces of X, X_1 is finite-dimensional, $\sigma(A_1) = \{1\}$ and $\sigma(A_2) = \sigma_2$, where $A_j = A|_{X_j}$ for j = 1, 2. Clearly each A_j is compact on X_j , and the projection E_j on X_j corresponding to the decomposition satisfies $E_jA = AE_j = A_jE_j$. Let $x = x_1 + x_2$, where $x_j \in X_j$ for j = 1, 2. Then

$$\frac{\|A_k^n x_k\|}{n} = \frac{\|A_k^n E_k x\|}{n} = \frac{\|E_k A^n x\|}{n} \le \|E_k\| \frac{\|A^n x\|}{n} \to 0,$$
$$\left\|\frac{1}{n} \sum_{j=1}^n A_k^j x_k\right\| = \left\|\frac{1}{n} \sum_{j=1}^n E_k A^j x\right\| \le \|E_k\| \cdot \left\|\frac{1}{n} \sum_{j=1}^n A^j x\right\|.$$

By Case 1, we have $n^{-1} \sum_{j=1}^{n} A_2^j x_2 \to 0$ as $n \to \infty$.

We shall now show that $A_1x_1 = x_1$, hence $n^{-1} \sum_{j=1}^n A_1^k x_1 = x_1$ for all $n \ge 1$. This will show that $(n^{-1} \sum_{j=1}^n A^j x)_{n=1}^\infty$ converges to $x_1 + 0 \in X_1 + X_2$, which is a fixed point of A, thus completing the proof.

Indeed, it suffices to show that for any $m \times m$ cell K (where $m \geq 2$) in the Jordan form of A_1 ,

$$K = \begin{pmatrix} 1 & 1 & & & \\ & 1 & 1 & & \\ & & \ddots & \ddots & \\ & & & 1 & 1 \\ & & & & 1 \end{pmatrix}.$$

and any $y = [y_1, y_2, \ldots, y_m]^t \in \mathbb{C}^m$ with $||K^n y||/n \to 0$, we have $y_2 = y_3 = \ldots = y_m = 0$, hence Ky = y. To this end, for each $p \ge m$, let $K^p y = [k_1^{(p)}, k_2^{(p)}, \ldots, k_m^{(p)}]^t$. Then for each $j = 1, \ldots, m$,

$$k_j^{(p)} = y_j + \binom{p}{1}y_{j+1} + \ldots + \binom{p}{m-j}y_m.$$

Since

$$\frac{1}{p}k_{m-1}^{(p)} = \frac{1}{p}y_{m-1} + \frac{1}{p}\binom{p}{1}y_m \to 0 \quad \text{as } p \to \infty,$$

we must have $y_m = 0$. If $y_m = \ldots = y_j = 0$ for $j \ge 3$, then since

$$\frac{1}{p}k_{j-2}^{(p)} = \frac{1}{p}y_{j-2} + \frac{1}{p}\binom{p}{1}y_{j-1} + \dots + \frac{1}{p}\binom{p}{m-j+2}y_m$$
$$= \frac{1}{p}y_{j-2} + \frac{1}{p}\binom{p}{1}y_{j-1} \to 0 \quad \text{as } p \to \infty,$$

we must have $y_{j-1} = 0$. Thus by induction, $y_2 = y_3 = \ldots = y_m = 0$, and we are done in Subcase 1.

SUBCASE 2. Suppose $(X, \|\cdot\|)$ is a real Banach space. Let $X_{\mathbb{C}}$ be the complexification of X and let $A_{\mathbb{C}}$ be the complexification of A (see e.g. [PS] or [ERT, pp. 118–119]). Then $n^{-1}\|A_{\mathbb{C}}^n(x,0)\| = n^{-1}\|A^nx\| \to 0$ as $n \to \infty$ and the sequence $(n^{-1}\sum_{j=1}^n A_{\mathbb{C}}^j(x,0))_{n=1}^{\infty} = (n^{-1}\sum_{j=1}^n A^jx, 0)_{n=1}^{\infty}$ is bounded. By Subcase 1, the sequence $(n^{-1}\sum_{j=1}^n A_{\mathbb{C}}^j(x,0))_{n=1}^{\infty}$ converges to a fixed point $(\overline{x}, 0)$ of $A_{\mathbb{C}}$. It follows that $(n^{-1}\sum_{j=1}^n A^jx)_{n=1}^{\infty}$ converges to \overline{x} which is a fixed point of A.

It is clear that the conditions in Proposition 2.1(4) are satisfied if x, X, A are as given in Theorem 2.3. We note also that as briefly mentioned previously, in [E] there is given an example of a real 2×2 matrix A which, regarded as an operator on $X = \mathbb{R}^2$, satisfies $\sup_n n^{-1} \sum_{j=1}^n ||A^j|| < \infty$, but for some $x \in X$, the sequence $(n^{-1}||A^nx||)_{n=1}^{\infty}$ does not tend to 0. The following theorem is an easy but interesting consequence of Theorem 2.3; for some related results, the reader is referred to [BGM].

THEOREM 2.4. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space and $A \in \mathcal{B}(X)$ be a compact operator. Let $x \in X$ be such that a subsequence of $(A^n x)_{n=1}^{\infty}$ is bounded. Then $(n^{-1} \sum_{j=1}^n A^j x)_{n=1}^{\infty}$ converges to a fixed point of A.

Proof. By Theorem 4 in [ERT, pp. 117–118], the whole sequence $(A^n x)_{n=1}^{\infty}$ is bounded. The desired conclusion then follows readily from our Theorem 2.3.

In particular, we have the following result which is Theorem 2.1 of [TT]:

COROLLARY 2.5. Let A be an $m \times m$ complex (respectively, real) matrix and x be an $m \times 1$ complex (respectively, real) vector. If $(A^n x)_{n=1}^{\infty}$ has a bounded subsequence, then $(n^{-1} \sum_{j=1}^{n} A^j x)_{n=1}^{\infty}$ converges to a fixed vector of A.

We emphasize that the compact operator A in Theorem 2.3 (respectively, in Theorem 2.4, and the $m \times m$ matrix A in Corollary 2.5) is not assumed to be mean-bounded. Indeed, we shall provide in the following a simple example of a compact operator A satisfying the conditions in Theorem 2.3, Theorem 2.4 and Corollary 2.5 respectively, but which is not mean-bounded.

EXAMPLE 2.6. Let
$$X = \mathbb{R}^3$$
 or \mathbb{C}^3 and

$$A = \begin{bmatrix} b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & d \end{bmatrix}$$

where |b| < 1, |c| = 1, |d| > 1. Then A is a compact operator on X which is not power-bounded and not mean-bounded so that Theorem 1 in [YK] is not applicable. Let $x = [r, s, u]^t$. Then the sequence $||A^n x||/n \to 0$ as $n \to \infty$ if and only if u = 0, if and only if $(A^n x)_{n=1}^{\infty}$ has a bounded subsequence; moreover, in that case, the sequence $(n^{-1} \sum_{j=1}^{n} A^j x)_{n=1}^{\infty}$ (is bounded and) converges to \overline{x} , where

$$\overline{x} = \begin{cases} [0, s, 0]^t & \text{if } c = 1, \\ 0 & \text{if } c \neq 1, \end{cases}$$

and \overline{x} is a fixed point of A. Note that in the present example, the condition u = 0 is even necessary for the boundedness of the sequence $(n^{-1}\sum_{j=1}^{n} A^{j}x)_{n=1}^{\infty}$.

We now consider the conditions (a) A is power-bounded (i.e., $\sup_{n\geq 1} ||A^n|| < \infty$), and (b) $||A^n||/n \to 0$ as $n \to \infty$. In general, (b) is strictly weaker than (a) (see, e.g., [S]). However, in [MZ, Theorem 3], it is shown that for a Riesz operator A on a complex Banach space, (a) and (b) are equivalent. In Theorem 2.10 below we present a slightly more general result for a not necessarily Riesz operator. It also generalizes the result of Sz.-Nagy [N] from a compact operator on a complex Hilbert space to an operator more general than a Riesz operator on a real or complex Hilbert space. For related results for more restrictive classes of operators, we refer the reader to [Ze].

We will need (parts of) three lemmas which are of some independent interest. In the first lemma, we consider a real Banach space $(X, \|\cdot\|)$,

and $A \in \mathcal{B}(X)$. Let $(X_{\mathbb{C}}, \|\cdot\|_{\mathbb{C}})$, and $A_{\mathbb{C}}$ be its complexification. If $\|\cdot\|$ is induced by an inner product $\langle \cdot, \cdot \rangle$ i.e., if X is a real Hilbert space, then we let $(X_{\mathbb{C}}, \langle \cdot, \cdot \rangle_{\mathbb{C}})$ be the (Hilbert space) complexification of X; and $\|\cdot\|_{\mathbb{C}}$ is induced by $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ (see, e.g., [PS] or [ERT, pp. 118–119]).

LEMMA 2.7. We use the above notations.

(1) Let $(X, \|\cdot\|)$ be a real Banach space, and let $A \in \mathcal{B}(X)$. Then A is power-bounded if and only if its complexification $A_{\mathbb{C}}$ is power-bounded. Moreover, $\|A^n\|/n \to 0$ as $n \to \infty$ if and only if $\|A_{\mathbb{C}}^n\|/n \to 0$ as $n \to \infty$.

(2) Let X be a real Hilbert space, and $A \in \mathcal{B}(X)$. Then A is similar to a contraction on X if and only if its complexification $A_{\mathbb{C}}$ is similar to a contraction on $X_{\mathbb{C}}$.

Proof. (1) Since there is a positive constant d such that for every positive integer n, $||A^n|| \le ||A^n_{\mathbb{C}}|| \le d||A^n||$, the assertions are obviously true.

(2) Suppose A is similar to a contraction on the real Hilbert space X, and let S be an invertible operator in $\mathcal{B}(X)$ such that $||SAS^{-1}|| \leq 1$. Let $T = S \times S$. Then $T^{-1} = S^{-1} \times S^{-1}$ in $\mathcal{B}(Y)$, and $||TA_{\mathbb{C}}T^{-1}|| \leq 1$, so $A_{\mathbb{C}}$ is similar to a contraction.

Conversely, suppose $A_{\mathbb{C}}$ is similar to a contraction on $X_{\mathbb{C}}$. We shall show that A is similar to a contraction on X. Indeed, let W be an invertible operator in $\mathcal{B}(X_{\mathbb{C}})$ such that $||WA_{\mathbb{C}}W^{-1}|| \leq 1$. By the Riesz representation theorem and spectral theorem, there exists a positive operator $P \in \mathcal{B}(X)$ such that $\langle Py, Px \rangle = \operatorname{Re}\langle W(y, 0), W(x, 0) \rangle_{\mathbb{C}}$; here, Re z denotes the real part of the complex number z. Then P is bijective, hence invertible in $\mathcal{B}(X)$. Now for each $x \in X$,

$$||PAP^{-1}x|| = ||W(AP^{-1}x,0)||_{\mathbb{C}} = ||WA_{\mathbb{C}}W^{-1}W(P^{-1}x,0)||_{\mathbb{C}}$$

$$\leq ||W(P^{-1}x,0)||_{\mathbb{C}} = ||P(P^{-1}x)|| = ||x||;$$

thus $||PAP^{-1}|| \leq 1$ and A is similar to a contraction on X.

LEMMA 2.8. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space, let $A \in \mathcal{B}(X)$, and let X_j , j = 1, 2, be A-invariant closed subspaces of X such that $X = X_1 + X_2$. Let A_j denote the restriction of A to X_j , j = 1, 2. Then A is power-bounded if and only if A_j , j = 1, 2, are power-bounded. Moreover, $\lim_{n\to\infty} \|A^n\|/n = 0$ if and only if $\lim_{n\to\infty} \|A^n\|/n = 0$ for j = 1, 2.

Proof. Since A_j^n is the restriction of A^n to X_j , $||A_j^n|| \leq ||A^n||$ and the necessity of both assertions are obviously true. For the sufficiency, suppose first X is a complex Banach space. Note that by [R, Theorem 5.20, p. 130], there exists a positive constant r such that for each $x \in X$, there are $x_j \in X_j$, j = 1, 2, satisfying $x = x_1 + x_2$ and $||x_1|| + ||x_2|| \leq r||x||$. Hence for each

positive integer n,

 $\begin{aligned} \|A^n x\| &\leq \|A_1^n x_1\| + \|A_2^n x_2\| \leq (\|A_1^n\| + \|A_2^n\|)(\|x_1\| + \|x_2\|) \\ &\leq (\|A_1^n\| + \|A_2^n\|)r\|x\|, \end{aligned}$

and the sufficiency of both assertions in the complex Banach space case follows readily.

Suppose now that X is a real Banach space and each A_j is powerbounded. For notational simplicity, let $Y = X_{\mathbb{C}}$ and $B = A_{\mathbb{C}}$ be their complexifications. Define $Y_j = X_j \times X_j$ for j = 1, 2. Then each Y_j is a closed *B*-invariant subspace of Y, and $Y = X_{\mathbb{C}} = Y_1 + Y_2$. Let B_j be the restriction of *B* to Y_j , j = 1, 2. Then $B_j = A_j \times A_j = (A_j)_{\mathbb{C}}$. By Lemma 2.7, each B_j is power-bounded. By the preceding paragraph, *B* is power-bounded. By Lemma 2.7 again, *A* is power-bounded. Similarly the sufficiency of the other assertion is proved.

LEMMA 2.9. Let $(X, \|\cdot\|)$ be a (real or complex) Hilbert space, $A \in \mathcal{B}(X)$, and X_j , j = 1, 2, be A-invariant closed subspaces of X such that $X = X_1 + X_2$. Let A_j denote the restriction of A to X_j , j = 1, 2. Then A is similar to a contraction on X if and only if each A_j is similar to a contraction on X_j , j = 1, 2.

Proof. (1) Suppose X is a complex Hilbert space. By Paulsen's result [P, Corollary 3.5], the lemma is equivalent to the assertion that A is completely polynomially bounded if and only if each A_j , j = 1, 2, is completely polynomially bounded. To show the latter assertion, note that for every square matrix $[p_{lk}]$ of (complex) polynomials (of one variable), $[p_{lk}(A_j)]$ is a restriction of $[p_{lk}(A)]$, so the necessity is clear. For the sufficiency, let c_j , j = 1, 2, be constants such that for every square matrix $[p_{lk}]$ of polynomials, $||[p_{lk}(A_j)]|| \leq c_j ||[p_{lk}]||_{\infty}$, j = 1, 2.

Consider $[p_{lk}(A)]_{1 \leq l,k \leq n}$ as an operator on the direct sum $\widetilde{X} = \sum_{k=1}^{n} \oplus X$ of *n* copies of *X*, and let $\widetilde{x} = [x^{(k)}] \in \widetilde{X}$ be arbitrary. As in Lemma 2.8 above, there is a positive constant *r* (independent of *n* and \widetilde{x}) and for each $k = 1, \ldots, n$, there are $x_j^{(k)} \in X_j$, j = 1, 2, satisfying $x^{(k)} = x_1^{(k)} + x_2^{(k)}$ and $\|x_1^{(k)}\| + \|x_2^{(k)}\| \leq r \|x^{(k)}\|$. Hence

$$\begin{split} \|[x_1^{(k)}]\| + \|[x_2^{(k)}]\| &\leq \Big(\sum_{k=1}^n \|x_1^{(k)}\|^2\Big)^{1/2} + \Big(\sum_{k=1}^n \|x_2^{(k)}\|^2\Big)^{1/2} \\ &\leq 2^{1/2} \Big[\sum_{k=1}^n (\|x_1^{(k)}\|^2 + \|x_2^{(k)}\|^2)\Big]^{1/2} \\ &\leq 2^{1/2} \Big[\sum_{k=1}^n r^2 \|x^{(k)}\|^2\Big]^{1/2} \leq c \|\widetilde{x}\|, \end{split}$$

214

where $c = 2^{1/2}r$. Now we have

$$\begin{split} \|[p_{lk}(A)]\widetilde{x}\| &= \left\| \left[\sum_{k=1}^{n} p_{lk}(A) x^{(k)} \right] \right\| = \left\| \left[\sum_{k=1}^{n} \sum_{j=1}^{2} p_{lk}(A_j) x^{(k)}_j \right] \right\| \\ &= \left\| \sum_{j=1}^{2} \left[\sum_{k=1}^{n} p_{lk}(A_j) x^{(k)}_j \right] \right\| \\ &\leq \left\| \left[\sum_{k=1}^{n} p_{lk}(A_1) x^{(k)}_1 \right] \right\| + \left\| \left[\sum_{k=1}^{n} p_{lk}(A_2) x^{(k)}_2 \right] \right\| \\ &= \left\| [p_{lk}(A_1)] \left[x^{(k)}_1 \right] \right\| + \left\| [p_{lk}(A_2)] \left[x^{(k)}_2 \right] \right\| \\ &\leq \left\| [p_{lk}(A_1)] \right\| \left\| [x^{(k)}_1] \right\| + \left\| [p_{lk}(A_2)] \right\| \left\| [x^{(k)}_2] \right\| \\ &\leq \max(c_1, c_2) \| [p_{lk}] \|_{\infty} (\left\| [x^{(k)}_1] \right\| + \left\| [x^{(k)}_2] \right\|) \\ &\leq c \max(c_1, c_2) \| [p_{lk}] \|_{\infty} \| \widetilde{x} \|, \end{split}$$

so that $||[p_{lk}(A)]|| \leq c \max(c_1, c_2) ||[p_{lk}]||_{\infty}$. Thus A is completely polynomially bounded. So the lemma is proved in the complex Hilbert space case.

(2) Suppose X is a real Hilbert space. Then as in Lemma 2.8, we consider the complexifications. With the notation therein and by Lemma 2.7, A (respectively A_j) is similar to a contraction if and only if so is B (respectively B_j). By (1) above, the desired conclusion follows readily.

THEOREM 2.10. Let $(X, \|\cdot\|)$ be a (real or complex) Banach space and let $A \in \mathcal{B}(X)$. Let X_1, X_2 be closed A-invariant subspaces of X such that X_1 is finite-dimensional, $X = X_1 + X_2$, and the spectral radius $r_{\sigma}(A_2) = \lim_{n\to\infty} \|A_2^n\|^{1/n}$ is less than 1, where A_j denotes the restriction of A to X_j . Suppose $\|A^n\|/n \to 0$ as $n \to \infty$. Then A is power-bounded. If X is a Hilbert space, then A is similar to a contraction on X.

Proof. (1) Suppose X is a complex Banach space. By Lemma 2.8, $\lim_{n\to\infty} ||A_j^n||/n = 0$ for j = 1, 2. Since A_1 is compact, A_1 is power-bounded by [MZ, Theorem 3]. Since $r_{\sigma}(A_2) < 1$ and $||A_2^n|| \to 0$ as $n \to \infty$, A_2 is power-bounded. By Lemma 2.8, A is power-bounded.

(2) Let X be a real Banach space. As in Lemma 2.8, we consider the complexifications. Using the notations therein and by Lemma 2.7, each Y_j is a *B*-invariant closed subspace of Y, Y_1 is finite-dimensional, $Y = Y_1 + Y_2$, $\lim_{n\to\infty} ||B^n||/n = 0$, and $r_{\sigma}(B_2) = \lim_{n\to\infty} ||B^n_2||^{1/n} = \lim_{n\to\infty} ||A^n_2||^{1/n} < 1$. By (1) above, *B* is power-bounded. By Lemma 2.7, *A* is power-bounded.

(3) Let X be a complex Hilbert space. Since $r_{\sigma}(A_2) < 1$, by Rota's result [RO], A_2 is similar to a (proper) contraction on X_2 . On the other hand, since $||A_1^n||/n \to 0$ as $n \to \infty$, $r_{\sigma}(A_1) \leq 1$. If $r_{\sigma}(A_1) < 1$, then again by Rota's result [RO], A_1 is similar to a (proper) contraction on X_1 . If $r_{\sigma}(A_1) = 1$,

then the condition $\lim_{n\to\infty} ||A_1^n||/n = 0$ together with Jordan canonical form (since X_1 is finite-dimensional) implies that A_1 is diagonalizable, and A_1 is similar to a contraction on X_1 . Therefore each A_j is similar to a contraction on X_j for j = 1, 2. By Lemma 2.9, A is similar to a contraction on X.

(4) Finally, let X be a real Hilbert space. As in (2) above, we have $Y = X_{\mathbb{C}} = Y_1 + Y_2$ (all complex Hilbert spaces) with Y_1 finite-dimensional, $B = A_{\mathbb{C}} = B_1 + B_2$, $r_{\sigma}(B_2) < 1$. Thus by (3) above, $A_{\mathbb{C}}$ is similar to a contraction on $X_{\mathbb{C}}$. By Lemma 2.9, A is similar to a contraction on X.

We note that in Lemma 2.8, Lemma 2.9, and Theorem 2.10, the sum $X = X_1 + X_2$ need not be a direct sum; in particular, when X is a Hilbert space, the sum $X = X_1 + X_2$ need not be an orthogonal (or direct) sum.

Theorem 2.10 implies readily the following result in which the case of a compact operator on a complex Hilbert space was proved by Sz.-Nagy in [N]:

COROLLARY 2.11. Let A be a power-bounded compact operator (respectively, a Riesz operator) on a real or complex (respectively, complex) Hilbert space H. Then A is similar to a contraction on H.

Acknowledgements. The authors would like to thank the referee for his/her many insightful suggestions for improvement of the paper. They are also grateful to Professor Jaroslav Zemánek for giving valuable comments and for providing several references.

References

- [BGM] T. Bermúdez, M. González and M. Mbekhta, Operators with an ergodic power, Studia Math. 141 (2000), 201–208.
- [D] Y. Derriennic, On the mean ergodic theorem for Cesàro bounded operators, Colloq. Math. 84/85 (2000), 443–455.
- [DS] N. Dunford and J. T. Schwartz, *Linear Operators, Part I*, Interscience, New York, 1967.
- [ERT] M. Edelstein, H. Radjavi and K. K. Tan, Boundedness stability properties of linear and affine operators, Taiwanese J. Math. 2 (1998), 111–125.
- [E] R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1–14.
- [H] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246– 269.
- [MZ] M. Mbekhta et J. Zemánek, Sur le théorème ergodique uniforme et le spectre, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), 1155–1158.
- [N] B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad. Mat. Kutato Int. Közl. 4 (1959), 89–93.
- [PS] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiei, Bucureşti, 1978.
- [P] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1–17.

- [RO] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960), 468–472.
- [R] W. Rudin, *Functional Analysis*, McGraw-Hill, New York, 1973.
- [S] A. Święch, A note on the difference of the consecutive powers of operators, in: Linear Operators, Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 381–383.
- [TT] P. K. Tam and K. K. Tan, A mean ergodic theorem on vector space, Appl. Math. Lett. 12 (1999), 61–64.
- [Y1] T. Yoshimoto, Uniform and strong ergodic theorems in Banach spaces, Illinois J. Math. 42 (1998), 525–543; Correction, ibid. 43 (1999), 800–801.
- [Y2] —, Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces, Studia Math. 141 (2000), 69–83.
- [YK] K. Yosida and S. Kakutani, Operator theoretical treatment of Markov's process and mean ergodic theorem, Ann. of Math. 42 (1941), 188–228.
- [Z] R. Zaharopol, Mean ergodicity of power-bounded operators in countably order complete Banach lattices, Math. Z. 192 (1986), 81–88.
- [Ze] J. Zemánek, On the Gelfand-Hille theorem, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369–385.

Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada, B3H 3J5 E-mail: radjavi@mscs.dal.ca kktan@mscs.dal.ca

> Received December 7, 1998 Revised version January 23, 2003 (4223b)