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Ascent, descent and roots of Fredholm operators

by

Bertram Yood (University Park, PA)

Abstract. Let T be a Fredholm operator on a Banach space. Say T is rootless if
there is no bounded linear operator S and no positive integer m ≥ 2 such that Sm = T .
Criteria and examples of rootlessness are given. This leads to a study of ascent and descent
whether finite or infinite for T with examples having infinite ascent and descent.

1. Introduction. Let X be a linear space of sequences, say X = `2.
This paper originated with the realization that the familiar shift operators
T1(x) = (0, x, x2, . . .) and T2(x) = (x2, x3, . . .) are rootless in the sense that
there is no bounded linear operator S on X and no positive integer m ≥ 2
where Sm = Tk. We first sought general criteria for rootlessness and other
examples. One such result is that a Fredholm linear operator T on a Banach
space is rootless if T has infinite ascent and one-dimensional null space.
This study is intimately concerned with the notions of index, ascent and
descent for a Fredholm linear operator T . The question of when the ascent
and descent of T are finite or infinite is of interest. We seek criteria which
do not involve the powers Tm. For example every T with negative index has
infinite descent. Every T with finite ascent and descent has index zero. The
set of such T is characterized algebraically in Section 3 with no mention of
the powers Tm.

Next let T be any bounded linear operator. In Section 4 we examine
the essential resolvent set for T , the set of complex λ for which λI − T is
a Fredholm operator. The subset of such λ where λI − T has finite ascent
and descent is open. Examples with all possible indices show that the subset
where λI − T has infinite ascent and descent can be open and not void.

For early work on ascent and descent see the article of A. E. Taylor [6].
For later results we cite [3], [4] and [5].

2. Rootless operators. Henceforth X will denote an infinite-dimen-
sional Banach space. Let B(X) (resp. K(X)) denote the algebra of all boun-
ded linear (resp. compact) operators on X and Φ(X) be the set of all Fred-
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holm operators in B(X). For T ∈ B(X) let N(T ) and R(T ) denote, respec-
tively, the null space and range space of T . Let α(T ) be the dimension of
N(T ) and β(T ) that of X/R(T ). For T ∈ Φ(X) the index of T , ind(T ), is
given by ind(T ) = α(T )− β(T ). Let S, T ∈ Φ(X). Then ST ∈ Φ(X) and we
have the index formula

ind(ST ) = ind(S) + ind(T ).(2.1)

See for example [1, Th. 3.2.7]. Also T ∗ ∈ Φ(X∗) and α(T ∗) = β(T ), α(T )
= β(T ∗) by [1, Prop. 1.2.7].

We say that T ∈ Φ(X) is rootless if there is no S ∈ B(X) and no integer
m ≥ 2 such that Sm = T . If any such S exists then S ∈ Φ(X) by [1, p. 9].

Lemma 2.1. Let T ∈ Φ(X). There is a positive integer N and non-
negative integers Ca(T ) and Cd(T ) where α(Tn+1) − α(Tn) = Ca(T ) and
β(Tn+1)− β(Tn) = Cd(T ) for all n ≥ N . Also ind(T ) ≤ Ca(T ) ≤ α(T ) and
− ind(T ) ≤ Cd(T ) ≤ β(T ) and α(T n) ≤ nα(T ) for all n.

Proof. For each positive integer j we see, by (2.1), that ind(T j) =
j ind(T ). Hence

α(Tn+1)− α(Tn)− [β(Tn+1)− β(Tn)] = ind(T ).(2.2)

For T1, T2 ∈ Φ(X) we have the relation

α(T1T2) = α(T2) + dim[T2(X) ∩ T−1
1 (0)].(2.3)

We use this with T1 = T and T2 = Tn to obtain

α(Tn+1)− α(Tn) = dim[Tn(X) ∩ T−1
1 (0)].(2.4)

Therefore, setting ∆n = α(Tn+1)−α(Tn), we see by (2.4) that ∆n+1 ≤ ∆n.
Each ∆n is a non-negative integer. Hence there is a non-negative integer
Ca(T ) and a positive integer N such that ∆n = Ca(T ) for all n ≥ N . Then
α(TN+r) = α(TN ) + rCa(T ) for all positive integers r so that also

α(TN+r)/(N + r) = α(TN )/(N + r) + rCa(T )/(N + r).

Since limr 1/(N + r) = 0 and limr r/(N + r) = 1 we see that limα(T j)/j =
Ca(T ). Next we use (2.3) with T1 = Tn−1 and T2 = T to see that α(T n) ≤
α(T )+α(Tn−1) for each positive integer n. Thus α(T 2) ≤ 2α(T ). We proceed
by mathematical induction. Suppose that α(T j) ≤ jα(T ) for a positive
integer j. Then

α(T j+1) ≤ α(T ) + α(T j) ≤ (j + 1)α(T ).

Therefore α(T n)/n ≤ α(T ) for all positive integers n. But as α(T n)/n →
Ca(T ) we have Ca(T ) ≤ α(T ). Also, by (2.2), we see that ind(T ) ≤ Ca(T ).

Likewise there is a positive integer m such that, for n ≥ m, ind(T ∗) ≤
α(T ∗(n+1))− α(T ∗n) ≤ α(T ∗). Therefore − ind(T ) ≤ Cd(T ) ≤ β(T ).
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Proposition 2.2. Let T ∈ Φ(X). If T has finite ascent (resp. descent)
then ind(T ) ≤ 0 (resp. ≥ 0). If T has both finite ascent and descent then
ind(T ) = 0.

Proof. Finite ascent (resp. descent) for T is equivalent to Ca(T ) = 0
(resp. Cd(T ) = 0). We apply Lemma 2.1.

Theorem 2.3. Let T ∈ Φ(X). If ind(T ) = 0 then T has finite ascent
if and only if it has finite descent. If ind(T ) > 0 (resp. < 0) then T has
infinite ascent (resp. descent). If T has finite ascent (resp. descent) and
infinite descent (resp. ascent) then ind(T ) < 0 (resp. > 0).

Proof. Suppose ind(T ) = 0. By (2.1) we have ind(T n) = n ind(T ) = 0
for all positive integers n.

If ind(T ) > 0 we must, by Lemma 2.1, have Ca(T ) > 0, and if ind(T ) < 0
we have Cd(T ) > 0. Suppose that T has finite ascent and infinite descent.
Then ind(T ) 6= 0. But we cannot have ind(T ) > 0 for otherwise T would
have infinite ascent.

Theorem 2.4. Let T ∈ Φ(X). Then α(T n) = nα(T ) for all positive
integers n if and only if α(T ) = Ca(T ). If α(T ) = 1 and T has infinite
ascent then α(Tn) = n for all n.

Proof. Suppose that α(T n) = nα(T ) for all positive integers n. As seen
in the proof of Lemma 2.1, α(T n)/n→ Ca(T ). Therefore Ca(T ) = α(T ).

Conversely, suppose that Ca(T ) = α(T ). As seen in Lemma 2.1,
α(Tn) ≤ nα(T ) for all positive integers n. But α(T n+1) − α(Tn) ≥ Ca(T )
for all n. From this we see that α(T n) ≥ nα(T ) for all n.

If α(T ) = 1 then, by Lemma 2.1, either Ca(T ) = 1 or Ca(T ) = 0. If
also T has infinite ascent then Ca(T ) = 1.

Lemma 2.5. Let T ∈ Φ(X). For a positive integer p, Ca(T p) = pCa(T ).
Also Ca(T )− Cd(T ) = ind(T ).

Proof. We have

α(T p(n+1))− α(T pn) =
p∑

j=1

[α(T pn+j)− α(T pn+j−1)].

By Lemma 2.1 we see that Ca(T p) = pCa(T ).
By the index formula ind(T n) = n ind(T ) for all positive integers n. For

n sufficiently large Ca(T ) = α(Tn) − α(Tn−1) and also Cd(T ) = β(Tn) −
β(Tn−1). Then Ca(T )− Cd(T ) = ind(Tn)− ind(Tn−1) = ind(T ).

Theorem 2.6. Let T ∈ Φ(X). Then T is rootless if ind(T ) = ±1 or if
Ca(T ) = 1.
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Proof. Suppose T = Sn for S ∈ B(X). Then ind(T ) = n ind(S) by (2.1)
and Ca(T ) = nCa(S) by Lemma 2.5. Therefore T = Sn is impossible for
n ≥ 2.

Corollary 2.7. T ∈ Φ(X) is rootless if α(T ) = 1 and T has infinite
ascent.

Proof. As noted above, we have Ca(T ) = 1.

Theorem 2.8. Let T ∈ Φ(X). Suppose ind(T ) 6= 0 and Ca(T ) > 0.
Then T is rootless if ind(T ) and Ca(T ) are relatively prime.

Proof. Suppose T = Sn for S ∈ B(X). As above n ind(S) = ind(T ) and
nCa(S) = Ca(T ). Therefore we cannot have n ≥ 2.

We show that there exist T ∈ Φ(X) of all possible indices which are
rootless. These examples will have infinite ascent and descent. For index
zero we examine an operator V1 already considered in [7, p. 599] and [1,
pp. 13, 14]. Here and below X may be taken as a linear space of sequences
x = (x1, x2, . . .), say X = `2. We set

V1(x) = (0, x4, x1, x6, x3, . . .)

where, after the xj on the right side, the next entries are those with succes-
sive odd and even indices interlacing.

For any linear operator T of this sort where the xj on the right have
no repetitions and only a finite number of xj fail to appear on the right,
α(T ) is the number of missing xj ’s. There are only a finite number of zeros
on the right and β(T ) is that number of zeros. Here α(V1) = β(V1) and
ind(V1) = 0. It was shown ([7, p. 599] or [1, p. 14]) that V1 has infinite
ascent. By Theorem 2.3 we see that V1 has infinite ascent. By the same
theorem, V1 has infinite descent. Also V1 is rootless by Corollary 2.7.

Let n be a positive integer. Our definition of Vn(x) starts off on the right
with successive pairs 0, x2j beginning with 0, x4 and ending with 0, x2(n+1).
This is then followed by x1, and thereafter the next available xj occur, odd
and even indices interlacing. In our formal definition of Vn(x), xj with j
negative is to be read as zero. We set Vn(x) = {yj} where yj = xj+2 if j ≥ 2
is even, and yj = xj−2n if j ≥ 1 is odd. Specifically,

Vn(x) = (0, x4, 0, . . . , 0, x2(n+1), x1, . . .).

There are n zeros on the right and every xj appears except x2. Thus
α(Vn) = 1 and β(Vn) = n so that ind(Vn) = 1 − n. Then Vn has infinite
descent by Theorem 2.3.

Next we consider the powers V k
n of Vn. Each application of Vn moves

the entries with even index two spaces to the left, those with odd index 2n
spaces to the right. For example

V 2
n (x) = (0, x6, 0, . . . , 0, x4n, x1, . . .).
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Let δj = {xk} where xj = 1 and xk = 0 otherwise. Then V k
n (δ2r) = δ2r−2k.

This shows that V n−1
n (δ2n) = δ2 6= 0 and V n

n (δ2n) = 0. Therefore Vn has
infinite ascent and, by Corollary 2.7, it is rootless.

The operators V ∗n are rootless and have infinite ascent and descent and
have positive indices of index n− 1.

All the examples of rootless operators presented above have infinite as-
cent and/or descent. There are examples with finite ascent and descent. The
simplest example is the matrix

T =
(

0 1
0 0

)
,

which is rootless. To see this suppose that T = Sn where

S =
(
a b
c d

)
.

The null space of T as a linear operator on the vectors
(
x
y

)
is the set of

all
(
x
0

)
. The null space of S is contained in that of T so is either zero

or one-dimensional. It cannot be zero for otherwise S and so T would be
invertible. Then S

(1
0

)
=
(0

0

)
so that a = c = 0. Likewise (0, 1)S = (0, 0) so

that c = d = 0. Then

S =
(

0 b
0 0

)

so that S2 = 0. Hence T is rootless.
A study of rootless matrices is under preparation.

3. On finite ascent and descent. Here we examine Γ (X), the set of
all T ∈ Φ(X) which have finite ascent and descent. Given T ∈ Φ(X) there
exist infinitely many U ∈ Φ(X) so that TU = I + W1 and UT = I + W2
where each Wk ∈ K(X). We show that T ∈ Γ (X) if and only if there exists
U ∈ Φ(X) such that TU = UT .

Lemma 3.1. Let T,U ∈ Φ(X) be such that TU = UT . Then TU has
finite ascent (descent) if and only if T and U have finite ascent (descent).

Proof. As TU = UT , we have α((TU)n) = α(TnUn). But α(TnUn) =
α(Un) + dim[R(Un) ∩N(Tn)]. Then α(Un) ≤ α((TU)n) ≤ α(Tn) + α(Un).
Thus TU has finite ascent if and only if both T and U have finite ascent. As
T ∗U∗ = U∗T ∗ we may apply this result to T ∗ and U∗ and use [1, Prop. 1.2.7]
to have the conclusion on descents.

Proposition 3.2. Let T ∈ Φ(X), V ∈ B(X) where T = V n. Then T
has finite ascent (descent) if and only if V does.

Proof. First of all V ∈ Φ(X) by [1, Cor. 1.3.6]. Clearly V has finite
ascent (descent) if T does. The converse follows from Lemma 3.1.
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Theorem 3.3. Let T ∈ Φ(X). The following are equivalent :

(a) T ∈ Γ (X).
(b) There exist U ∈ B(X), W ∈ K(X) such that UT = TU = I +W .
(c) There exists U ∈ Φ(X) such that UT = TU and UT ∈ Γ (X).

Proof. Assume (a). By [1, Th. 1.4.5] we can write T = V1 + V2 where
V1 ∈ Φ(X) is an isomorphism of X onto X, V2 ∈ K(X) and V1V2 = V2V1.
Clearly V1 and hence V −1

1 permutes with T . We have V −1
1 T = I + V −1

1 V2
and TV −1

1 = I + V2V
−1

1 with V −1
1 V2 = V2V

−1
1 ∈ K(X).

Assume (b). We have U ∈ Φ(X) by [1, Cor. 1.3.6] so that (b) implies (c).
That (c) implies (a) follows from Lemma 3.1.

Corollary 3.4. Let T ∈ Φ(X). Suppose that UT = TU = I + W as
in (b) of Theorem 3.3. Let S ∈ B(X) permute with T and U . Then there
is ε > 0 so that T + λS ∈ Γ (X) for all complex λ, |λ| < ε.

Proof. As W = UT − I and UT = TU we see that UW = WU . Also
U(T +λS) = (T +λS)U for all complex λ. For some ε1 > 0, T +λS ∈ Φ(X)
for all |λ| < ε1, as Φ(X) is an open set [1, Th. 4.4.1]. We have U(T + λS) =
I + λUS + W . As S permutes with U and T it follows that SW = WS.
Thus (I + λUS)W = W (I + λUS). There exists ε2 > 0 so that I + λUS
is an isomorphism of X onto X for |λ| < ε2. Let |λ| < min(ε1, ε2). By
[1, Th. 1.4.5], we have I + λUS + W ∈ Γ (X). Then T + λS ∈ Γ (X) by
Theorem 3.3.

4. On the essential resolvent set. As in the standard text [2, p. 358],
by the essential spectrum of T ∈ B(X) we mean the set of complex λ for
which λI − T 6∈ Φ(X). By the essential resolvent set E(T ) of T we mean its
complement, the set of λ for which λI − T ∈ Φ(X). The set E(T ) is open in
B(X) by [1, Th. 4.4.1].

Theorem 4.1. The set of complex λ ∈ E(T ) for which λI−T has finite
ascent and descent is open.

Proof. The choice S = I in Corollary 3.4 shows that if λ0I − T ∈ Γ (X)
then, for some ε > 0, so does λI − T if |λ− λ0| < ε.

Let T be a fixed element of B(X). We adopt the following notation. Let
Fa (resp. Fd) be the set of λ ∈ E(T ) for which λI−T has finite ascent (resp.
descent). Let Ia (resp. Id) be the set of λ ∈ E(T ) for which λI − T has
infinite ascent (resp. descent).

Theorem 4.2. Suppose that Ia ∩ Id is relatively closed as a subset of
E(T ). Then Fa, Fd, Fa ∩ Id and Fd ∩ Ia are open subsets of B(X).
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Proof. Let λ0 ∈ Fa ∩ Id. By hypothesis there exists ε1 > 0 so that
λ ∈ Fa ∪ Fd for |λ − λ0| < ε1. By Theorem 2.3, ind(λ0I − T ) < 0. Then,
by [1, Th. 4.4.1], there is ε2 > 0 so that ind(λI − T ) < 0 if |λ − λ0| < ε2.
By Theorem 2.3, λ ∈ Id for these λ. Therefore λ ∈ Fa ∩ Id if |λ − λ0| <
min(ε1, ε2). Now Fa ∩ Fd is open by Theorem 4.4.1 of [1]. This also follows
by Corollary 3.4. Therefore Fa is open. Likewise Fd and Fd ∩ Ia are open.

We show, by example, that we can have Ia∩Id non-void as well as being
open and closed in E(T ).

Let X = `2. For x = (ξ1, ξ2, . . .) in X we treat the operator V1(x) =
(0, ξ4, ξ1, ξ6, ξ3, . . .) of index zero discussed above. As ‖V n

1 ‖ = 1 for all pos-
itive integers n, its spectrum is contained in the unit disc of the complex
plane. For each λ with |λ| < 1, N(λI − V1) is the set of scalar multiples of

z = (0, 1, 0, λ, 0, λ2, . . . , 0, λn, . . .).

Hence sp(V1) is the entire unit disc. For |λ| = 1 we show that R(λI − V1)
is not closed. First note that λI − V1 is one-to-one. Then R(λI − V1) 6= X
as λ 6∈ sp(V1). Suppose R(λI − V1) 6= X is closed. Then, by [1, Th. 2.5.6],
there is a neighborhood of λ in which µI−V1 has closed range 6= X. This is
impossible as the neighborhood contains µ, |µ| > 1. In particular λI − V1 6∈
Φ(X) if |λ| = 1.

We consider the adjoint V ∗1 of V1,

V ∗1 (x) = (ξ3, 0, ξ5, ξ2, ξ7, ξ4, . . .),

where ξj with odd and even j interlace. We find

V ∗1 V1(x) = (ξ1, 0, ξ3, ξ4, ξ5, . . .), V1V
∗

1 (x) = (0, ξ2, ξ3, ξ4, ξ5, . . .).

Thus each of V ∗1 V1 and V1V
∗

1 is of the form I +W where W ∈ K(X). Let π
be the canonical homomorphism of B(X) onto the C∗-algebra B(X)/K(X).
Then π(V1) is a unitary element in that C∗-algebra. Therefore the essential
spectrum of V1 is contained in {λ : |λ| = 1}. As R(λI − V1) is not closed
for these values of λ we see that the unit circle is the essential spectrum.
Therefore λI−V1 ∈ Φ(X) if |λ| < 1, and by [1, Th. 4.4.1], ind(λI−V1) = 0.

In view of Theorem 2.3, to show that λI − V1 has infinite ascent and
descent, it is enough to show that z is in the range of every (λI − V1)n. Let
Q denote the set of all x = (ξ1, ξ2, . . .) where ξj = 0 for all j odd. Note that
z ∈ Q. Let x = (0, a2, 0, a4, . . .) be a general element of Q. Then

(λI − V1)(x) = (0, λa2 − a4, 0, λa4 − a6, . . .).

Now z ∈ Q has a2n = λn−1. Then

(λI − V1)(w1) = z where w1 ∈ Q with a2n = −(n− 1)λn−2.

Likewise (λI−V1)(w2) = w1 where w2 ∈ Q with a2n = (n−1)(n−2)λn−3/2!.
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More generally we define wk ∈ Q by

a2n = (−1)k(n− 1)(n− 2) . . . (n− k)λn−k−1/k!.

Then (λI − V1)(wk) = wk−1.
Hence λI − V1 has infinite ascent and infinite descent by Theorem 2.3.

Thus the set Ia ∩ Id for V1 is the open unit disc. Now E(V1) is the complex
plane with the unit circle deleted. Thus Ia ∩ Id is open and closed as a set
in E(V1) as well as being non-void.

Examples with the same conclusion can be found with any preassigned
index. Consider the operators Vn and V ∗n introduced in Section 2. For these,
Ia ∩Id have the properties shown for V1 while λI −Vn has index 1−n, and
λI−V ∗n has index n−1 for all λ, |λ| < 1. We omit the details which parallel
those for V1.
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