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Heat-diffusion and Poisson integrals
for Laguerre and special Hermite expansions on

weighted Lp spaces

by

Adam Nowak (Wrocław)

Abstract. We investigate heat-diffusion and Poisson integrals associated with La-
guerre and special Hermite expansions on weighted Lp spaces with Ap weights.

1. Introduction. Heat-diffusion and Poisson integrals for Laguerre
polynomial expansions were first studied by Muckenhoupt [Mu1]. Then
Stempak [St], motivated by Muckenhoupt’s paper, considered one-dimen-
sional Laguerre expansions with respect to different systems of Laguerre
functions. Multi-dimensional Hermite function expansions in weighted Lp

setting have recently been considered by Stempak and Torrea [StTo]. Our
aim is to go further and discuss multi-dimensional Laguerre and special
Hermite function expansions in weighted Lp setting. We note that some as-
pects of weighted Lp theory for special Hermite and certain one-dimensional
Laguerre expansions have been recently treated also by Kerman and Than-
gavelu [KeTh].

In this paper we consider expansions with respect to special Hermite
functions and two different systems of Laguerre functions. We define (point-
wise) corresponding heat-diffusion and Poisson integrals in weighted Lp set-
ting with weights from Muckenhoupt’s Ap class, 1 ≤ p < ∞. Then we in-
vestigate their smoothness, boundary behavior and mapping properties. In
particular we show that the associated maximal operators are dominated,
up to a constant, by the Hardy–Littlewood maximal function or by the
strong maximal function. We follow closely the technique used in [StTo]
for ordinary multi-dimensional Hermite expansions and the corresponding
integrals.
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The paper is organized as follows. Section 2 contains some basic facts
and notation needed in what follows. In Sections 3, 4 and 5 we treat in order
special Hermite expansions, Laguerre expansions based on the system {`αk},
and Laguerre expansions with respect to the system {ϕαk}. Main results
of these sections are contained in Theorems 3.10, 4.6 and 5.5. Finally, in
Section 6 we give some remarks on the connection between the Hermite and
Laguerre cases, including an extension of the transference studied in [Di]
and [GIT].

2. Preliminaries. Throughout the paper we use standard notation.
N = {0, 1, . . .} denotes the set of natural numbers, R,C real and complex
numbers, respectively. Given x ∈ Rn or x ∈ Cn, we denote by |x| its Eu-
clidean norm. For a multi-index α = (α1, . . . , αn), |α| stands for its length,
i.e. |α| =

∑n
i=1 αi. If x ∈ Rn then xα = xα1

1 . . . xαnn . The function classes
C∞c , C0, L

p, Lp(ω), Ap are defined in a standard manner and will consist of
functions defined on Cn or Rd+ = (0,∞)d. For p ∈ [1,∞) the norm in the
weighted space Lp(ω) is denoted by ‖ · ‖Lp(ω). If ω ≡ 1 the notation is
simplified to ‖ · ‖p. We write p′ for the conjugate of p (i.e. 1/p+ 1/p′ = 1).

We adopt the convention that constants may change their value from
one use to the next. The notation c = c(α, β, γ) means that c is a constant
depending only on α, β, γ. Constants are always strictly positive and finite.

Given α > −1, the one-dimensional Laguerre polynomials of type α are

Lαk (x) =
1
k!
exx−α

dk

dxk
(e−xxk+α), k ∈ N, x > 0.

Note that each Lαk is a polynomial of degree k. Given a multi-index α =
(α1, . . . , αd), α ∈ (−1,∞)d, the d-dimensional Laguerre polynomials of type
α are tensor products of the one-dimensional Laguerre polynomials, i.e.

Lαk (x) =
d∏

i=1

Lαiki (xi), k ∈ Nd, x ∈ Rd+.

Similarly, multi-dimensional Hermite polynomials Hk, k ∈ Nd, are tensor
products of one-dimensional Hermite polynomials defined by

H0(x) = 1, Hk(x) = ex
2 dk

dxk
e−x

2
, k ≥ 1, x ∈ R.

The Hermite functions hk in Rd are given by

hk(x) = ckHk(x) exp(−|x|2/2), x ∈ Rd,
where k = (k1, . . . , kd) ∈ Nd and ck =

∏d
i=1(
√
π 2kiΓ (ki + 1))−1/2. Each

hk is an eigenfunction of the d-dimensional Hermite operator (harmonic
oscillator)

L = −∆+ |x|2,
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the corresponding eigenvalue being 2|k|+ d. The operator L is positive and
symmetric in L2(Rd). Moreover, the system {hk : k ∈ Nd} is an orthonormal
basis in L2(Rd).

3. Special Hermite expansions. In this section we study heat-dif-
fusion and Poisson semigroups associated with the special Hermite opera-
tor ∆̃, usually called the twisted Laplacian. The operator ∆̃ is closely related
to the sublaplacian on the Heisenberg group Hn, and special Hermite ex-
pansions play an important role in a better understanding of some problems
on Hn (see [Th2]).

Let n ≥ 1 and (x, y) ∈ Rn × Rn ' Cn. Then we have

∆̃ = −∆x −∆y +
1
4

(|x|2 + |y|2)− i
n∑

j=1

(
xj

∂

∂yj
− yj

∂

∂xj

)
,

where ∆x =
∑n

j=1 ∂
2
xj ,∆y =

∑n
j=1 ∂

2
yj are the standard Laplacians on Rn.

The set of eigenfunctions of this operator contains special Hermite functions
Φα,β (α, β ∈ Nn). These form a complete orthonormal system in L2(Cn) and
are given by the following Fourier–Wigner transform of the usual Hermite
functions hα and hβ:

Φα,β(z) = (2π)−n/2
�
Rn
eix·ξhα

(
ξ +

y

2

)
hβ

(
ξ − y

2

)
dξ, z = x+ iy ∈ Cn.

The spectrum of ∆̃ is discrete and equals {2k + n : k ∈ N}. Since we have
∆̃Φα,β = (2|β| + n)Φα,β, the eigenspace corresponding to the eigenvalue
2k+n is infinite-dimensional and spanned by {Φα,β : |β| = k}. For a function
f ∈ L2(Cn) the series

f =
∑

α,β

〈f, Φα,β〉Φα,β(1)

is convergent in L2(Cn) and is called the special Hermite expansion of f .
Denote by Qk the spectral projection operator on the eigenspace correspond-
ing to the kth eigenvalue 2k + n. Then the series (1) may be written in a
compact form

f =
∞∑

k=0

Qkf.

Given functions f, g ∈ L2(Cn), their twisted convolution is defined as

f × g(z) =
�
Cn
f(z − u)g(u) exp

(
1
2
i Im〈z, u〉

)
du,

where 〈z, u〉 =
∑n

j=1 zjuj . The above product turns L1(Cn) into a (noncom-
mutative) Banach algebra.
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The spectral projections Qk are then expressed as

Qkf = f × φn−1
k ,

φn−1
k being the Laguerre functions defined by

φn−1
k (z) = (2π)−nLn−1

k (|z|2/2) exp(−|z|2/4), z ∈ Cn.

Each φn−1
k is an eigenfunction of ∆̃ that corresponds to the eigenvalue 2k+n

and {φn−1
k : k ∈ N} is an orthogonal (but incomplete) system in L2(Cn).

For all of the above and further facts regarding special Hermite expansions
the reader is referred to the book of Thangavelu [Th1].

Let m ≥ 1 and define

ϑm−1
k (z) =

{
(2k +m)m−1, |z| ≤

√
6(2k +m),

exp(−γ|z|2), |z| >
√

6(2k +m).

We will make use of the estimate

|φm−1
k (z)| ≤ cϑm−1

k ,(2)

which is a consequence of estimates for Laguerre functions due to Askey
and Wainger [AW], compiled by Muckenhoupt [Mu2]. Here c and γ are
independent of k ∈ N and z ∈ Cn. A direct calculation using (2) shows that

‖φn−1
k ‖p ≤ c(n)(2k + n)2n−1, 1 ≤ p <∞.

This estimate may be generalized by adding a proper weight to the Lp norm.
In fact, we have the following

Proposition 3.1. Let 1 ≤ p < ∞ and ω ∈ Ap(Cn). There exists a
constant c (independent of k) such that

‖φn−1
k ‖Lp(ω) ≤ c(2k + n)2n−1.(3)

Proof. Denote by Br the ball {z ∈ Cn : |z| ≤ r}. Since the Ap condition
implies

ω(Br)
ω(B1)

≤ c
( |Br|
|B1|

)p
, r ≥ 1,

we have
ω(Br) ≤ cr2np, r ≥ 1.(4)

Let Γ1 = B√6(2k+n) and Γ2 = Cn \ Γ1. We decompose Γ2 into disjoint

“rings”:

Γ2 =
∞⋃

m=0

Γm2 , Γm2 = {z ∈ Cn : 2m
√

6(2k + n) < |z| ≤ 2m+1
√

6(2k + n)}.
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Now, to estimate LHS in (3) we split the integration over Cn into integration
over Γ1 and over each of Γm2 . By (2) and (4) we obtain

�
Γ1

|φn−1
k (z)|p dz ≤ c

�
Γ1

(2k + n)(n−1)pω(z) dz = c(2k + n)(n−1)pω(Γ1)

≤ c(2k + n)(n−1)p(
√

6(2k + n))2np = c(2k + n)(2n−1)p,

and
�
Γ2

|φn−1
k (z)|p dz =

∞∑

m=0

�
Γm2

|φn−1
k (z)|p dz

≤ c
∞∑

m=0

exp(−γp22m6(2k + n))ω(B2m+1
√

6(2k+n))

≤ c(2k+n)np
∞∑

m=0

(22m)np exp(−γ22m)≤ c(2k+n)(2n−1)p.

In what follows we will make use of the following lemma (cf. [S, p. 198]).

Lemma 3.2. Assume that Ψ : Cn → [0,∞) is radial , and (radially) de-
creasing , with � Ψ(z) dz= 1. Define Ψε(z) = ε−2nΨ(z/ε), ε > 0. If 1≤ p <∞
and ω ∈ Ap(Cn) then

‖f ∗ Ψε‖Lp(ω) ≤ A‖f‖Lp(ω), f ∈ Lp(ω),

with A independent of ε and Ψ . Moreover , A depends on ω only through
the Ap norm of ω.

Remark 3.3. Denote by R the class of functions Ψ satisfying the as-
sumptions of Lemma 3.2 (notice that if Ψ belongs to R then so does Ψε).
Then

Mf(z) = sup
Ψ∈R
|f | ∗ Ψ(z), z ∈ Cn,

where M denotes the (centered) Hardy–Littlewood maximal function in
R2n'Cn. See [S] for details.

Now we are in a position to estimate weighted Lp norms of Qkf .

Lemma 3.4. Let 1 ≤ p <∞ and ω ∈ Ap. Then

‖Qkf‖Lp(ω) ≤ c(2k + n)2n−1‖f‖Lp(ω), f ∈ Lp(ω),

with c independent of k ∈ N.

Proof. Observe that by (2),

|Qkf(z)| = |f × φn−1
k (z)| ≤ |f | ∗ |φn−1

k |(z) ≤ c|f | ∗ ϑn−1
k (z),
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and notice that ϑn−1
k is radial and (radially) decreasing. Thus Lemma 3.2

may be applied to the function ϑn−1
k /‖ϑn−1

k ‖1. As a result we obtain
∥∥|f | ∗ ϑn−1

k

∥∥
Lp(ω) ≤ c‖ϑ

n−1
k ‖1‖f‖Lp(ω) ≤ c(2k + n)2n−1‖f‖Lp(ω).

For the last inequality see the proof of Proposition 3.1.

Our next objective is to obtain a pointwise estimate of Qkf .

Lemma 3.5. Let 1 ≤ p <∞, ω ∈ Ap and f ∈ Lp(ω). Then

|Qkf(z)| ≤ c(2k + n)n−1(
√

6(2k + n) + |z|)2n‖f‖Lp(ω), z ∈ Cn,
with c independent of k ∈ N.

Proof. Without loss of generality we assume f ≥ 0. For a function v
on Cn we define

(τξv)(z) = v(z − ξ), v̌(z) = v(−z), z ∈ Cn.
As in the proof of Lemma 3.4 we have

|Qkf(z)| ≤ cf ∗ ϑn−1
k (z) = c

�
Cn
f(u)τzϑ̌n−1

k (u) du.

To handle the integral above observe that

τzϑ̌
n−1
k (u) ≤

{
(2k + n)n−1, |u| ≤

√
6(2k + n) + |z|,

exp(−γ(|u| − |z|)2), |u| >
√

6(2k + n) + |z|.
Let Γ1 = B√6(2k+n)+|z|, Γ2 = Cn \ Γ1. Further, we divide Γ2 into disjoint

“rings” Γm2 :

Γm2 = {u ∈ Cn : 2m
√

6(2k + n) + |z| < |u| ≤ 2m+1
√

6(2k + n) + |z|}.
Consider the case 1 < p <∞. By Hölder’s inequality we obtain

�
Cn
f(u)τzϑ̌n−1

k (u) du ≤ ‖f‖Lp(ω)

( �
Cn

(τzϑ̌n−1
k (u))p

′
ω(u)−p

′/p du
)1/p′

= ‖f‖Lp(ω)‖τzϑ̌n−1
k ‖Lp′ (ω̃).

Since ω̃ = ω−p
′/p belongs to Ap′ (cf. [D]), similarly to the proof of Proposi-

tion 3.1 we get

‖τzϑ̌n−1
k ‖Lp′ (ω̃) ≤ c(2k + n)n−1(

√
6(2k + n) + |z|)2n,

and so the assertion of the lemma is justified for p > 1.
If p = 1 then�

Cn
f(u)τzϑ̌n−1

k (u) du ≤ ‖f‖L1(ω)‖τzϑ̌n−1
k ω−1‖∞,
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and it remains to estimate ‖τzϑ̌n−1
k ω−1‖∞. In view of the A1 condition we

may write

ess sup
u∈Br

1
ω(u)

≤ c |Br|
ω(Br)

≤ c r2n

ω(B1)
≤ cr2n, r ≥ 1,

and therefore

ess sup
u∈Γ1

τzϑ̌
n−1
k (u)ω(u)−1 ≤ (2k + n)n−1 ess sup

u∈Γ1

ω(u)−1

≤ c(2k + n)n−1(
√

6(2k + n) + |z|)2n,

ess sup
u∈Γm2

τzϑ̌
n−1
k (u)ω(u)−1 ≤ exp(−γ22m6(2k + n)) ess sup

u∈Γm2
ω(u)−1

≤ c(
√

6(2k + n) + |z|)2n exp(−γ22m)22nm.

The conclusion follows.

Remark 3.6. Let f, p and ω be as in Lemma 3.5 and let M ≥ 0, m ≥ 1.
Then, by the above proof and the estimate (2),

|f × [(1 + | · |2)Mφm−1
k (·)](z)| ≤ c|f | ∗ [(1 + | · |2)Mϑm−1

k (·)](z)

≤ c(2k +m)m−1+M(
√

6(2k +m) + |z|)2n‖f‖Lp(ω),

with c independent of k. We will make use of this fact in what follows.

Lemma 3.7. Let 1 ≤ p < ∞ and ω ∈ Ap. The subspace generated by
{Φα,β : α, β ∈ Nn} is dense in Lp(ω) and in C0(Cn) with ‖ · ‖∞ norm.

Proof. According to Thangavelu [Th2, Theorem 1.4.4], the finite linear
combinations of Φα,β are dense in the Schwartz class S(Cn). Thus the den-
sity in C0 follows immediately. To prove the density in Lp(ω) we observe that
by (4) and the dominated convergence theorem it follows that the conver-
gence in S(Cn) implies the convergence in Lp(ω), and hence functions from
S(Cn) may be approximated in Lp(ω) norm by finite linear combinations of
Φα,β.

Corollary 3.8. Let 1 ≤ p<∞, ω ∈Ap and f ∈Lp(ω). If 〈f, Φα,β〉= 0
for all α, β ∈ Nn then f = 0.

Proof. If p = 1 Lemma 3.7 gives 〈f, g〉 = 0 for each g ∈ C0(Cn) and
the conclusion follows. If 1 < p < ∞ then, again by Lemma 3.7, we get
〈f, g〉 = 0 for each g ∈ Lp′(ω−p′/p) (recall that ω−p

′/p ∈ Ap′). The claim is
proved.

Let 1 ≤ p <∞ and ω ∈ Ap. Given f ∈ Lp(ω) we define its heat-diffusion
integral by

g(t, z) =
∞∑

k=0

e−t(2k+n)Qkf(z), t > 0.
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Note that the above series converges pointwise by Lemma 3.5 and in Lp(ω)
by Lemma 3.4. We may express g(t, z) as a twisted convolution with a kernel
Gt by writing

g(t, z) =
∞∑

k=0

e−t(2k+n)f × φn−1
k (z)

=
∞∑

k=0

e−t(2k+n)
�
Cn
f(z − u)φn−1

k (u)ei Im〈z,u〉/2 du

=
�
Cn
f(z − u)

( ∞∑

k=0

e−t(2k+n)φn−1
k (u)

)
ei Im〈z,u〉/2 du

= f ×Gt(z).

Interchanging the order of summation and integration is justified by Re-
mark 3.6 since

∞∑

k=0

e−t(2k+n)
�
Cn
|f(z − u)φn−1

k (u)| du ≤ c
∞∑

k=0

e−t(2k+n)|f | ∗ ϑn−1
k (z)

≤ c‖f‖Lp(ω)

∞∑

k=0

e−t(2k+n)(2k + n)n−1(
√

6(2k + n) + |z|)2n <∞.

Using the generating formula [L, (4.17.3)] we get

Gt(z) =
1

(4π sinh t)n
exp
(
−1

4
|z|2 coth t

)
, t > 0.

Proposition 3.9. Let 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). The heat-
diffusion integral g(t, z) of f is a smooth function on R+×R2n. Moreover ,
it satisfies

(∂/∂t+ ∆̃z)g(t, z) = 0.(5)

Proof. Let E be a compact subset of Cn. Then supz∈E |Qkf(z)| grows
polynomially in k by Lemma 3.5. Therefore we may differentiate term by
term with respect to t the series defining g(t, z). We obtain

∂m

∂tm
g(t, z) =

∞∑

k=0

(−1)m(2k + n)me−t(2k+n)Qkf(z),(6)

RHS being continuous in (t, z) since each Qk(z) is a continuous function of
z and the series is convergent almost uniformly in (t, z).

For z ∈ Cn we write z = x + iy, x, y ∈ Rn. To prove the smoothness
of (6) in z we first focus on

∂αx ∂
β
yQkf(z) = ∂αx ∂

β
y

�
Cn
f(u)φn−1

k (z − u)ei Im〈z,z−u〉/2 du.
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We claim that the differentiation may be taken under the integral sign.
Define

Υn−1
k (z, u) = φn−1

k (z − u)ei Im〈z,z−u〉/2

=
1

(2π)n
Ln−1
k

( |z − u|2
2

)
e−|z−u|

2/4+i Im〈z,z−u〉/2.

Observe that

(7) ∂αx ∂
β
y Υ

n−1
k (z, u)

= e−|z−u|
2/4+i Im〈z,z−u〉/2 ∑

|ν|≤|α|+|β|
∂|ν|Ln−1

k

( |z − u|2
2

)
Pν(z, z − u),

where Pν are polynomials on Cn × Cn.
Fix z ∈ Cn and set e1 = (1, 0, . . . , 0) ∈ Rn. For −1 < ε < 1, by the mean

value theorem we have

ε−1|Υn−1
k (z + εe1, u)− Υn−1

k (z, u)| = |∂e1x Υn−1
k (z + θe1, u)|

for some θ ∈ (−1, 1). In view of (7) the function

Υ ∗(z, ·) = sup
|θ|<1
|∂e1x Υn−1

k (z + θe1, ·)|

is bounded and rapidly decreasing. Moreover, (4) implies Υ ∗(z, ·) ∈
Lp
′
(ω−p

′/p) and therefore integrability of Υ ∗(z, u)|f(u)| is justified by
Hölder’s inequality. Hence the dominated convergence theorem may be ap-
plied and we obtain

∂e1x Qkf(z) =
�
Cn
f(u)∂e1x Υ

n−1
k (z, u) du.

Our claim follows by repeating the above arguments for the remaining par-
tial derivatives.

Now our aim is to show that the series
∞∑

k=0

(−1)m(2k + n)me−t(2k+n)∂αx ∂
β
yQkf(z)(8)

is almost uniformly convergent. Since each term is a continuous function this
will finish the proof of smoothness of g(t, z) (the continuity in z of each term
is checked by the mean value theorem, (7) and the dominated convergence
theorem).

We have ([L, (4.18.6)]) ∂mLn−1
k = (−1)mLn+m−1

k−m (we use the convention
that Ln+m−1

k−m = 0 if k < m). Therefore, by (7),

|∂αx ∂βy Υn−1
k (z, u)| ≤ c(1 + |z|2)M (1 + |z − u|2)M

|α|+|β|∑

m=0

|φn+m−1
k−m (z − u)|,
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with c independent of k ∈ N and the convention that φn+m−1
k−m = 0 for k < m.

This, in view of Remark 3.6, gives

|∂αx ∂βyQkf(z)|
≤ c‖f‖Lp(ω)(1 + |z|2)M (2k + n)n−1+|α|+|β|+M(

√
6(2k + n) + |z|)2n.

Hence supz∈E |∂αx ∂βyQkf(z)| grows polynomially in k and the almost uniform
convergence of (8) is justified.

To verify the heat equation (5) we differentiate term by term the series
defining g(t, z) and use the fact that Ln−1

k satisfies ([L, (4.18.7)])

x∂2Ln−1
k (x) + (n− x)∂Ln−1

k (x) + kLn−1
k (x) = 0.

The computation makes no difficulties and is omitted.

Theorem 3.10. Let 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). Let g(t, z) be
the heat-diffusion integral of f . Then

(a) supt>0 |g(t, z)| ≤Mf(z), z ∈ Cn;
(b) ‖g(t, ·)‖Lp(ω) ≤ C(cosh t)−n‖f‖Lp(ω);
(c) ‖g(t, ·)− f‖Lp(ω) → 0, t→ 0+;
(d) g(t, z)→ f(z) a.e., t→ 0+.

Moreover , the family {Tt}t>0, Ttf(z) = g(t, z), is a strongly continuous and
uniformly bounded semigroup of operators on Lp(ω).

Proof. Observe that

Gt(z) = (cosh t)−nW√tanh t(z),(9)

where W (x) = (4π)−n exp(−|x|2/4) is the Gauss–Weierstrass kernel in
R2n ' Cn and Wε(·) = ε−2nW (·/ε). Since |g(t, z)| ≤ |f | ∗ Gt(z) assertions
(a) and (b) follow from Lemma 3.2 and Remark 3.3. Items (c) and (d) are
justified by standard arguments with the aid of (a), (b) and Lemma 3.7.

The semigroup property of {Tt}t>0 is easily verified for f ∈ lin{Φα,β};
hence it holds for any f ∈ Lp(ω) in view of Lemma 3.7 and (b). Strong
continuity follows by standard arguments, similarly to (c).

We now pass to Poisson integrals. Let 1 ≤ p < ∞ and ω ∈ Ap. Given
f ∈ Lp(ω) we define its Poisson integral by

f(t, z) =
∞∑

k=0

e−t
√

2k+nQkf(z), t > 0.

The above series converges pointwise by Lemma 3.5 and in Lp(ω) by Lem-
ma 3.4. Using the well known formula

e−βt =
t√
4π

∞�
0

e−β
2ss−3/2e−t

2/(4s) ds, t > 0, β ≥ 0,(10)
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we express f(t, z) as the twisted convolution with a kernel Pt:

f(t, z) =
∞∑

k=0

e−t
√

2k+nf × φn−1
k (z)

=
∞∑

k=0

t√
4π

∞�
0

e−s(2k+n)s−3/2e−t
2/(4s) ds

·
�
Cn
f(z − u)φn−1

k (u)ei Im〈z,u〉/2 du

=
�
Cn

t√
4π

∞�
0

(
s−3/2e−t

2/(4s)
∞∑

k=0

e−s(2k+n)φn−1
k (u)

)
ds(11)

· f(z − u)ei Im〈z,u〉/2 du

= f × Pt(z),

where

Pt(z) =
t√
4π

∞�
0

Gs(z)s−3/2e−t
2/(4s) ds.

Interchanging the order of summation and integration is justified by Fubini’s
theorem since, by Remark 3.6,

∞∑

k=0

t√
4π

∞�
0

e−s(2k+n)s−3/2e−t
2/(4s)

�
Cn
|f(z − u)φn−1

k (u)| du ds

≤ c
∞∑

k=0

|f | ∗ ϑn−1
k (z)

t√
4π

∞�
0

e−s(2k+n)s−3/2e−t
2/(4s) ds

≤ c‖f‖Lp(ω)

∞∑

k=0

e−t
√

2k+n(2k + n)n−1(
√

6(2k + n) + |z|)2n <∞.

Note that by (11) we obtain the following subordination formula:

f(t, z) =
t√
4π

∞�
0

g(s, z)s−3/2e−t
2/(4s) ds, t > 0.(12)

Proposition 3.11. Let 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). Then the
Poisson integral f(t, z) of f is a smooth function on R+ × R2n. Moreover ,
it satisfies

(∂2/∂t2 − ∆̃z)f(t, z) = 0.

Proof. The proof is very similar to that of Proposition 3.9. We omit the
details.

Theorem 3.12. Assume that 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). Let
f(t, z) be the Poisson integral of f . Then
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(a) supt>0 |f(t, z)| ≤Mf(z), z ∈ Cn;
(b) ‖f(t, ·)‖Lp(ω) ≤ Ce−t

√
n‖f‖Lp(ω);

(c) ‖f(t, ·)− f‖Lp(ω) → 0, t→ 0+;
(d) f(t, z)→ f(z) a.e., t→ 0+.

Moreover , the family {Pt}t>0, Ptf(z) = f(t, z), is a strongly continuous and
uniformly bounded semigroup of operators on Lp(ω).

Proof. Using the subordination formula (12) and (a) of Theorem 3.10
we get

|f(t, z)| ≤
∞�
0

Mf(z)
t√
4π

s−3/2e−t
2/(4s) ds

and so (a) follows. To prove (b) we apply Minkowski’s integral inequality
and Theorem 3.10(b) to obtain

‖f(t, ·)‖Lp(ω) ≤
∞�
0

‖g(s, ·)‖Lp(ω)
t√
4π

s−3/2e−t
2/(4s) ds

≤ c‖f‖Lp(ω)

∞�
0

(cosh s)−n
t√
4π

s−3/2e−t
2/(4s) ds

≤ ce−t
√
n‖f‖Lp(ω).

The rest of the proof is analogous to the proof of Theorem 3.10.

Remark 3.13. Theorem 3.10 shows that the condition ω ∈ Ap is suf-
ficient to have ‖g(t, z)‖Lp(ω) ≤ C‖f‖Lp(ω). However, it is not necessary.
For 1 < p < ∞ it was proved in [KeTh] that a certain local Ap condi-
tion is both necessary and sufficient for the above weighted norm inequality
to hold. Some results of this type were also obtained in the case of the
one-dimensional system of Laguerre functions defined in Remark 6.8 below.

Remark 3.14. Most of the results of this section are valid for the space
L∞(Cn). More precisely, Proposition 3.1, Lemma 3.4 (and so Lemma 3.5),
Proposition 3.9 and Proposition 3.11 remain valid if we replace Lp(ω) by L∞.
Moreover, Theorem 3.10 and Theorem 3.12, except (c) and (d), also re-
main valid with L∞ replacing Lp(ω). Concerning (c) and (d), we have
‖g(t, ·)−f‖∞ → 0 and ‖f(t, ·)−f‖∞ → 0, t→ 0+, but only for f ∈ C0(Cn).

Remark 3.15. If 1 ≤ p ≤ ∞ and f ∈ Lp(Cn) (the case ω ≡ 1) then The-
orem 3.10(b) and Theorem 3.12(b) hold with C = 1. In particular this means
that {Tt} and {Pt} are semigroups of contractions on Lp(Cn), 1 ≤ p ≤ ∞.

4. Laguerre expansions; system {`αk}. Let k = (k1, . . . , kd) ∈ Nd and
α = (α1, . . . , αd) ∈ (−1,∞)d be multi-indices. The Laguerre function `αk on
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Rd+ is defined as

`αk (x) = `α1
k1

(x1) · . . . · `αdkd (xd), x = (x1, . . . , xd) ∈ Rd+,
where `αiki are the one-dimensional Laguerre functions given by

`αiki (xi) =
(

Γ (ki + 1)
Γ (ki + αi + 1)

)1/2

Lαiki (xi)e
−xi/2, xi > 0, i = 1, . . . , d.

Each `αk is an eigenfunction of the differential operator

L =
d∑

i=1

(
xi

∂2

∂x2
i

+ (αi + 1)
∂

∂xi
− xi

4

)
,

the corresponding eigenvalue being −|k| − (|α|+ d)/2. The operator −L is
positive and symmetric in L2(Rd+, xαdx). Moreover, the system {`αk : k ∈ Nd}
is an orthonormal basis in L2(Rd+, xαdx).

The following estimate of `αk is crucial for further considerations:

|`αk (x)| ≤ c
d∏

i=1

Φαiki (xi), x ∈ Rd+,(13)

where

Φαiki (xi) =
{

(2ki + |αi|+ 1)|αi|/2, 0 < xi ≤ 3(2ki + |αi|+ 1),

exp(−γxi), xi > 3(2ki + |αi|+ 1).

Here c and γ are independent of k and x. The estimate (13) is a conse-
quence of Muckenhoupt’s generalization [Mu2] of the classical estimates due
to Askey and Wainger [AW].

Let 1 ≤ p < ∞. We denote by Aαp = Ap(Rd+, dµα) the class of Ap
weights on Rd+ with respect to the (doubling) measure µα(dx) = xαdx. More
precisely, Aαp is the class of all nonnegative functions ω ∈ L1

loc(Rd+, dµα) such
that ω−p

′/p ∈ L1
loc(Rd+, dµα) and

sup
Q∈B

[
1

µα(Q)

�
Q

ω(x)µα(dx)
][

1
µα(Q)

�
Q

ω(x)−p
′/p µα(dx)

]p/p′
<∞(14)

if 1 < p <∞, or

sup
Q∈B

1
µα(Q)

�
Q

ω(x)µα(dx) ess sup
x∈Q

1
ω(x)

<∞(15)

if p = 1. Here B denotes the class of all sets of the form Q = Q̃∩Rd+, where
Q̃ is a cube (with sides parallel to the coordinate axes) in Rd with center
in Rd+.
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For r > 0 denote by Qr the cube (0, r)d. Given 1 ≤ p < ∞ and ω ∈ Aαp
we have

ω(Qr) =
�
Qr

ω(x)µα(dx) ≤ cr(d+|α|)p, r ≥ 1.(16)

Indeed, if 1 < p < ∞ and r ≥ 1 then, by Hölder’s inequality and the Aαp
condition,

µα(Q1) ≤ cω(Q1)1/pµα(Qr)ω(Qr)−1/p.

If p = 1 then the Aα1 condition (15) gives

µα(Q1) ≤
�
Q1

ω(x)µα(dx) ess sup
x∈Qr

1
ω(x)

≤ cω(Q1)µα(Qr)ω(Qr)−1.

Since µα(Qr) = crd+|α| the inequality in (16) follows.

Lemma 4.1. Let 1 ≤ p <∞ and ω ∈ Aαp . There exist constants δ = δ(α)
and c independent of k ∈ Nd such that

‖`αk‖Lp(ωdµα) ≤ c(2|k|+ ‖α‖+ 1)δd,

where ‖α‖ =
∑d

i=1 |αi|.
Proof. Set λi = 3(2ki + |αi| + 1), i = 1, . . . , d, and λ∗ = max{λi :

1 ≤ i ≤ d}. For S ⊂ {1, . . . , d} we define

Γαk (S) = {x ∈ Rd+ : xj > λj for j ∈ S & xj ≤ λj for j 6∈ S}.
Note that {Γαk (S) : S ⊂ {1, . . . , d}} is a decomposition of Rd+ into 2d disjoint
subsets. Therefore, to finish the proof it is sufficient to obtain a proper
estimate of

Iαk (S) =
�

Γαk (S)

|`αk (x)|pω(x)µα(dx).

If S = ∅ then by (13) and (16) we have

Iαk (S) ≤ c
�

Γαk (S)

( max
1≤i≤d

λi
|αi|/2)dpω(x)µα(dx)

≤ c(2|k|+ ‖α‖+ 1)‖α‖dp/2
�

Qλ∗

ω(x)µα(dx)

≤ c(2|k|+ ‖α‖+1)‖α‖dp/2(λ∗)(d+|α|)p ≤ c(2|k|+‖α‖+1)(1+3‖α‖/2)dp.

If S 6= ∅ we divide Γαk (S) into disjoint subsets Γαk (S,m), m ∈ N, defined as
follows:

Γαk (S, 0) = Γ̃αk (S, 0), Γαk (S,m) = Γ̃αk (S,m) \ Γ̃αk (S,m− 1), m ≥ 1,

where

Γ̃αk (S,m) = {x ∈ Rd+ : λj < xj ≤ 2m+1λj for j ∈ S & xj ≤ λj for j 6∈ S}.
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Now, using (13) and (16) we obtain

Iαk (S) ≤ c
∞∑

m=0

�
Γαk (S,m)

[
exp
(
−γ
∑

j∈S
xj

)∏

j 6∈S
(λj)|αj |/2

]p
ω(x)µα(dx)

≤ c
d∏

j=1

(λj)|αj |p/2
∞∑

m=0

exp(−γp2m min
j∈S

λj)
�

Γαk (S,m)

ω(x)µα(dx)

≤ c(2|k|+ ‖α‖+ 1)‖α‖dp/2
∞∑

m=0

exp(−γp2m)
�

Q2m+1λ∗

ω(x)µα(dx)

≤ c(2|k|+ ‖α‖+ 1)‖α‖dp/2
∞∑

m=0

exp(−γp2m)(2m+1λ∗)(d+|α|)p

≤ c(2|k|+ ‖α‖+ 1)(1+3‖α‖/2)dp.

The conclusion follows.

Lemma 4.2. Let 1 ≤ p < ∞ and ω ∈ Aαp . The Fourier–Laguerre coef-
ficients 〈`αk , f〉 = � Rd+ `αk (x)f(x)µα(dx) exist for f ∈ Lp(ωdµα). Moreover ,

there exist constants δ = δ(α) and c independent of k ∈ Nd such that

|〈`αk , f〉| ≤ c(2|k|+ ‖α‖+ 1)δd‖f‖Lp(ωdµα).(17)

Proof. For 1 < p <∞ Hölder’s inequality implies

|〈`αk , f〉| ≤
[ �
Rd+

|`αk (x)|p′ω(x)−p
′/p µα(dx)

]1/p′
‖f‖Lp(ωdµα),

and since ω−p
′/p ∈ Aαp′ , Lemma 4.1 gives (17).

The case p = 1 is less straightforward. We use the notation from the
proof of Lemma 4.1. We have

|〈`αk , f〉| ≤
∑

S⊂{1,...,d}
ess sup
y∈Γαk (S)

1
ω(y)

|`αk (y)|
�

Γαk (S)

|f(x)|ω(x)µα(dx)

≤ ‖f‖L1(ωdµα) max
S⊂{1,...,d}

ess sup
y∈Γαk (S)

1
ω(y)

|`αk (y)|.

If S = ∅ then by the Aα1 condition, (13) and (16) we obtain

ess sup
y∈Γαk (S)

1
ω(y)

|`αk (y)| ≤ c(2|k|+ ‖α‖+ 1)‖α‖d/2 ess sup
y∈Qλ∗

1
ω(y)

≤ c(2|k|+ ‖α‖+ 1)(1+3‖α‖/2)d.
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If S 6= ∅ we use again the Aα1 condition, (13) and (16) to get

ess sup
y∈Γαk (S)

1
ω(y)

|`αk (y)| ≤ sup
m∈N

ess sup
y∈Γαk (S,m)

1
ω(y)

|`αk (y)|

≤ c(2k + ‖α‖+ 1)‖α‖d/2 sup
m∈N

e−γ2m ess sup
y∈Q2m+1λ∗

1
ω(y)

≤ c(2k + ‖α‖+ 1)(1+3‖α‖/2)d.

The proof is finished.

Lemma 4.3. Let 1 ≤ p < ∞ and ω ∈ Aαp . The subspace spanned by
{`αk : k ∈ Nd} is dense in Lp(ωdµα) and in C0(Rd+) with ‖ · ‖∞ norm.

Proof. It is sufficient to approximate functions from C∞c (Rd+) by linear
combinations of `αk . We first consider the case of Lp(ωdµα).

Fix f ∈ C∞c (Rd+) and define

SNf =
∑

|k|≤N
〈`αk , f〉`αk .

We will show that there exists a subsequence of {SNf} convergent to f in
Lp(ωdµα). Since SNf → f in L2(dµα), there exists a subsequence SNkf
convergent to f µα-a.e. and thus SNkf → f a.e. Next, observe that by the
symmetry of −L we have, for m ∈ N,

〈`αk , f〉 = 〈(−L)−m`αk , (−L)mf〉 =
(
|k|+ |α|+ d

2

)−m
〈`αk , (−L)mf〉,(18)

hence, by the Schwarz inequality,

|SNf(x)| ≤
∑

k∈Nd
‖(−L)mf‖L2(dµα)

(
|k|+ |α|+ d

2

)−m
|`αk (x)|.(19)

Therefore, for 1 < p <∞, by Hölder’s inequality we get

|SNf(x)|p ≤ c
( ∑

k∈Nd

(
|k|+ |α|+ d

2

)−m)p/p′
(20)

×
∑

k∈Nd

(
|k|+ |α|+ d

2

)−m
|`αk (x)|p.

Now, Lemma 4.1 implies, for m sufficiently large,
�
Rd+

|SNf(x)|pω(x)µα(dx) ≤ c
∑

k∈Nd

(
|k|+ |α|+ d

2

)−m
(2|k|+‖α‖+1)δdp <∞.

To show that ‖SNkf − f‖Lp(ωdµα) → 0 as k → ∞, we apply the dominated
convergence theorem (the majorant is (Υ + |f |p)ω, where Υ is the RHS
in (19) if p = 1 or in (20) if p > 1).
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We pass to the case of C0(Rd+). Since SNkf → f a.e., the proof is finished
once we show that SNf is uniformly fundamental.

Let 1 ≤ N < M . By (13), (18) and the Schwarz inequality we obtain

|SMf(x)− SNf(x)| ≤
M∑

n=N+1

∑

|k|=n
|〈`αk , f〉| |`αk (x)|

≤ c
M∑

n=N+1

∑

|k|=n
‖(−L)mf‖L2(dµα)

(
|k|+ |α|+ d

2

)−m
(2|k|+ ‖α‖+ 1)‖α‖d/2.

The last expression tends to 0 as N,M →∞, if only m is chosen sufficiently
large.

Corollary 4.4. Let 1 ≤ p < ∞, ω ∈ Aαp and f ∈ Lp(ωdµα). If
〈`αk , f〉 = 0 for all k ∈ Nd then f = 0.

Proof. Apply the arguments from the proof of Corollary 3.8.

Let 1 ≤ p < ∞ and ω ∈ Aαp . Given f ∈ Lp(ωdµα) we define its heat-
diffusion integral by

gα(t, x) =
∞∑

n=0

e−t(n+(|α|+d)/2)
∑

|k|=n
〈`αk , f〉`αk (x), t > 0.

The above series converges, since by (13) and Lemma 4.2,

(21)
∞∑

n=0

e−t(n+(|α|+d)/2)
∑

|k|=n
|〈`αk , f〉| |`αk (x)|

≤ c
∞∑

n=0

e−t(n+(|α|+d)/2)(2n+ ‖α‖+ 1)δd+‖α‖d/2nd <∞.

To obtain an integral form of gα(t, x) we write

gα(t, x) =
∞∑

n=0

e−t(n+(|α|+d)/2)
∑

|k|=n
`αk (x)

�
Rd+

`αk (y)f(y)µα(dy)

=
�
Rd+

( ∞∑

n=0

e−t(n+(|α|+d)/2)
∑

|k|=n
`αk (x)`αk (y)

)
f(y)µα(dy)

=
�
Rd+

Gαt (x, y)f(y)µα(dy).

Interchanging the order of summation and integration is easily justified
by (13) and Lemma 4.2 (see (21)).

The kernel Gαt (x, y) may be computed explicitly since a proper generat-
ing formula is available [L, (4.17.6)]. The result is
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Gαt (x, y) =
(

2 sinh
t

2

)−d
exp
(
−1

2
coth

t

2

d∑

i=1

(xi + yi)
)

·
d∏

i=1

(
√
xiyi)−αiIαi

( √
xiyi

sinh(t/2)

)
,

where x, y ∈ Rd+ and Ia(s) = i−aJa(is) is the Bessel function of an imagi-
nary argument (cf. [L]). In particular, it follows that Gα

t (x, y) is positive on
Rd+ × Rd+.

Proposition 4.5. Let 1 ≤ p < ∞, ω ∈ Aαp and f ∈ Lp(ωdµα). The
heat-diffusion integral gα(t, x) of f is a C∞ function on R+×Rd+. Moreover ,
it satisfies

(Lx − ∂/∂t)gα(t, x) = 0.(22)

Proof. Since
∑
|k|=n |〈`αk , f〉`αk (x)| grows polynomially in n, uniformly

with respect to x (see (21)), we may differentiate in t term by term the
series defining gα(t, x). The result is

∂m

∂tm
gα(t, x) =

∞∑

n=0

(−1)m
(
n+
|α|+ d

2

)m
(23)

· e−t(n+(|α|+d)/2)
∑

|k|=n
〈`αk , f〉`αk (x),

RHS being continuous since the series converges almost uniformly in (t, x).
Using the formula (cf. [L, (4.18.6)])

∂

∂xj
`αk (x) = −

√
kj `

α+ej
k−ej (x)− 1

2
`αk (x), kj > 0,

together with (13) we obtain
∣∣∣∣
∂

∂xj
`αk (x)

∣∣∣∣ ≤ c(2|k|+ ‖α‖+ 1)‖α‖/2+1.

Thus
∑
|k|=n |〈`αk , f〉∂xj`αk (x)| grows polynomially in n, uniformly with re-

spect to x. Therefore we may differentiate in xj term by term the series
in (23), the result being a continuous function since the convergence is al-
most uniform in (t, x). The same arguments apply to higher derivatives, so
gα(t, x) is smooth on R+ × Rd+.

The heat equation (22) is easily verified by differentiating term by term
the series of gα(t, x).

Denote by Mα
s the strong maximal function in Rd+ with respect to the

measure µα, i.e. given f ∈ L1
loc(Rd+, dµα) we have
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Mα
s f(x) = sup

x∈H∈H

1
µα(H)

�
H

|f(y)|µα(dy),

where H is the family of all “rectangles” in Rd+ with sides parallel to the
coordinate axes.

For 1 ≤ p <∞ we denote by (Aαp )∗ = A∗p(Rd+, dµα) the strong Ap class of
weights in Rd+ with respect to the measure µα. More precisely, (Aαp )∗ consists
of those functions from Aαp which satisfy the condition (14) if p > 1, or (15)
if p = 1, with the supremum taken over H.

We note that if p > 1 then ω ∈ (Aαp )∗ if and only if Mα
s is bounded on

Lp(Rd+, ωdµα). This seems to be well known and follows by an adaptation of
the proof for the Lebesgue measure case, which may be found for instance
in [GR].

Theorem 4.6. Let 1 < p < ∞, ω ∈ (Aαp )∗ and f ∈ Lp(ωdµα). Let
gα(t, x) be the heat-diffusion integral of f . Then

(a) supt>0 |gα(t, x)| ≤ CMα
s f(x), x ∈ Rd+;

(b) ‖gα(t, ·)‖Lp(ωdµα) ≤ C exp(−t(|α|+ d)/2)‖f‖Lp(ωdµα);
(c) ‖gα(t, ·)− f‖Lp(ωdµα) → 0, t→ 0+;
(d) gα(t, x)→ f(x) a.e., t→ 0+.

Moreover , the family {Tαt }t>0, Tαt f(x) = gα(t, x), is a strongly continuous
and uniformly bounded semigroup of operators on Lp(ωdµα).

To prove the theorem we will need a multi-dimensional analogue of a
result used by Muckenhoupt. The proof is a straightforward modification of
that in [Mu1] and therefore is omitted.

Lemma 4.7. Let µ be a positive, absolutely continuous measure on Rd+.
Assume that f is a measurable function on Rd+, g ∈ L1(Rd+, dµ), g ≥ 0 and
g(y) = g1(y1) . . . gd(yd), y ∈ Rd+. Suppose also that for some x ∈ Rd+ each
gi(·) is increasing for yi < xi and decreasing for yi > xi. Then�

Rd+

|f(y)|g(y)µ(dy) ≤ ‖g‖L1(dµ)M
µ
s f(x),

where Mµ
s denotes the strong maximal function associated with the mea-

sure µ.

Proof of Theorem 4.6. We have Gαt (x, y) =
∏d
i=1G

αi
t (xi, yi), where

Gαit (xi, yi) ≥ 0. By [St, Lemma 2.2] there exists a function K(t, x, y) =∏d
i=1Ki(t, xi, yi) with the following properties:

(i) Gαit (xi, yi) ≤ exp(−t(αi + 1)/2)Ki(t, xi, yi), i = 1, . . . , d;
(ii) for each t > 0 and xi > 0, Ki(t, xi, yi) as a function of yi is increasing

on [0, xi] and decreasing on [xi,∞);
(iii) � ∞0 Ki(t, xi, yi)yiαidyi ≤ C independently of xi and t > 0.



258 A. Nowak

Thus by Lemma 4.7,

|gα(t, x)| ≤ Ce−t(|α|+d)/2Mα
s f(x), x ∈ Rd+,(24)

and hence (a) and (b) follow. (c) and (d) are justified by standard arguments
with the aid of (a), (b) and Lemma 4.3.

The semigroup property is easily verified to hold for any `αk ; hence by
(b) and Lemma 4.3 it holds for all f ∈ Lp(ωdµα). Strong continuity follows
by standard reasoning, similarly to (c).

Proposition 4.8. Let 1 ≤ p, q < ∞, ω ∈ Aαp , ν ∈ Aαq and f ∈
Lp(ωdµα). Then

‖Tαt f‖Lq(νdµα) ≤ C(t)‖f‖Lp(ωdµα),

where C(t), t > 0, is a continuous and decreasing function of t that vanishes
at infinity.

Proof. Using Lemmas 4.1 and 4.2 we write

‖Tαt f‖Lq(νdµα) ≤
∞∑

n=0

e−t(n+(d+|α|)/2)
∑

|k|=n
|〈`αk , f〉| ‖`αk‖Lq(νdµα)

≤ c
( ∞∑

n=0

e−t(n+(d+|α|)/2)(2n+ ‖α‖+ 1)2δdnd
)
‖f‖Lp(ωdµα).

Corollary 4.9. Let 1 ≤ p < ∞ and ω ∈ Aαp . The family {Tαt }t>0 is
a strongly continuous semigroup of operators on Lp(ωdµα) (note that the
continuity at 0+ is not postulated here).

We now pass to Poisson integrals. Let 1 ≤ p < ∞ and ω ∈ Aαp . Given
f ∈ Lp(ωdµα) we define its Poisson integral by

fα(t, x) =
∞∑

n=0

e−t
√
n+(|α|+d)/2

∑

|k|=n
〈`αk , f〉`αk (x), t > 0.

The above series converges (see (21)). Using (10) we obtain an integral form
of fα(t, x):

fα(t, x) =
∞∑

n=0

t√
4π

∞�
0

e−s(n+(|α|+d)/2)s−3/2e−t
2/(4s) ds

·
∑

|k|=n
`αk (x)

�
Rd+

`αk (y)f(y)µα(dy)

=
�
Rd+

Pαt (x, y)f(y)µα(dy),
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where

Pαt (x, y) =
t√
4π

∞�
0

Gαs (x, y)s−3/2e−t
2/(4s) ds.

We also have the subordination formula

fα(t, x) =
t√
4π

∞�
0

gα(s, x)s−3/2e−t
2/(4s) ds, t > 0.(25)

Interchanging the order of integration and summation above is justified
by (13) and Lemma 4.2.

Proposition 4.10. Let 1 ≤ p < ∞, ω ∈ Aαp and f ∈ Lp(ωdµα). The
Poisson integral fα(t, x) of f is a C∞ function on R+ × Rd+. Moreover , it
satisfies

(Lx + ∂2/∂t2)fα(t, x) = 0.(26)

Proof. Apply the arguments from the proof of Proposition 4.5.

Theorem 4.11. Assume that 1< p <∞, ω ∈ (Aαp )∗ and f ∈ Lp(ωdµα).
Let fα(t, x) be the Poisson integral of f . Then

(a) supt>0 |fα(t, x)| ≤ CMα
s f(x), x ∈ Rd+;

(b) ‖fα(t, ·)‖Lp(ωdµα) ≤ C exp(−t
√

(|α|+ d)/2)‖f‖Lp(ωdµα);
(c) ‖fα(t, ·)− f‖Lp(ωdµα) → 0, t→ 0+;
(d) fα(t, x)→ f(x) a.e., t→ 0+.

Moreover , the family {Pαt }t>0, Pαt f(x) = fα(t, x), is a strongly continuous
and uniformly bounded semigroup of operators on Lp(Rd+, ωdµα).

Proof. Using the subordination formula (25) and (24) we get

|fα(t, x)| ≤ cMα
s f(x)

∞�
0

e−s(|α|+d)/2 t√
4π

s−3/2e−t
2/(4s) ds

= ce−t
√

(|α|+d)/2Mα
s f(x).

This shows (a) and (b). The rest of the proof is similar to the proof of
Theorem 4.6.

Proposition 4.12. Let 1≤ p, q <∞, ω∈Aαp , ν ∈Aαq and f ∈Lp(ωdµα).
Then

‖Pαt f‖Lq(νdµα) ≤ C(t)‖f‖Lp(ωdµα),

C(t), t > 0, being a continuous and decreasing function of t that vanishes
at infinity.

Proof. Argue as in the proof of Proposition 4.8.

Corollary 4.13. Let 1 ≤ p < ∞ and ω ∈ Aαp . The family {Pαt }t>0 is
a strongly continuous semigroup of operators on Lp(Rd+, ωdµα).
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Remark 4.14. A large part of the results of this section are valid for the
space L∞(Rd+). More precisely, Lemmas 4.1 and 4.2 and Propositions 4.5
and 4.10 remain valid if we replace Lp(ωdµα) by L∞. Moreover, Theo-
rems 4.6 and 4.11, except (c) and (d), also remain valid with L∞ replac-
ing Lp(ωdµα). Concerning (c) and (d), we have ‖gα(t, ·) − f‖∞ → 0 and
‖fα(t, ·)− f‖∞ → 0 as t→ 0+, but only for f ∈ C0(Rd+).

Remark 4.15. If 1 ≤ p ≤ ∞ and f ∈ Lp(Rd+, dµα) (the case ω ≡ 1)
then Theorem 4.6(b) holds with the coefficient C exp(−t(|α|+ d)/2) re-
placed by (cosh(t/2))−(|α|+d) (cf. computations in [St]) and Theorem 4.11(b)
holds with C dropped. This means, in particular, that {T αt }t>0 and {Pαt }t>0
are semigroups of contractions on Lp(Rd+, dµα), 1 ≤ p ≤ ∞. Note also that
the above together with Lemma 4.3 implies Lp convergence (part (c) in
both theorems) for f ∈ Lp(dµα), 1 ≤ p < ∞, which for p = 1 could not be
concluded earlier.

Remark 4.16. In dimension one we have Mα
s = Mα (here Mα denotes

the Hardy–Littlewood maximal function in R+ with respect to the measure
µα). Consequently, Theorems 4.6(d) and 4.11(d) hold with p = 1 admitted.

5. Laguerre expansions; system {ϕαk}. Let k = (k1, . . . , kd) ∈ Nd
and α = (α1, . . . , αd) ∈ (−1,∞)d be multi-indices. The Laguerre function
ϕαk on Rd+ is defined as

ϕαk (x) = ϕα1
k1

(x1) · . . . · ϕαdkd (xd), x = (x1, . . . , xd) ∈ Rd+,
where ϕαiki are the one-dimensional Laguerre functions given by

ϕαiki (xi) =
(

2Γ (ki + 1)
Γ (ki + αi + 1)

)1/2

Lαiki (x
2
i )x

αi+1/2
i e−x

2
i /2, xi > 0, i= 1, . . . , d.

Note that only for αi ≥ −1/2, i = 1, . . . , d, do the functions ϕαk belong to all
Lp spaces on Rd+, 1 ≤ p <∞. Therefore we assume throughout this section
that α ∈ [−1/2,∞)d.

Each ϕαk is an eigenfunction of the differential operator

L = ∆− |x|2 −
d∑

i=1

1
x2
i

(
α2
i −

1
4

)
,

the corresponding eigenvalue being −(4|k| + 2|α| + 2d). The operator −L
is positive and symmetric in L2(Rd+, dx). Furthermore, the system {ϕαk :
k ∈ Nd} is an orthonormal basis in L2(Rd+, dx).

The following estimate of ϕαk is essential for our considerations:

|ϕαk (x)| ≤ c
d∏

i=1

Ψαiki (xi), x ∈ Rd+,(27)
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where

Ψαiki (xi) =
{

1, 0 < xi ≤ 4(2ki + αi + 1),

exp(−γxi), xi > 4(2ki + αi + 1).

Here c and γ are independent of k and x. Similarly to (13), the above
estimate follows by Muckenhoupt’s generalization of the estimates proved
by Askey and Wainger.

In this section we denote by Ap = Ap(Rd+, dx), 1 ≤ p < ∞, the class of
Ap weights on Rd+ with respect to the Lebesgue measure dx.

Let 1 ≤ p < ∞ and ω ∈ Ap. The lemmas below are analogues of Lem-
mas 4.1–4.3. Their proofs are almost the same as for the system {`αk}, the
only essential difference being the estimate for Laguerre functions (27).

Lemma 5.1. There exists a constant c independent of k ∈ Nd such that

‖ϕαk‖Lp(ω) ≤ c(2|k|+ |α|+ d)d.

Moreover , the Fourier–Laguerre coefficients 〈ϕαk , f〉 = � Rd+ ϕαk (x)f(x) dx

exist for f ∈ Lp(ω) and they satisfy

|〈ϕαk , f〉| ≤ C(2|k|+ |α|+ d)d‖f‖Lp(ω),

with a constant C independent of k ∈ Nd.
Lemma 5.2. The subspace spanned by {ϕαk : k ∈ Nd} is dense in Lp(ω)

and in C0(Rd+) with ‖ · ‖∞ norm.

Corollary 5.3. Let f ∈ Lp(ω). If 〈ϕαk , f〉 = 0 for all k ∈ Nd then
f = 0.

Assume that 1 ≤ p < ∞ and ω ∈ Ap. Given f ∈ Lp(ω) we define its
heat-diffusion integral by

gα(t, x) =
∞∑

n=0

e−t(4n+2|α|+2d)
∑

|k|=n
〈ϕαk , f〉ϕαk (x), t > 0.

The above series converges by (27) and Lemma 5.1. Similarly to the case of
the system {`αk} we obtain an integral form of gα(t, x):

gα(t, x) =
�
Rd+

Gαt (x, y)f(y) dy.

The kernel Gαt (x, y) may be computed by using the formula [L, (4.17.6)] to
be

Gαt (x, y) = (sinh 2t)−d exp
(
−1

2
coth(2t)(|x|2 + |y|2)

)
(28)

·
d∏

i=1

√
xiyi Iαi

(
xiyi

sinh(2t)

)
.

Note that Gαt (x, y) is positive on Rd+ × Rd+.
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Proposition 5.4. Let 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). The heat-
diffusion integral gα(t, x) of f is a C∞ function on R+ ×Rd+. Moreover , it
satisfies

(Lx − ∂/∂t)gα(t, x) = 0.

Proof. The conclusion follows by the reasoning from the proof of Propo-
sition 4.5 provided we have a proper estimate of ∂βϕαk at our disposal. Since
(cf. [L, (4.18.6)])

∂

∂xj
ϕαk (x) = −2

√
kj ϕ

α+ej
k−ej (x) +

(
2αj + 1

2xj
− xj

)
ϕαk (x), kj > 0,

the estimate (27) gives what is needed:
∣∣∣∣
∂

∂xj
ϕαk (x)

∣∣∣∣ ≤ c(ε+ ε−1)
√
|k|, x ∈ [ε, ε−1]d,

for any ε ∈ (0, 1); similarly for higher derivatives.

Denote by M+ the (centered) Hardy–Littlewood maximal function in
Rd+, i.e.

M+f(x) = sup
1
|Q|

�
Q

|f(y)| dy, x ∈ Rd+,

where the supremum is taken over all sets of the form Q = Q̃ ∩ Rd+, and Q̃
are cubes (with sides parallel to the coordinate axes) in Rd centered at x.

Theorem 5.5. Assume that 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). Let
gα(t, x) be the heat-diffusion integral of f . Then

(a) |gα(t, x)| ≤ CM+f(x), x ∈ Rd+;
(b) ‖gα(t, ·)‖Lp(ω) ≤ C‖f‖Lp(ω);
(c) ‖gα(t, ·)− f‖Lp(ω) → 0, t→ 0+;
(d) gα(t, x)→ f(x) a.e., t→ 0+.

Moreover , the family {Tαt }t>0, Tαt f(x) = gα(t, x), is a strongly continuous
and uniformly bounded semigroup of operators on Lp(ω).

Proof. Let W (x) = (4π)−d/2 exp(−|x|2/4) be the Gauss–Weierstrass ker-
nel in Rd and let Wε(·) = ε−dW (·/ε) be its ε-dilation. We claim that there
exists a constant C depending only on α such that

Gαt (x, y) ≤ C(2π)d/2Wsinh(2t)/2(y − x).(29)

This is proved by using the explicit formula (28) for Gα
t (x, y) and the fol-

lowing estimate for Iβ , β ≥ −1/2:

c−1Λ(s) ≤ Iβ(s) ≤ cΛ(s), s > 0,
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with c depending only on β and the function Λ defined by

Λ(s) =
{
sβ , 0 < s ≤ 1,

s−1/2es, 1 < s <∞.

Let f̃ be an extension of f to Rd such that f̃(x) = 0 for x 6∈ Rd+. By (29)
we have |gα(t, x)| ≤ c|f̃ | ∗Wsinh(2t)/2(x) and hence (a) and (b) follow by the
Rd versions of Lemma 3.2 and Remark 3.3. This together with Lemma 5.2
justifies (c) and (d) in a standard manner.

The semigroup property is immediately verified for any ϕαk , hence by
(b) and Lemma 5.2 it holds for all f ∈ Lp(ω). Strong continuity follows by
standard arguments, with the aid of (b) and Lemma 5.2.

Let us pass to Poisson integrals. Assume that 1 ≤ p < ∞ and ω ∈ Ap.
Given f ∈ Lp(ω) we define its Poisson integral by

fα(t, x) =
∞∑

n=0

e−t
√

4n+2|α|+2d
∑

|k|=n
〈ϕαk , f〉ϕαk (x), t > 0.

The above series converges by (27) and Lemma 5.1. An integral form of
fα(t, x) as well as the corresponding subordination formula are obtained by
(10). Applying arguments from the proof of Proposition 5.4 we get

Proposition 5.6. Let 1 ≤ p <∞, ω ∈ Ap and f ∈ Lp(ω). The Poisson
integral fα(t, x) of f is a C∞ function on R+ × Rd+. Moreover , it satisfies

(Lx + ∂2/∂t2)fα(t, x) = 0.

The main result on Poisson integrals reads as follows.

Theorem 5.7. Assume that 1 ≤ p < ∞, ω ∈ Ap and f ∈ Lp(ω). Let
fα(t, x) be the Poisson integral of f . Then

(a) |fα(t, x)| ≤ CM+f(x), x ∈ Rd+;
(b) ‖fα(t, ·)‖Lp(ω) ≤ C‖f‖Lp(ω);
(c) ‖fα(t, ·)− f‖Lp(ω) → 0, t→ 0+;
(d) fα(t, x)→ f(x) a.e., t→ 0+.

Moreover , the family {Pαt }t>0, Pαt f(x) = fα(t, x), is a strongly continuous
and uniformly bounded semigroup of operators on Lp(ω).

Proof. Items (a) and (b) follow by Theorem 5.5 and the subordination
formula (see the proof of Theorem 3.12). The rest is justified as in the case
of the heat-diffusion integrals.

Remark 5.8. A large part of the results of this section are valid for the
space L∞(Rd+). More precisely, Lemma 5.1, Proposition 5.4 and Proposi-
tion 5.6 remain valid if we replace Lp(ω) by L∞. Further, Theorem 5.5 and
Theorem 5.7, except (c) and (d), also remain valid with L∞ replacing Lp(ω).
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Concerning (c) and (d), we have ‖gα(t, ·)−f‖∞ → 0 and ‖fα(t, ·)−f‖∞ → 0
as t→ 0+, but only for f ∈ C0(Rd+).

Remark 5.9. Let Ms be the strong maximal function in Rd+ and denote
by A∗p the strong Ap class of weights in Rd+. Using [St, Lemma 4.2] and
Lemma 4.7 one may obtain

|gα(t, x)| ≤ Ce−2t|α∧1/2|Msf(x), x ∈ Rd+,
with the notation |α ∧ 1/2| =

∑d
i=1 min(αi, 1/2). Thus, when 1 < p < ∞

and ω ∈ A∗p, the constants C in Theorems 5.5(b) and 5.7(b) may be replaced

by Ce−2t|α∧1/2| and Ce−t
√

2 max{|α∧1/2|,0}, respectively. If |α ∧ 1/2| > 0 this
gives the exponential decrease in t at infinity.

Remark 5.10. If 1 ≤ p ≤ ∞ and f ∈ Lp(Rd+) (the case ω ≡ 1) then
Theorem 5.5(b) holds with C replaced by C exp(−2t(|α|+d)) (cf. estimates
in [St]) and Theorem 5.7(b) holds with C exp(−t

√
2(|α|+ d)) instead of C.

6. Connection between Hermite and Laguerre expansions. In
this section we briefly show how some results for Hermite semigroups may be
transferred to the Laguerre setting. We will exploit the ideas of Dinger [Di],
developed later in [GIT], for Hermite and Laguerre polynomial systems. The
lemmas we shall use are straightforward modifications of those in [GIT] and
therefore we provide no proofs here.

The key fact underlying the idea of transference is that if α has a special
form, then the one-dimensional Laguerre functions `αk can be expressed by
means of multi-dimensional Hermite functions. The following lemma makes
this precise (cf. [Di]).

Lemma 6.1. Let `αk be the one-dimensional Laguerre function of type α
with α = n/2− 1, n ∈ N \ {0}, and let x ∈ Rn. Then we have the expansion

`αk (|x|2) =
∑

|r|=k
arh2r(x), r = (r1, . . . , rn) ∈ Nn.

Now, let n = (n1, . . . , nd) ∈ Nd be a multi-index and define xi =
(xi1, . . . , x

i
ni) ∈ Rni , i = 1, . . . , d. We define the quadratic transformation

φ : R|n| → Rd by
φ(x1, . . . , xd) = (|x1|2, . . . , |xd|2).(30)

Lemma 6.2. Let α= (α1, . . . , αd) with αi = ni/2−1 and n= (n1, . . . , nd)
∈ (N \ {0})d. Given a weight ω in Rd+ and a measurable function f , the
following holds:

c(d, n)
�
Rd+

f(y)ω(y)yα dy =
�
R|n|

f ◦ φ(x)ω ◦ φ(x) dx,

provided one of the integrals is absolutely convergent.



Heat-diffusion and Poisson integrals 265

Recall that µα(dx) = xαdx.

Lemma 6.3. Let α, n and ω be as in Lemma 6.2, p ∈ [1,∞), and let f
be a fixed function in Lp(Rd+, ωdµα). Suppose that T, T̃ are operators defined
on Lp(Rd+, ωdµα) and Lp(R|n|, ω ◦ φ) respectively , satisfying (Tf)(φ(x)) =
T̃ (f ◦ φ)(x) for x ∈ R|n|. If

‖T̃ f‖Lp(R|n|,ω◦φ) ≤ C‖f‖Lp(R|n|,ω◦φ)

then also
‖Tf‖Lp(Rd+,ωdµα) ≤ C‖f‖Lp(Rd+,ωdµα)

with the same constant C. Moreover , in the case p = 1 an analogous state-
ment is true for weighted weak type inequalities.

Let {Tαt } and {Pαt } be the heat-diffusion and Poisson semigroups as-
sociated with the Laguerre system {`αk}. Denote by {THt } and {PHt } the
corresponding semigroups for the Hermite system {hk} (see Section 2 for
the definition of hk and related facts).

Lemma 6.4. Assume that α and n are as in Lemma 6.2. Then for any
f ∈ lin{`αk : k ∈ Nd} we have

(Tαt f)(φ(x)) = THt/2(f ◦φ)(x), (Pαt f)(φ(x)) = PH
t/
√

2(f ◦φ)(x), x ∈ R|n|.

Let Aαp = Ap(Rd+, dµα) be the class of weights from Section 4. For α and
n as in Lemma 6.2 we define

Ãαp = {ω ∈ Aαp : ω ◦ φ ∈ Ap(R|n|)}.
The above class is considerably large. In fact, the following inclusion holds:

(Aαp )∗ ⊂ Ãαp , 1 ≤ p <∞.(31)

We sketch a proof of this fact for p > 1 (the same reasoning applies if p = 1).
Let Q ⊂ R|n| be a cube with sides parallel to the coordinate axes. We

have Q = Q1 × . . .×Qd, where each Qi is a cube in Rni . Denote by Si the
smallest rectangle in polar coordinates in Rni that contains Qi. Note that
|Si| and |Qi| are comparable, with a constant independent of Qi. Thus so
are |Q| and |S|, S = S1 × . . .× Sd. Given a weight function ω in Rd we get

1
|Q|

�
Q

ω ◦ φ(x) dx ≤ c 1
|S|

�
S

ω ◦ φ(x) dx = c
1

|S̃|
�
S̃

ω ◦ φ(x) dx.(32)

Here S̃ = S̃1 × . . . × S̃d, with S̃i being the radialization of Si in Rni . The
last equality in (32) holds since ω ◦φ is poly-radial on Rn1× . . .×Rnd . Now,
making a proper change of variables and integrating in polar coordinates on
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each Rni we obtain
1

|S̃|
�
S̃

ω ◦ φ(x) dx = c
1

µα(φ(S̃))

�
φ(S̃)

ω(y)µα(dy).

Treating (ω ◦ φ)−p
′/p similarly we conclude that

[
1
|Q|

�
Q

ω ◦ φ(x) dx
][

1
|Q|

�
Q

(ω ◦ φ(x))−p
′/p dx

]p/p′

≤ c
[

1

µα(φ(S̃))

�
φ(S̃)

ω(y)µα(dy)
][

1

µα(φ(S̃))

�
φ(S̃)

(ω(y))−p
′/p µα(dy)

]p/p′
,

with c independent of Q. Since φ(S̃) is a rectangle in Rd, this clearly shows
that ω ◦ φ ∈ Ap(R|n|) if only ω ∈ (Aαp )∗. Hence (31) follows.

As a corollary of the above lemmas, Lemma 4.3 and the results for Her-
mite semigroups [StTo, Theorems 2.6 and 2.8], we obtain

Theorem 6.5. Let α = (α1, . . . , αd) with αi = ni/2−1 and ni ∈ N\{0}.
Assume that ω ∈ Ãαp . Then the maximal operators

T ∗t f = sup
t>0
|Tαt f | and P ∗t f = sup

t>0
|Pαt f |

defined on Lp(ωdµα) are bounded if 1 < p < ∞, and weakly bounded if
p = 1. Moreover , the semigroups {Tαt } and {Pαt } are uniformly bounded on
Lp(ωdµα), 1 ≤ p <∞.

As a consequence of Theorem 6.5 and Lemma 4.3 we get

Corollary 6.6. Let 1 ≤ p <∞ and f ∈ Lp(ωdµα). Under the assump-
tions of Theorem 6.5, we have

Tαt f → f, Pαt f → f, t→ 0+,

the convergence being both in Lp(ωdµα) and almost everywhere.

Remark 6.7. When the multi-index α has a special form, Theorem 6.5
extends Theorems 4.6 and 4.11. This generalization is particularly significant
in the case p = 1, since weak boundedness of T ∗t and P ∗t seems to be a new
result, even in the unweighted setting (ω ≡ 1) if d > 1.

Remark 6.8. Still another transference may be carried out from the
special Hermite setting to the Laguerre setting based on the system {ψαk :
k ∈ N}, α > −1. The functions ψαk are defined by

ψαk (r) =
(

Γ (k + 1)
2αΓ (k + α+ 1)

)1/2

Lαk

(
r2

2

)
exp
(
−1

4
r2
)

= 2−α/2`αk

(
r2

2

)
, r > 0,
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and they constitute an orthonormal basis in L2(R+, r
2α+1dr). If f(z) = f̃(r),

r = |z|, is a radial function on Cn, then its special Hermite expansion re-
duces to the Laguerre expansion of f̃ with respect to the system {ψn−1

k }
(see [Th2] for details). Using the results of Section 3 and the fact that
if ω ∈ Ap(R+, r

2n−1dr) then ω(| · |) ∈ Ap(Cn), which is justified similarly
to (31), we obtain for {ψn−1

k } conclusions analogous to those from Theo-
rem 6.5.

Remark 6.9. To treat the system {ψαk } also in higher dimensions and
for all half-integer multi-indices α (i.e. such as in Theorem 6.5) one may use
the transference from Hermite function expansions described in this section,
but with the quadratic transformation (30) replaced by φ(x1, . . . , xd) =
(|x1|, . . . , |xd|). In particular an analogue of Theorem 6.5 follows.

Remark 6.10. Similar analysis to those from Sections 4 and 5 may be
conducted for another Laguerre system {L α

k : k ∈ Nd}, defined by

L α
k (x) = `αk (x)xα/2, x ∈ Rd+.

The system {L α
k } is an orthonormal basis in L2(Rd+, dx) and was investi-

gated in the one-dimensional, unweighted case by Stempak [St]. The inter-
ested reader should have no difficulties in formulating and proving proper
statements.

Acknowledgements. The author is grateful to Professor Krzysztof
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the preparation of the paper.
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