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Abstract. The Banach operator ideal of (g, 2)-summing operators plays a fundamen-
tal role within the theory of s-number and eigenvalue distribution of Riesz operators in
Banach spaces. A key result in this context is a composition formula for such operators
due to H. Koénig, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract in-
terpolation theory, we prove a variant of this result for (F,2)-summing operators, E a
symmetric Banach sequence space.

1. Introduction and preliminaries. The theory of (g,2)-summing
operators today is considered to be at the heart of modern Banach space
theory with many deep applications to various parts of analysis. For a Ba-
nach sequence space E containing ¢2, the Banach operator ideal of (FE,2)-
summing operators consists of all (bounded linear) operators T' between Ba-
nach spaces for which {||T(z,)||} € E for all weakly 2-summable sequences
{z,,}. Mainly basing on interpolation theory, several key results within the
theory of (g, 2)-summing operators and its applications have recently been
extended to the more general case of (E, 2)-summing operators (see [4]-[6]).

In this article we present a variant for (FE,2)-summing operators of
a striking composition formula due to H. Konig, J. R. Retherford and
N. Tomczak-Jaegermann [9], which in its original formulation says that the
composition Ty o ...o T} of (gx,2)-summing operators T} between Banach
spaces is 2-summing provided that 1/q; + ...+ 1/gqy > 1/2. By completely
different methods a special case of this multiplication formula was obtained
earlier by B. Maurey and A. Pelczynski [14].

A. Pietsch [17] recovered the composition formula by taking advantage of
the intimate relationship between (p, 2)-summing norms and approximation
numbers of operators in Banach spaces (for elaborations of this proof see
[18, 2.7.7] and [8, 2.a.12]). Our approach to a variant for (F,2)-summing
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operators, where F is a symmetric Banach sequence which is an interpolation
space with respect to the couple (2, ), combines Pietsch’s ideas with
abstract interpolation theory.

Before we sketch the content of our paper in more detail we fix some
basic preliminaries about sequence spaces, s-numbers, and interpolation.

We shall use standard notation and notions from Banach space theory, as
presented, e.g. in [7], [11] and [12]. In particular, for all information needed
on p-convexity and p-concavity of Banach lattices/sequence spaces we refer
to [11] and [12] (for the notion of 2-convexity see also end of Section 2). If a
quasi-normed space (E, || - ||g) is a vector subspace of the space w := RN of
all real sequences, and its quasi-norm satisfies (i) if z € E, y € w, |y| < ||,
then y € E and ||y||g < ||z||g, then E is said to be a quasi-normed sequence
space. If E also satisfies (ii) if = {x,} € E, then 2* € F and |z||g =
|l=*|| g, where * = {x}} is the non-increasing rearrangement of =, then F is
called a symmetric quasi-normed sequence space (resp., a symmetric (quasi-)
Banach sequence space, whenever E is a (quasi-)Banach space). Note that
if F/ is a separable Banach sequence space, then the sequences e, form an
unconditional basis in E; here and throughout the paper, {e,,} denotes the
standard unit vector basis in cg.

The Kothe dual E' of a Banach sequence space E is as usual defined by

o
E = {x = {z,} € w; Z |Znyn| < oo for all y = {y,} € E},

n=1

which equipped with the norm ||z|| := sup{D>_ .2, [znynl; ||yl < 1} forms
a Banach sequence space (symmetric provided so is E). The fundamental
function Ag of a quasi-Banach sequence space E is given by

Ae(n) = H Z ekHE, n € N.
k=1

For two Banach sequence spaces E and F', the space M (E, F') of multi-
pliers from E into F' consists of all scalar sequences x = {x,,} such that the
associated multiplication operator {y,} — {z, y,} is defined and bounded
from E into F. The space M (E, F') is a Banach sequence space (symmetric
provided so are E and F') equipped with the norm

2] == sup{[lzyll7; |lylle < 1}.
We note that if E is a Banach sequence space, then M(FE, ¢;) = E’ isomet-
rically.
For all information on Banach operator ideals and s-numbers we refer to

[7], [8], [16], [18] and [20]. As usual £(X,Y") denotes the Banach space of all
(bounded linear) operators from X into Y endowed with the operator norm.



Composition of (E,2)-summing operators 53

Recall that for an operator T' € £(X,Y) the nth approzimation number is
an(T) :=inf{||T — R||; R € L(X,Y), rank R < n},

and the nth Weyl number is
xn(T) :=sup{an(TS); S € L(¢2, X) with ||S|| < 1}.

Clearly, these sequences are non-increasing with x,(T") < a,(T") and z1(T) =
a1(T) = ||T||, and they are equal whenever T is defined on a Hilbert space.
If F/ is a quasi-normed sequence space contained in /.., and if s stands for
the approximation numbers or Weyl numbers, or more generally if s is an
s-number function (for the definition see, e.g., [18, 2.2.1]), then £3(X,Y)
denotes the set of all operators T' € L(X,Y) such that {s,(T)} € E. It can
be easily seen that the functional

sp(T) = [{sn(T)}|e  for T € LE(X,Y)

defines a quasi-norm under which £%,(X,Y) is a quasi-Banach space when-
ever F is a maximal symmetric quasi-Banach sequence space (i.e., the unit
ball Bg := {z; ||z|]|[g < 1} of E is a closed subset of w equipped with the
topology of pointwise convergence).

Finally, for details and basic results on interpolation theory we refer to [1]
or [2]. We recall that a mapping F from the category of all couples of Banach
spaces into the category of all Banach spaces is said to be an interpolation
functor if for every Banach couple X := (Xj, X1), the Banach space F(X) is
intermediate with respect to X (which means XoNX; — F(X) — Xo+X1),
and moreover T : F(X) — F(Y) is bounded for all operators T : X — Y
between couples (meaning that T : Xo+ X7 — Yp+Y7 is linear with bounded
restrictions from X into Yj). By the closed graph theorem, for any couples
X andY,

ITl| 7(x0,x1)-Fvo,v1) < ClIT | 3y := Cmax{[|T | x,~vo, 1Tl 31—~ }-

If C may be chosen independently of X and Y, we say that F is a C-
exact interpolation functor; and F is said to be exact whenever C' = 1. An
intermediate space X of the couple X is said to be an interpolation space
with respect to this couple whenever X can be realized as F(X) for some
interpolation functor F. The definition of C-exact and exact interpolation
spaces is obvious.

As already mentioned we follow Pietsch’s route to prove our extension
of the composition formula of Kénig, Retherford and Tomczak-Jaegermann,
which can be divided into three parts of independent interest, and each of
our three sections is devoted to one of these parts. In Section 2 we estimate
the (F,2)-summing norm of finite rank operators between Banach spaces
under the assumption that F is a symmetric Banach sequence which is an
interpolation space with respect to the couple (¢2,¢). It is shown that
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there exists a constant C' > 0 such that mg2(idx) < CAg(n) for every
Banach space X with dim X = n. A key result in the theory of s-numbers
states that for 2 < p < oo each (p,2)-summing operator 7' has its Weyl
numbers in the Lorentz space £,,1, and conversely each operator with Weyl
numbers in the Marcinkiewicz space ¢,  is (p, 2)-summing. In Section 3 the
estimate from Section 2 is used to prove an analogue of these inclusions for
(E, 2)-summing operators. Finally, in Section 4 we combine this relationship
with a straightforward multiplication formula for s-number ideals in order
to obtain the desired composition theorem for (E,2)-summing operators in
terms of appropriate indices of the sequence space F.

2. (F,2)-summing norms of finite rank operators. The following
definition is a natural extension of the notion of absolutely (g, p)-summing
operators: Let I/ be a Banach sequence space which contains ¢, for some
1 < p < o0. Then an operator T': X — Y between Banach spaces X and Y
is called (E, p)-summing if there exists a constant C' > 0 such that for any
weakly p-summable sequence {x,} (i.e., the scalar sequences {z*(z,)} are
in ¢, for every z* € X¥)

Tl le <€ suo (Zu )"

%[ 5+ <1

We write mg ,(T") for the smallest constant C' with the above property. The
Banach space of all (E,p)-summing operators between Banach spaces X
and Y is denoted by ITg,(X,Y). If |le,||p = 1 for all n, then (ITg,, 7Ep)
is a Banach operator ideal, in particular for £ = ¢, (¢ > p) we obtain
the well known ideal (I1,p,mq,) of all (g,p)-summing operators. For an
Orlicz sequence space £y, we write 11, ), and 7, instead of 11y, ;, and 7y, p,
respectively (for the theory of Orlicz functions and Orlicz spaces we refer to
[11] and [12]). Recall that if ¢ is an Orlicz function (i.e., ¢ : [0,00) — [0, c0)
is a continuous and convex function with ¢ ~1({0}) = {0}), then the Orlicz
sequence space {, consists of all real sequences z = {z,} € w such that
Yo @(|zn|/e) < oo for some e > 0. It is well known that £, equipped with
the norm

|| := inf{s >0: > pl|aal/e) < 1}
n=1

is a symmetric Banach sequence space.
We note an obvious fact, useful in what follows, that an operator T :
X — Y is (F,2)-summing if and only if

mE2(T) = sup{mp2(TS); S € L({2, X), [|S] <1}

We refer to [4] and [5] for non-trivial examples of (E,p)-summing opera-



Composition of (E,2)-summing operators 55

tors. We present new simple examples involving symmetric Banach func-
tion spaces on finite non-atomic measure spaces (for the theory of these
spaces see, e.g., [10] and [12]). We recall that the fundamental function ¢ x
of a symmetric Banach function space X on a non-atomic measure space
(2, 1) == (82, X, p) is defined by ¥ x (t) := ||xal|x for any 0 < ¢ < p(§2) with
t=pn(A), AeX.

PROPOSITION 2.1. Let X be a symmetric Banach function space defined
on a non-atomic finite measure space (£2, ) which does not coincide with
Lo := Loo(p). Then the inclusion map id : Log — X is (L, 1)-summing,
where ¢ is any Orlicz function such that p=' < ¢x on (0, u(82)). In partic-
ular, id : Log — X is (M ({y,4y), p)-summing with 1/p+1/q = 1.

Proof. Tt is well known that for any symmetric Banach function space X
we have A(X) — X (with norm < 1), where A(X) is the Lorentz symmetric
function space equipped with the norm

n($2)
l#llacx) == § " (s) diox(s).

0
We put ¢ := ¢x. It is well known (see [10, formula, (5.4), p. 111]) that

[o.¢]

|2l 4y = § (ua(s)) ds,

0
where pi,(s) := ({w € 2;|z(w)| > s}) for s > 0. Let z1,...,2y € Loo. Then
(see, e.g., [7, p. 41])

n
>l @l = | el
k=1 k=1 it

Assume that || >, \a:k\HL < 1. Hence iz, (s) = 0 for any s > 1. Combin-
ing the above remarks with Jensen’s inequality and the fact that ¢(1(t)) < ¢
on (0, u(§2)) shows that there exists a constant C' > 0 such that

1

Zwmnx <Zsouxk||A Z (§ 2 (5)) ds)

k=1 0

[l ”L* <1

n

1
ZS ka )))ds < C
10

= Y !xklduécu(ﬁ)u !fﬂk!”
2 k=1 k=

This yields as desired id € I1,, 1 (Loo, X ) with 7,1 (id) < max{1,Cu($2)}. To
conclude the proof it is enough to apply [4, Lemma 3.4]. =

—
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The following interpolative estimate for the (F,2)-summing norm of fi-
nite rank operators is crucial in what follows.

THEOREM 2.2. Assume that E is a symmetric Banach sequence space,
and moreover E is a C-exact interpolation space with respect to the couple
(E1, E2), where both Ej are symmetric Banach sequence spaces which con-
tain £o. Then for every operator T between Banach spaces with rank T < n,

mp2(T) < CAp(n)| T,
provided 7g; o(T) < Ag; (n)||T|| for j =1,2.

The proof of this result needs two lemmas, both based on interpolation.
Following [15] the characteristic function ¢r : Ry x Ry — R4 of an exact
interpolation functor F is defined by

or(s, )R := F(sR,tR), s,t>0,
where aR with @ > 0 is R equipped with the norm ||z||or := «|z||. Note
that ¢r is homogeneous of degree one, that is, pr(as, at) = apr(s,t) for

any a > 0, and ¢#(,-) is non-decreasing in each variable. Further for any
Banach couple X = (X(, X1) one has

(1) 2]l 7x) < erllzlxo, 2] x:)

for every 0 # x € XN X;. For a fixed Banach space A which is intermediate
with respect to the Banach couple A, define the exact interpolation functor
HY X — (H{(X),||]|), where the space H4(X) consists of all z € X+ X
such that

] := sup{[|T[|a; [Tl x_x <1} < oo.

We need the well known fact (see, e.g., [1, 2.5.1]) that for any C-exact

interpolation space A with respect to A = (Ao, A1) the following continuous
inclusions hold (with norms C' and 1, respectively):
2) AE B (A9, A7) & A

LEMMA 2.3. Let E be a Banach space which is intermediate with respect
to the Banach couple E = (Ey, E1).

(i) If pF is the characteristic function of the maximal functor F = Hg,
then for any s,t > 0,

pr(s,t) = Yu(st) = sup{|lzllg; x € Eo N Ew, |[zllg, < s, [[2lle, <t}

(ii) If E is a couple of symmetric Banach sequence spaces and E is a
symmetric Banach sequence space which is a C-ezact interpolation space
with respect E, then for each n,

Ae(n) < YE(AE, (1), AE, (n)) < CAR(R).
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_ Proof. (i) Fix s,t > 0 and put X := (sR,tR). Note first that for T : X —
E and x € EgNE; with T1 = z, we get ||T|| x_ 5 = max{||z||g, /s, ||z| &, /t}
Hence as desired

pr(s:t) = [ zx) = sup{l T e; [Tl x g <1}

= sup{||z[g; © € Eo N En, |[z]lpy <5, [l2]m <t}

The proof of (ii) is a minor modification of a similar result for the case
of symmetric spaces on R presented in [13]. Put F := HEZ. Combining (i)
with (1) and (2), we infer for every n that

Ae(n) < ¥p(Ag(n), Ap, (n)).
To prove the reverse inequality fix n € N and y € Ep N Ej, and define the
rank one operator 7' : E — E by
T:=2"®uy,
where *(z) = > p_; & for x = {&} € Eo + Er. Clearly, [|T||g—g =
Apr(n)|lyllg and ||T|g,~5, = )\E;_(n)HyHEj, j = 0,1. This yields, by the
interpolation property,
Apr(n)[lylle < Cmax{Ag (n)[|yl £y, Ae; (R) ||yl £}
which, since Ag(n)Ag/(n) = n (see [11, 3.a.6]), gives |ly|lzg < CAg(n)/n
whenever [|y||g; < Ag;(n)/n, j =0,1. Hence
YE(AE (n)/n, Ap, (n)/n) < CAp(n)/n,

which completes the proof since g is positively homogeneous. »

In the classical ¢,-case the second lemma needed is due to Konig [8];

for its extension to (F,2)-summing operators see [4, 6.2]. Henceforth, —
denotes a continuous inclusion.

LEMMA 2.4. Let F be an exact interpolation functor and let (Eo, E1)
be a couple of Banach sequence spaces which both contain £o. Then for any
Banach spaces X,Y,

F(Hg,2(X,Y), g, 2(X,Y)) = Hrgy k) 2(X,Y).

Proof of Theorem 2.2. Let T € L(X,Y) be of rank n. Put F := Hj(EEl’EQ).
Since F is a C-exact interpolation space with respect to (E1, E2), by (2) we
have E A F(En, E2) <, E. Hence by applying Lemma 2.3, estimate (1) and
Lemma 2.2, we obtain

m52(T) < 7rEy, B 2(T) <Nl F11s, 2 (XY, 15, 2(x,1))
< 0r(Ag (n), Ap, ()T = YE(AE, (n), Ag,y (n)) [T
< Cxp()[IT]. =

The following estimate will be of special interest.
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COROLLARY 2.5. Let E be a symmetric Banach sequence space which is
an interpolation space with respect to (¢2,0~). Then there is a constant C
depending on E such that

(i) For any operator T with rank T < n,
mE2(T) < CAp(n)|T|.
(ii) For the identity map idx on an n-dimensional Banach space X,
C_1>\E(n) <7g2(idy) < CAg(n).

Proof. (i) Take T of rank n. Then it is well known that mp, 2(idx) =
mo(idx) < n'/?|jidx|| = A, (n)|idx|| (see, e.g., [8, 2.a.2 1.11]) and trivially
7y 2(idx) = ||idx | = A (n)]lidx||. Hence the desired result is an immedi-
ate consequence of the preceding theorem and the fact that there exists a
constant C' > 0 such that F is a C-exact interpolation space with respect
to (fg,goo).

(ii) The upper estimate in the second inequality follows by (i). For the

lower bound we may assume that n > 1. Take k € N so that 2k < n < 2k+1.
Then by the Dvoretzky-Rogers Lemma (see [7, Lemma 1.3]) there exist k

vectors z1,...,2; € X in the unit ball of X, each of norm ||z;||x > 1/2,
such that
k
1/2
sup < \a:*(a:j)\2> <1
lle*llx><1 525
Hence

k
1 . .
3 Ae(k) < H ; Hldx(ff?j)erjHE < mpa(idx).

Since k — Ag(k)/k is a non-increasing function, Ag(n)/6 < mg2(idx). =

Implicitly and in a quite different way this result has been proved in
[4, 6.4]—however, in [4] it was stated for the smaller class of all E’s which are
2-convex although an analysis of the proof shows that in fact the formulation
given here holds true. Recall that a Banach sequence space F is 2-conver
(or equivalently, the dual of E has cotype 2, see [12, 1.£.16]) if there is a
constant C' > 0 such that for each choice of finitely many x1,...,2, € E,

(S ) ] < oSy

It was shown in [4, Lemma 4.3] that each 2-convex maximal and symmet-
ric Banach sequence space F is an exact interpolation space with respect
to the couple (£2,0~). We note that there is a quite large class of sym-
metric sequence spaces which are exact interpolation spaces with respect to
(£2,0), but fail to be 2-convex. For example the real interpolation spaces
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(l2,0o0)0,g = lpg with 1/p=(1—-0)/2,0 <6 < 1,1 < g < oo contain order
isomorphic copies of ¢, (see, e.g., [11, Prop. 4.e.3]). Thus these spaces are
not 2-convex for any 1 < ¢q < 2.

3. (E,2)-summing operators and Weyl numbers. Let w = {w,}
be a weight sequence (i.e., w,, > 0 for all n). For 0 < p < oo the Lorentz
space d(w,p) is given by

d(w.p) = {z = {a,} € i Ja] := (i(x;;)pwn)l/p <o},

If 0 < p,g < oo and w = {n'/P~1/9}, then as usual d(w, p) is denoted by
lp 4. It is well known that if w is a non-increasing sequence, then d(w,p)
is a maximal symmetric quasi-Banach sequence space (Banach whenever
1 < p < o). If Fisasymmetric Banach sequence space with the funda-
mental function Ag, then the Lorentz space d(w,1) with w = {Ag(n)/n}
is denoted by A(FE). For a positive non-decreasing function ¢ : N — R4
satisfying 1(2n) < C(n) for some C > 0 and all n € N, m,, stands for
the Marcinkiewicz sequence space of all real sequences x for which {¢(n)z} }
€ l; equipped with ||z|| := sup,,>; ¥(n)x}, it forms a maximal symmetric
quasi-Banach sequence space. In the case when ¥(n) = n/P 0 < p < o0,
we write £ o for my. If E is a symmetric Banach sequence space with the
fundamental function Ag, then we write m(E) for the Marcinkiewicz space
my, defined by ¥ = Ap.

As pointed out in the introduction we now prove an extension of one of
the key results of the theory of asymptotic s-number/eigenvalue distribution
of power compact operators in Banach spaces, namely the inclusions [,;’1 —
Iys — L o, p> 2 (see, e.g., [18, 2.7.4] and 8, 2.a.11]).

THEOREM 3.1. Let E be a symmetric Banach sequence such that {9 — E.
(i) If H is a Hilbert space, then IIpo(H,Y) — L%(H,Y) for every
Banach space Y. In particular, Ilg o — Efn(E).
(ii) If E is an interpolation space with respect to the couple ({2, ), then
LX) — E2

Proof. Generalizing an inequality of Konig (see, e.g., [8, 2.a.3]) it was
stated in [4, 3.6] (and proved in [6, Proposition 1]) that (i) holds.

(ii) Assume without loss of generality that the fundamental function
A = Ag of E satisfies A(1) = 1, and note that A is non-decreasing and
A(2n) < 2\(n) for all n € N. Then for z = {x,} € A\(F),

2l x2) 229@2@ :xIJFZ( Y oo @)

n=1 k=0 2k<n§2k+1
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* = * ]-
> x] + Z)\(2k)1'2k+1 < Z g)
k=0

2k <n<2k+1

0 [e%s)
> 2+ 471 Y aha A Z 47T anaeh).
k=0 k=1

Fix T € Ei(E) (X,Y) and choose Sy, : X — Y with rank S, < 2* such that
IT — Sk|| < 2a9x(T), k = 0,1,..., where Ty := 0. Put T = Sg+1 — Sk.

Combining the above inequalities, we obtain
o0
T=> T, with rankT} <2* and {A(2")|T}|} € &1
k=0

Now by applying Theorem 2.1, we get {mg2(T%)} € ¢1. In consequence T' €
IIg»(X,Y), by the completeness of ITg o(X,Y). Finally, if T" € Ef\(E) (X,Y),
then for any S € L({2, X), we have

TS € [,i(E)(EQ,Y) = ,Ca/\(E)(fz,Y) — HE’Q(EQ,Y).

Since

mp2(T) = sup{mp2(TS); S € L(L2, X), ||S]| < 1},
we obtain T' € IIg2(X,Y). =

REMARK 3.2. We note that for a large class of symmetric Banach se-
quence spaces E which are interpolation spaces with respect to ({2, %)
the continuous inclusion Ilgs — L7 (E) is optimal. In fact, let F' be any
2-concave symmetric Banach sequence space and let E := M ({3, F') be a
symmetric Banach sequence space of all multipliers from ¢5 into F'. Then E
is 2-convex, and thus an interpolation space with respect to ({2, f) (see [4,
Lemma 4.3]). Let id : F' — {5 denote the inclusion map. Applying [4, 3.2 and
4.1] we conclude that id € IIg o(F, ¢2). Further, we have Ag(n) < Ap(n)/+/n
by [5, Proposition 3.5]. This easily implies that

xp(id: F — ly) < 1/Ag(n).

4. Composition theorem for (F,2)-summing operators. In this
section we present the composition theorem for (£, 2)-summing operators.
Recall that an operator T € L(X,Y’) belongs to the product B o A of two
quasi-Banach operator ideals (A, «) and (B,3) if T can be written in the
form T = VU, where U € A(X,Z) and V € B(Z,Y) with a suitable Banach
space Z. Clearly, B o A is an operator ideal which, if endowed with the
quasi-norm

[T Boa == inf{a(U)B(V); T =VU, U € A(X,Z),V € B(Z,Y)},
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forms a quasi-normed Banach operator ideal (see [16, 7.1.2]). In what follows,
if £, F and G are symmetric quasi-Banach sequence spaces, and the map B
given by B(z,y) := {z}y"} is defined and bounded from E x F into G (i.e.,
|1B(z, )|l < C|lz|g|ly||F for some C' > 0), then we write ExF — G. Recall
that an s-function s is called multiplicative if spy4n—1(VU) < 85 (U)sn (V)
for any U € L(X,Z), V € L(Z,Y) and m,n € N. We need the following

easy technical observation.

PROPOSITION 4.1. Let E, F and G be mazimal symmetric quasi-Banach
sequence spaces such that Ex F — G, and let s be any multiplicative func-
tion. Then L3 0 L — L.

Proof. Let us first remark the following: If  €w is such that {z5, _;}€G,
then z € G and ||z||¢ < 2C¢||{25,,_1}|lc, where Cg is the constant from
the quasi-triangle inequality of G. Indeed, we have x* = y + z with y =
Y onToy_1€2n—1 and z = Y x5 ez, in w. Since y* = {zf,_;} € G and
z* < y*, we get z* € G and also z € G with [|z]|¢ < ||y||g.- But then z € G
and

lzlle = llz"lle < 2Cellylle = 2Cally*lle = [{z2.-1} -
Let now T' € L3, 0 L%(X,Y), hence T has a factorization T'= VU through
a Banach space Z with U € £3,(X,Z) and V € L%(Z,Y). According to our
remark we now show that {s2,—1(T)} € G. Since s2;,—1(VU) < 5, (U) s (V)
for any n, by the multiplicity of s, and by assumption F % F — G with
constant C, we obtain {s2,-1(T)} € G and

sa(T) < 2Ca|{s2n1(T)}e < 2CaCl{sn(U)}Ill{sn(V)}H r-

The proof is completed by taking the infimum over all possible factorizations
of T. m

As announced we now prove several composition formulas for (E,2)-
summing operators.

PROPOSITION 4.2. Suppose that E, F' and G are symmetric Banach se-
quence spaces such that E and F both contain fo, and G is an interpolation

space with respect to (02,0o0). If {Aq(2")/AE(2") - Ap(2™)} € ¢4, then
IIgsollps — Ilgs.
Proof. Since m(E) « m(F) — my with ¢(n) = Ag(n)Ap(n) for n € N,
it follows by Theorem 3.1 and the preceding proposition that
Hpaollps — Ly, g o Ly = Lo,

It is easy to see that {z,} € AM(G) with [[{z,}|[xc) < {23 Ac(2")}le, When-
ever {z3.Aq(2")} € ¢1. Combining this with the assumption, we conclude
that £, o Ef(G). In consequence, Theorem 3.1 applies and the proof is
complete. m
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In order to formulate a more comfortable version we introduce two types
of indices for symmetric Banach sequence spaces. For a symmetric Banach
sequence space F with fundamental function \g define the indices ag and
OF as follows:

Ae(n Ae(n
ap = sup{a > 0; inlfwﬁ > 0}, Og = inf {ﬁ > 0;sup E(ﬂ ) < oo}.
ne

ne neN T

The following is our main result.

THEOREM 4.3. Assume that E1,...,Eyx and F are symmetric Banach
sequence spaces such that all E; contain {2, and F' is an interpolation space
with respect to (l2,0s0). If ap, + ...+ agy > Br, then

HEN,Z Oo... OHEI’Q — HFQ.
Proof. By the preceding proposition we check that
{Ar(2")/AE, (27) - .- Agy (2M) ) € 4.

To see this take € > 0 such that 6 := ap, +... + ag, — Br —2¢eN > 0. By
the definition of ag; and Sr we have, for all j =1,..., N,

)\F(n) ~ n/@F—i-Ne7 ntB; ¢ ~ )\E](n)

Altogether we conclude as desired that
Ar(2™) 1
< —— < 00. =
Xn:)\El(Qn))\EN(Zn) ;25”

Obviously, the preceding result recovers the classical £,-case, which is
due to Konig, Retherford and Tomczak-Jaegermann. To show that our result
really leads to new applications we add the following

ExXaMPLE 44. Let 0 <a<1,0< < 00,1 <p< o0,
w={n"%(1 +logn) %},
and let ¢ be an Orlicz function. Then
(1) Ag(n) =< n1=9/2/(1 +1ogn)?/?, and hence ap = (1 — a)/p with

E :=d(w,p).

(i) If 2 < p < o0, then d(w,p) is 2-convez, and hence an exact inter-
polation space with respect to the couple ({2, lxo).

(iii) g, (n) = 1/~ 1(1/n) and £, is 2-convex provided that the function
t — (V1) is equivalent to a convexr function.

Proof. (i) Approximating the Riemann sums of Srf t=*(14logt)~ P dt, we

conclude that
n

n'=*(1 +logn) ™" = Z k=1 +log k)P,
k=1
In particular, this yields Ag(n) =< n(1=®/? /(1 4 logn)?/P.
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(ii) Tt is easy to see that any Lorentz space d(w, p) is p-convex, and thus
it is also 2-convex whenever 2 < p < co. Finally (iii) is an easy exercise. =

In the case ' = {5 the theorem allows the following improvement.

COROLLARY 4.5. Assume that Eq,...,En are symmetric sequence Ba-
nach spaces which all contain Uy, and let Tj : X;_1 — X be (Ej, 2)-summing
operators between Banach spaces, 7 = 1,...,N. Then Ty o...0oT1] is a

2-summing compact operator whenever ag, + ...+ ag, > 1/2.

Proof. For F' = {3, we have fp = 1/2. Thus T := Ty o... 0T} €
I15(Xg, Xn) by Theorem 4.3. To prove that T is compact we need only
show that

lim n'/?z,(T) =0

n—oo
(see [18, Theorem 2.10.8]). To see this note that similarly to the proof of
Proposition 4.1, we obtain

HEN,2O'--OHE1,2<_>££W,

with ¢(n) := Ag,(n) - ... - Agy(n) for any n € N, hence z,(T) < 1/¢(n).
Now fix € > 0 so that

d:=ap, +...+ag, —eN —-1/2>0,

and note that n*% ™" < Ag,(n) for all j = 1,..., N. Combining these in-
equalities yields n'/2z, (T) < 1/n’, which clearly gives our conclusion. =

We finish with a result on powers of the Banach operator ideal IIg 2
(cf. [17, Theorem 7] for E = ¢, with 2 < p < 00). Recall that an operator
T € L(X,Y) is nuclear, T € N(X,Y), if there are sequences {z}} C X*,
{yn} C Y with

o oo
T= a®yn, > leilllynll < oo
n=1 n=1

COROLLARY 4.6. Assume that E is a symmetric Banach sequence space
which contains la, and ap > 1/2n for a positive integer n. Then H?E"Q — N,
where N denotes the Banach ideal of nuclear operators.

Proof. The previous corollary yields [Ty o < II5. To finish the proof we
need only recall the well known fact that the composition of two 2-summing
operators is nuclear (see, e.g., [7, Theorem 5.31]). m

It is well known that each nuclear operator has 2-summable eigenvalues.
We note that it is an open problem whether the eigenvalues of nuclear op-
erators on Banach spaces of nontrivial type are better than 2-summable. It
is known (see [8, p. 110]) that if X is a Banach space such that

L(01,X) = 1I2(01,X)
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for some 2 < s < oo, then for each nuclear operator T': X — X the sequence
of its eigenvalues belongs to £, for some 1 < r < 2.

Combining the following proposition with the inequality connecting
eigenvalues and Weyl numbers due to Weyl (for E = /,,) and Konig (gen-
eral case, see [8, 2a.8]) yields further information on eigenvalues of nuclear
operators. We leave the details to the interested reader.

PROPOSITION 4.7. Let X be a Banach space such that L£(¢1,X) =
IIgo(41, X) for some symmetric Banach sequence space E with ly — E.
Then the sequence of Weyl numbers of any nuclear operator T on X satis-

fies {n'?z,(T)} € E.
Proof. 1t is well known that any nuclear operator 7' : X — X has a
factorization
T:x 20,205 x
with D being a diagonal operator. Clearly, D has a factorization
Dty 2Ly P2

where both D; and D» are diagonal operators. Since D; is 2-summing,
T =UV withV € II5(X,l3) and U € ITg2(f2, X). Combining these remarks
with Theorem 3.1 and Proposition 4.1 we obtain the desired result. m

We conclude the paper with the following corollary:

COROLLARY 4.8. Let ¢ be an Orlicz function such that the function
t — (V1) is equivalent to a concave function on Ry and let ¢ be su-
permultiplicative (i.e., there exists C' > 0 such that p(st) > Cp(s)p(t) for
all s,t > 0). Then the sequence of Weyl numbers of any nuclear operator T
on the Orlicz space £, satisfies the condition

{n'22,(T)} € M(L2, L),
where ¢ is any Orlicz function such that ¢~ (t) = t3/2p=1(1/t).

Proof. 1t is shown in [3] that under the above assumptions we have
L(l1,0,) = 1141(¢1,L,). By applying [5, Lemma 3.4], we obtain

L(l1,0,) = Ea(l1,4,)
with £ = M ({2,{4). The claim now follows by Proposition 4.7. =
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