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Abstract. The Banach operator ideal of (q, 2)-summing operators plays a fundamen-
tal role within the theory of s-number and eigenvalue distribution of Riesz operators in
Banach spaces. A key result in this context is a composition formula for such operators
due to H. König, J. R. Retherford and N. Tomczak-Jaegermann. Based on abstract in-
terpolation theory, we prove a variant of this result for (E, 2)-summing operators, E a
symmetric Banach sequence space.

1. Introduction and preliminaries. The theory of (q, 2)-summing
operators today is considered to be at the heart of modern Banach space
theory with many deep applications to various parts of analysis. For a Ba-
nach sequence space E containing `2, the Banach operator ideal of (E, 2)-
summing operators consists of all (bounded linear) operators T between Ba-
nach spaces for which {‖T (xn)‖} ∈ E for all weakly 2-summable sequences
{xn}. Mainly basing on interpolation theory, several key results within the
theory of (q, 2)-summing operators and its applications have recently been
extended to the more general case of (E, 2)-summing operators (see [4]–[6]).

In this article we present a variant for (E, 2)-summing operators of
a striking composition formula due to H. König, J. R. Retherford and
N. Tomczak-Jaegermann [9], which in its original formulation says that the
composition TN ◦ . . . ◦ T1 of (qk, 2)-summing operators Tk between Banach
spaces is 2-summing provided that 1/q1 + . . .+ 1/qN > 1/2. By completely
different methods a special case of this multiplication formula was obtained
earlier by B. Maurey and A. Pełczyński [14].

A. Pietsch [17] recovered the composition formula by taking advantage of
the intimate relationship between (p, 2)-summing norms and approximation
numbers of operators in Banach spaces (for elaborations of this proof see
[18, 2.7.7] and [8, 2.a.12]). Our approach to a variant for (E, 2)-summing
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operators, where E is a symmetric Banach sequence which is an interpolation
space with respect to the couple (`2, `∞), combines Pietsch’s ideas with
abstract interpolation theory.

Before we sketch the content of our paper in more detail we fix some
basic preliminaries about sequence spaces, s-numbers, and interpolation.

We shall use standard notation and notions from Banach space theory, as
presented, e.g. in [7], [11] and [12]. In particular, for all information needed
on p-convexity and p-concavity of Banach lattices/sequence spaces we refer
to [11] and [12] (for the notion of 2-convexity see also end of Section 2). If a
quasi-normed space (E, ‖ · ‖E) is a vector subspace of the space ω := RN of
all real sequences, and its quasi-norm satisfies (i) if x ∈ E, y ∈ ω, |y| ≤ |x|,
then y ∈ E and ‖y‖E ≤ ‖x‖E , then E is said to be a quasi-normed sequence
space. If E also satisfies (ii) if x = {xn} ∈ E, then x∗ ∈ E and ‖x‖E =
‖x∗‖E , where x∗ = {x∗n} is the non-increasing rearrangement of x, then E is
called a symmetric quasi-normed sequence space (resp., a symmetric (quasi-)
Banach sequence space, whenever E is a (quasi-)Banach space). Note that
if E is a separable Banach sequence space, then the sequences en form an
unconditional basis in E; here and throughout the paper, {en} denotes the
standard unit vector basis in c0.

The Köthe dual E′ of a Banach sequence space E is as usual defined by

E′ :=
{
x = {xn} ∈ ω;

∞∑

n=1

|xnyn| <∞ for all y = {yn} ∈ E
}
,

which equipped with the norm ‖x‖ := sup{∑∞n=1 |xnyn|; ‖y‖E ≤ 1} forms
a Banach sequence space (symmetric provided so is E). The fundamental
function λE of a quasi-Banach sequence space E is given by

λE(n) :=
∥∥∥

n∑

k=1

ek

∥∥∥
E
, n ∈ N.

For two Banach sequence spaces E and F , the space M(E,F ) of multi-
pliers from E into F consists of all scalar sequences x = {xn} such that the
associated multiplication operator {yn} 7→ {xn yn} is defined and bounded
from E into F . The space M(E,F ) is a Banach sequence space (symmetric
provided so are E and F ) equipped with the norm

‖x‖ := sup{‖xy‖F ; ‖y‖E ≤ 1}.
We note that if E is a Banach sequence space, then M(E, `1) = E′ isomet-
rically.

For all information on Banach operator ideals and s-numbers we refer to
[7], [8], [16], [18] and [20]. As usual L(X,Y ) denotes the Banach space of all
(bounded linear) operators from X into Y endowed with the operator norm.
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Recall that for an operator T ∈ L(X,Y ) the nth approximation number is

an(T ) := inf{‖T −R‖; R ∈ L(X,Y ), rankR < n},
and the nth Weyl number is

xn(T ) := sup{an(TS); S ∈ L(`2,X) with ‖S‖ ≤ 1}.
Clearly, these sequences are non-increasing with xn(T ) ≤ an(T ) and x1(T ) =
a1(T ) = ‖T‖, and they are equal whenever T is defined on a Hilbert space.
If E is a quasi-normed sequence space contained in `∞, and if s stands for
the approximation numbers or Weyl numbers, or more generally if s is an
s-number function (for the definition see, e.g., [18, 2.2.1]), then LsE(X,Y )
denotes the set of all operators T ∈ L(X,Y ) such that {sn(T )} ∈ E. It can
be easily seen that the functional

sE(T ) := ‖{sn(T )}‖E for T ∈ LsE(X,Y )

defines a quasi-norm under which LsE(X,Y ) is a quasi-Banach space when-
ever E is a maximal symmetric quasi-Banach sequence space (i.e., the unit
ball BE := {x; ‖x‖E ≤ 1} of E is a closed subset of ω equipped with the
topology of pointwise convergence).

Finally, for details and basic results on interpolation theory we refer to [1]
or [2]. We recall that a mapping F from the category of all couples of Banach
spaces into the category of all Banach spaces is said to be an interpolation
functor if for every Banach couple X := (X0,X1), the Banach space F(X) is
intermediate with respect to X (which means X0∩X1 ↪→ F(X) ↪→ X0+X1),
and moreover T : F(X) → F(Y ) is bounded for all operators T : X → Y
between couples (meaning that T : X0+X1 → Y0+Y1 is linear with bounded
restrictions from Xj into Yj). By the closed graph theorem, for any couples
X and Y ,

‖T‖F(X0,X1)→F(Y0,Y1) ≤ C‖T‖X→Y := C max{‖T‖X0→Y0 , ‖T‖X1→Y1}.
If C may be chosen independently of X and Y , we say that F is a C-
exact interpolation functor; and F is said to be exact whenever C = 1. An
intermediate space X of the couple X is said to be an interpolation space
with respect to this couple whenever X can be realized as F(X) for some
interpolation functor F . The definition of C-exact and exact interpolation
spaces is obvious.

As already mentioned we follow Pietsch’s route to prove our extension
of the composition formula of König, Retherford and Tomczak-Jaegermann,
which can be divided into three parts of independent interest, and each of
our three sections is devoted to one of these parts. In Section 2 we estimate
the (E, 2)-summing norm of finite rank operators between Banach spaces
under the assumption that E is a symmetric Banach sequence which is an
interpolation space with respect to the couple (`2, `∞). It is shown that
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there exists a constant C > 0 such that πE,2(idX) ≤ CλE(n) for every
Banach space X with dimX = n. A key result in the theory of s-numbers
states that for 2 ≤ p < ∞ each (p, 2)-summing operator T has its Weyl
numbers in the Lorentz space `p,1, and conversely each operator with Weyl
numbers in the Marcinkiewicz space `p,∞ is (p, 2)-summing. In Section 3 the
estimate from Section 2 is used to prove an analogue of these inclusions for
(E, 2)-summing operators. Finally, in Section 4 we combine this relationship
with a straightforward multiplication formula for s-number ideals in order
to obtain the desired composition theorem for (E, 2)-summing operators in
terms of appropriate indices of the sequence space E.

2. (E, 2)-summing norms of finite rank operators. The following
definition is a natural extension of the notion of absolutely (q, p)-summing
operators: Let E be a Banach sequence space which contains `p for some
1 ≤ p ≤ ∞. Then an operator T : X → Y between Banach spaces X and Y
is called (E, p)-summing if there exists a constant C > 0 such that for any
weakly p-summable sequence {xn} (i.e., the scalar sequences {x∗(xn)} are
in `p for every x∗ ∈ X∗)

‖{‖Txn‖Y }‖E ≤ C sup
‖x∗‖X∗≤1

( ∞∑

n=1

|x∗(xn)|p
)1/p

.

We write πE,p(T ) for the smallest constant C with the above property. The
Banach space of all (E, p)-summing operators between Banach spaces X
and Y is denoted by ΠE,p(X,Y ). If ‖en‖E = 1 for all n, then (ΠE,p, πE,p)
is a Banach operator ideal, in particular for E = `q (q ≥ p) we obtain
the well known ideal (Πq,p, πq,p) of all (q, p)-summing operators. For an
Orlicz sequence space `ϕ, we write Πϕ,p and πϕ,p instead of Π`ϕ,p and π`ϕ,p,
respectively (for the theory of Orlicz functions and Orlicz spaces we refer to
[11] and [12]). Recall that if ϕ is an Orlicz function (i.e., ϕ : [0,∞)→ [0,∞)
is a continuous and convex function with ϕ−1({0}) = {0}), then the Orlicz
sequence space `ϕ consists of all real sequences x = {xn} ∈ ω such that∑∞

n=1 ϕ(|xn|/ε) <∞ for some ε > 0. It is well known that `ϕ equipped with
the norm

‖x‖ := inf
{
ε > 0;

∞∑

n=1

ϕ(|xn|/ε) ≤ 1
}

is a symmetric Banach sequence space.
We note an obvious fact, useful in what follows, that an operator T :

X → Y is (E, 2)-summing if and only if

πE,2(T ) = sup{πE,2(TS); S ∈ L(`2,X), ‖S‖ ≤ 1}.
We refer to [4] and [5] for non-trivial examples of (E, p)-summing opera-



Composition of (E, 2)-summing operators 55

tors. We present new simple examples involving symmetric Banach func-
tion spaces on finite non-atomic measure spaces (for the theory of these
spaces see, e.g., [10] and [12]). We recall that the fundamental function ψX
of a symmetric Banach function space X on a non-atomic measure space
(Ω,µ) := (Ω,Σ, µ) is defined by ψX(t) := ‖χA‖X for any 0 ≤ t < µ(Ω) with
t = µ(A), A ∈ Σ.

Proposition 2.1. Let X be a symmetric Banach function space defined
on a non-atomic finite measure space (Ω,µ) which does not coincide with
L∞ := L∞(µ). Then the inclusion map id : L∞ ↪→ X is (`ϕ, 1)-summing ,
where ϕ is any Orlicz function such that ϕ−1 � ψX on (0, µ(Ω)). In partic-
ular , id : L∞ ↪→ X is (M(`q, `ϕ), p)-summing with 1/p+ 1/q = 1.

Proof. It is well known that for any symmetric Banach function space X
we have Λ(X) ↪→ X (with norm ≤ 1), where Λ(X) is the Lorentz symmetric
function space equipped with the norm

‖x‖Λ(X) :=
µ(Ω)�

0

x∗(s) dψX(s).

We put ψ := ψX . It is well known (see [10, formula, (5.4), p. 111]) that

‖x‖Λ(X) =
∞�

0

ψ(µx(s)) ds,

where µx(s) := µ({ω ∈ Ω; |x(ω)| > s}) for s > 0. Let x1, . . . , xn ∈ L∞. Then
(see, e.g., [7, p. 41])

sup
‖x∗‖L∗∞≤1

n∑

k=1

|x∗(xk)| =
∥∥∥

n∑

k=1

|xk|
∥∥∥
L∞
.

Assume that
∥∥∑n

k=1 |xk|
∥∥
L∞
≤ 1. Hence µxk(s) = 0 for any s > 1. Combin-

ing the above remarks with Jensen’s inequality and the fact that ϕ(ψ(t)) � t
on (0, µ(Ω)) shows that there exists a constant C > 0 such that

n∑

k=1

ϕ(‖xk‖X) ≤
n∑

k=1

ϕ(‖xk‖Λ(X)) =
n∑

k=1

ϕ
( 1�

0

ψ(µxk(s)) ds
)

≤
n∑

k=1

1�

0

ϕ(ψ(µxk(s))) ds ≤ C
n∑

k=1

1�

0

µxk(s) ds

= C
�

Ω

n∑

k=1

|xk| dµ ≤ Cµ(Ω)
∥∥∥

n∑

k=1

|xk|
∥∥∥
L∞
.

This yields as desired id ∈ Πϕ,1(L∞,X) with πϕ,1(id) ≤ max{1, Cµ(Ω)}. To
conclude the proof it is enough to apply [4, Lemma 3.4].
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The following interpolative estimate for the (E, 2)-summing norm of fi-
nite rank operators is crucial in what follows.

Theorem 2.2. Assume that E is a symmetric Banach sequence space,
and moreover E is a C-exact interpolation space with respect to the couple
(E1, E2), where both Ej are symmetric Banach sequence spaces which con-
tain `2. Then for every operator T between Banach spaces with rankT ≤ n,

πE,2(T ) ≤ CλE(n)‖T‖,
provided πEj ,2(T ) ≤ λEj (n)‖T‖ for j = 1, 2.

The proof of this result needs two lemmas, both based on interpolation.
Following [15] the characteristic function ϕF : R+ × R+ → R+ of an exact
interpolation functor F is defined by

ϕF(s, t)R := F(sR, tR), s, t > 0,

where αR with α > 0 is R equipped with the norm ‖x‖αR := α‖x‖. Note
that ϕF is homogeneous of degree one, that is, ϕF(αs, αt) = αϕF(s, t) for
any α > 0, and ϕF(·, ·) is non-decreasing in each variable. Further for any
Banach couple X = (X0,X1) one has

‖x‖F(X) ≤ ϕF(‖x‖X0 , ‖x‖X1)(1)

for every 0 6= x ∈ X0∩X1. For a fixed Banach space A which is intermediate
with respect to the Banach couple A, define the exact interpolation functor
HA
A : X 7→ (HA

A (X), ‖·‖), where the space HA
A (X) consists of all x ∈ X0+X1

such that
‖x‖ := sup{‖Tx‖A; ‖T‖X→A ≤ 1} <∞.

We need the well known fact (see, e.g., [1, 2.5.1]) that for any C-exact
interpolation space A with respect to A = (A0, A1) the following continuous
inclusions hold (with norms C and 1, respectively):

A
C
↪→ HA

A (A0, A1)
1
↪→ A.(2)

Lemma 2.3. Let E be a Banach space which is intermediate with respect
to the Banach couple E = (E0, E1).

(i) If ϕF is the characteristic function of the maximal functor F = HE
E ,

then for any s, t > 0,

ϕF(s, t) = ψE(s, t) := sup{‖x‖E ; x ∈ E0 ∩E1, ‖x‖E0 ≤ s, ‖x‖E1 ≤ t}.
(ii) If E is a couple of symmetric Banach sequence spaces and E is a

symmetric Banach sequence space which is a C-exact interpolation space
with respect E, then for each n,

λE(n) ≤ ψE(λE0(n), λE1(n)) ≤ CλE(n).
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Proof. (i) Fix s, t > 0 and put X := (sR, tR). Note first that for T : X →
E and x ∈ E0∩E1 with T1 = x, we get ‖T‖X→E = max{‖x‖E0/s, ‖x‖E1/t}.
Hence as desired

ϕF(s, t) = ‖1‖F(X) = sup{‖T1‖E ; ‖T‖X→E ≤ 1}
= sup{‖x‖E ; x ∈ E0 ∩E1, ‖x‖E0 ≤ s, ‖x‖E1 ≤ t}.

The proof of (ii) is a minor modification of a similar result for the case
of symmetric spaces on R+ presented in [13]. Put F := HE

E . Combining (i)
with (1) and (2), we infer for every n that

λE(n) ≤ ψE(λE0(n), λE1(n)).

To prove the reverse inequality fix n ∈ N and y ∈ E0 ∩ E1, and define the
rank one operator T : E → E by

T := x∗ ⊗ y,
where x∗(x) :=

∑n
k=1 ξk for x = {ξk} ∈ E0 + E1. Clearly, ‖T‖E→E =

λE′(n)‖y‖E and ‖T‖Ej→Ej = λE′j (n)‖y‖Ej , j = 0, 1. This yields, by the
interpolation property,

λE′(n)‖y‖E ≤ C max{λE′0(n)‖y‖E0 , λE′1(n)‖y‖E1},
which, since λE(n)λE′(n) = n (see [11, 3.a.6]), gives ‖y‖E ≤ CλE(n)/n
whenever ‖y‖Ej ≤ λEj (n)/n, j = 0, 1. Hence

ψE(λE0(n)/n, λE1(n)/n) ≤ CλE(n)/n,

which completes the proof since ψE is positively homogeneous.

In the classical `p-case the second lemma needed is due to König [8];
for its extension to (E, 2)-summing operators see [4, 6.2]. Henceforth, ↪→
denotes a continuous inclusion.

Lemma 2.4. Let F be an exact interpolation functor and let (E0, E1)
be a couple of Banach sequence spaces which both contain `2. Then for any
Banach spaces X,Y ,

F(ΠE0,2(X,Y ),ΠE1,2(X,Y )) ↪→ ΠF(E0,E1),2(X,Y ).

Proof of Theorem 2.2. Let T ∈ L(X,Y ) be of rank n. Put F := H
(E1,E2)
E .

Since E is a C-exact interpolation space with respect to (E1, E2), by (2) we

have E
C
↪→ F(E1, E2)

1
↪→ E. Hence by applying Lemma 2.3, estimate (1) and

Lemma 2.2, we obtain

πE,2(T ) ≤ πF(E1,E2),2(T ) ≤ ‖T‖F(ΠE1,2(X,Y ),ΠE2,2(X,Y ))

≤ ϕF(λE1(n), λE2(n))‖T‖ = ψE(λE1(n), λE2(n))‖T‖
≤ CλE(n)‖T‖.

The following estimate will be of special interest.
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Corollary 2.5. Let E be a symmetric Banach sequence space which is
an interpolation space with respect to (`2, `∞). Then there is a constant C
depending on E such that

(i) For any operator T with rankT ≤ n,
πE,2(T ) ≤ CλE(n)‖T‖.

(ii) For the identity map idX on an n-dimensional Banach space X,

C−1λE(n) ≤ πE,2(idX) ≤ CλE(n).

Proof. (i) Take T of rank n. Then it is well known that π`2,2(idX) =
π2(idX) ≤ n1/2‖idX‖ = λ`2(n)‖idX‖ (see, e.g., [8, 2.a.2 1.11]) and trivially
π`∞,2(idX) = ‖idX‖ = λ`∞(n)‖idX‖. Hence the desired result is an immedi-
ate consequence of the preceding theorem and the fact that there exists a
constant C > 0 such that E is a C-exact interpolation space with respect
to (`2, `∞).

(ii) The upper estimate in the second inequality follows by (i). For the
lower bound we may assume that n > 1. Take k ∈ N so that 2k ≤ n ≤ 2k+1.
Then by the Dvoretzky–Rogers Lemma (see [7, Lemma 1.3]) there exist k
vectors x1, . . . , xk ∈ X in the unit ball of X, each of norm ‖xj‖X ≥ 1/2,
such that

sup
‖x∗‖X∗≤1

( k∑

j=1

|x∗(xj)|2
)1/2

≤ 1.

Hence
1
2
λE(k) ≤

∥∥∥
k∑

j=1

‖idX(xj)‖Xej
∥∥∥
E
≤ πE,2(idX).

Since k 7→ λE(k)/k is a non-increasing function, λE(n)/6 ≤ πE,2(idX).

Implicitly and in a quite different way this result has been proved in
[4, 6.4]—however, in [4] it was stated for the smaller class of all E’s which are
2-convex although an analysis of the proof shows that in fact the formulation
given here holds true. Recall that a Banach sequence space E is 2-convex
(or equivalently, the dual of E has cotype 2, see [12, 1.f.16]) if there is a
constant C > 0 such that for each choice of finitely many x1, . . . , xn ∈ E,

∥∥∥
( n∑

k=1

|xk|2
)1/2∥∥∥ ≤ C

( n∑

k=1

‖xk‖2
)1/2

.

It was shown in [4, Lemma 4.3] that each 2-convex maximal and symmet-
ric Banach sequence space E is an exact interpolation space with respect
to the couple (`2, `∞). We note that there is a quite large class of sym-
metric sequence spaces which are exact interpolation spaces with respect to
(`2, `∞), but fail to be 2-convex. For example the real interpolation spaces
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(`2, `∞)θ,q = `p,q with 1/p = (1− θ)/2, 0 < θ < 1, 1 ≤ q <∞ contain order
isomorphic copies of `q (see, e.g., [11, Prop. 4.e.3]). Thus these spaces are
not 2-convex for any 1 ≤ q < 2.

3. (E, 2)-summing operators and Weyl numbers. Let w = {wn}
be a weight sequence (i.e., wn > 0 for all n). For 0 < p < ∞ the Lorentz
space d(w, p) is given by

d(w, p) :=
{
x = {xn} ∈ ω; ‖x‖ :=

( ∞∑

n=1

(x∗n)pwn
)1/p

<∞
}
.

If 0 < p, q < ∞ and w = {n1/p−1/q}, then as usual d(w, p) is denoted by
`p,q. It is well known that if w is a non-increasing sequence, then d(w, p)
is a maximal symmetric quasi-Banach sequence space (Banach whenever
1 ≤ p < ∞). If E is a symmetric Banach sequence space with the funda-
mental function λE , then the Lorentz space d(w, 1) with w = {λE(n)/n}
is denoted by λ(E). For a positive non-decreasing function ψ : N → R+
satisfying ψ(2n) ≤ Cψ(n) for some C > 0 and all n ∈ N, mψ stands for
the Marcinkiewicz sequence space of all real sequences x for which {ψ(n)x∗n}
∈ `∞; equipped with ‖x‖ := supn≥1 ψ(n)x∗n, it forms a maximal symmetric
quasi-Banach sequence space. In the case when ψ(n) = n1/p, 0 < p < ∞,
we write `p,∞ for mψ. If E is a symmetric Banach sequence space with the
fundamental function λE , then we write m(E) for the Marcinkiewicz space
mψ defined by ψ = λE .

As pointed out in the introduction we now prove an extension of one of
the key results of the theory of asymptotic s-number/eigenvalue distribution
of power compact operators in Banach spaces, namely the inclusions Lxp,1 ↪→
Πp,2 ↪→ Lxp,∞, p ≥ 2 (see, e.g., [18, 2.7.4] and [8, 2.a.11]).

Theorem 3.1. Let E be a symmetric Banach sequence such that `2 ↪→E.

(i) If H is a Hilbert space, then ΠE,2(H,Y ) ↪→ LaE(H,Y ) for every
Banach space Y . In particular , ΠE,2 ↪→ Lxm(E).

(ii) If E is an interpolation space with respect to the couple (`2, `∞), then

Lxλ(E) ↪→ ΠE,2.

Proof. Generalizing an inequality of König (see, e.g., [8, 2.a.3]) it was
stated in [4, 3.6] (and proved in [6, Proposition 1]) that (i) holds.

(ii) Assume without loss of generality that the fundamental function
λ := λE of E satisfies λ(1) = 1, and note that λ is non-decreasing and
λ(2n) ≤ 2λ(n) for all n ∈ N. Then for x = {xn} ∈ λ(E),

‖x‖λ(E) =
∞∑

n=1

x∗n
λ(n)
n

= x∗1 +
∞∑

k=0

( ∑

2k<n≤2k+1

x∗n
λ(n)
n

)
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≥ x∗1 +
∞∑

k=0

λ(2k)x∗2k+1

( ∑

2k<n≤2k+1

1
n

)

≥ x∗1 + 4−1
∞∑

k=0

x∗2k+1λ(2k+1) ≥ 4−1
∞∑

k=1

x∗2kλ(2k).

Fix T ∈ Laλ(E)(X,Y ) and choose Sk : X → Y with rankSk < 2k such that
‖T − Sk‖ ≤ 2a2k(T ), k = 0, 1, . . . , where T0 := 0. Put Tk = Sk+1 − Sk.
Combining the above inequalities, we obtain

T =
∞∑

k=0

Tk with rankTk ≤ 2k and {λ(2k)‖Tk‖} ∈ `1.

Now by applying Theorem 2.1, we get {πE,2(Tk)} ∈ `1. In consequence T ∈
ΠE,2(X,Y ), by the completeness of ΠE,2(X,Y ). Finally, if T ∈ Lxλ(E)(X,Y ),
then for any S ∈ L(`2,X), we have

TS ∈ Lxλ(E)(`2, Y ) = Laλ(E)(`2, Y ) ↪→ ΠE,2(`2, Y ).

Since

πE,2(T ) = sup{πE,2(TS); S ∈ L(`2,X), ‖S‖ ≤ 1},
we obtain T ∈ ΠE,2(X,Y ).

Remark 3.2. We note that for a large class of symmetric Banach se-
quence spaces E which are interpolation spaces with respect to (`2, `∞)
the continuous inclusion ΠE,2 ↪→ Lxm(E) is optimal. In fact, let F be any
2-concave symmetric Banach sequence space and let E := M(`2, F ) be a
symmetric Banach sequence space of all multipliers from `2 into F . Then E
is 2-convex, and thus an interpolation space with respect to (`2, `∞) (see [4,
Lemma 4.3]). Let id : F ↪→ `2 denote the inclusion map. Applying [4, 3.2 and
4.1] we conclude that id ∈ ΠE,2(F, `2). Further, we have λE(n) � λF (n)/

√
n

by [5, Proposition 3.5]. This easily implies that

xn(id : F ↪→ `2) � 1/λE(n).

4. Composition theorem for (E, 2)-summing operators. In this
section we present the composition theorem for (E, 2)-summing operators.
Recall that an operator T ∈ L(X,Y ) belongs to the product B ◦ A of two
quasi-Banach operator ideals (A, α) and (B, β) if T can be written in the
form T = V U , where U ∈ A(X,Z) and V ∈ B(Z, Y ) with a suitable Banach
space Z. Clearly, B ◦ A is an operator ideal which, if endowed with the
quasi-norm

‖T‖B◦A := inf{α(U)β(V ); T = V U, U ∈ A(X,Z), V ∈ B(Z, Y )},
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forms a quasi-normed Banach operator ideal (see [16, 7.1.2]). In what follows,
if E, F and G are symmetric quasi-Banach sequence spaces, and the map B
given by B(x, y) := {x∗ny∗n} is defined and bounded from E×F into G (i.e.,
‖B(x, y)‖G ≤ C‖x‖E‖y‖F for some C > 0), then we write E∗F ↪→ G. Recall
that an s-function s is called multiplicative if sm+n−1(V U) ≤ sm(U)sn(V )
for any U ∈ L(X,Z), V ∈ L(Z, Y ) and m,n ∈ N. We need the following
easy technical observation.

Proposition 4.1. Let E, F and G be maximal symmetric quasi-Banach
sequence spaces such that E ∗ F ↪→ G, and let s be any multiplicative func-
tion. Then LsE ◦ LsF ↪→ LsG.

Proof. Let us first remark the following: If x∈ω is such that {x∗2n−1}∈G,
then x ∈ G and ‖x‖G ≤ 2CG‖{x∗2n−1}‖G, where CG is the constant from
the quasi-triangle inequality of G. Indeed, we have x∗ = y + z with y =∑

n x
∗
2n−1e2n−1 and z =

∑
n x
∗
2ne2n in ω. Since y∗ = {x∗2n−1} ∈ G and

z∗ ≤ y∗, we get z∗ ∈ G and also z ∈ G with ‖z‖G ≤ ‖y‖G. But then x ∈ G
and

‖x‖G = ‖x∗‖G ≤ 2CG‖y‖G = 2CG‖y∗‖G = ‖{x∗2n−1}‖G.
Let now T ∈ LsE ◦ LsF (X,Y ), hence T has a factorization T = V U through
a Banach space Z with U ∈ LsF (X,Z) and V ∈ LsE(Z, Y ). According to our
remark we now show that {s2n−1(T )} ∈ G. Since s2n−1(V U) ≤ sn(U)sn(V )
for any n, by the multiplicity of s, and by assumption E ∗ F ↪→ G with
constant C, we obtain {s2n−1(T )} ∈ G and

sG(T ) ≤ 2CG‖{s2n−1(T )}‖G ≤ 2CGC‖{sn(U)}‖E‖{sn(V )}‖F .
The proof is completed by taking the infimum over all possible factorizations
of T .

As announced we now prove several composition formulas for (E, 2)-
summing operators.

Proposition 4.2. Suppose that E, F and G are symmetric Banach se-
quence spaces such that E and F both contain `2, and G is an interpolation
space with respect to (`2, `∞). If {λG(2n)/λE(2n) · λF (2n)} ∈ `1, then

ΠE,2 ◦ΠF,2 ↪→ ΠG,2.

Proof. Since m(E) ∗m(F ) ↪→ mψ with ψ(n) = λE(n)λF (n) for n ∈ N,
it follows by Theorem 3.1 and the preceding proposition that

ΠE,2 ◦ΠF,2 ↪→ Lxm(E) ◦ Lxm(F ) ↪→ Lxmψ .
It is easy to see that {xn} ∈ λ(G) with ‖{xn}‖λ(G) ≺ ‖{x∗2nλG(2n)}‖`1 when-
ever {x∗2nλG(2n)} ∈ `1. Combining this with the assumption, we conclude
that Lxmψ ↪→ Lxλ(G). In consequence, Theorem 3.1 applies and the proof is
complete.
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In order to formulate a more comfortable version we introduce two types
of indices for symmetric Banach sequence spaces. For a symmetric Banach
sequence space E with fundamental function λE define the indices αE and
βE as follows:

αE := sup
{
α > 0; inf

n∈N
λE(n)
nα

> 0
}
, βE := inf

{
β > 0; sup

n∈N

λE(n)
nβ

<∞
}
.

The following is our main result.

Theorem 4.3. Assume that E1, . . . , EN and F are symmetric Banach
sequence spaces such that all Ej contain `2, and F is an interpolation space
with respect to (`2, `∞). If αE1 + . . .+ αEN > βF , then

ΠEN ,2 ◦ . . . ◦ΠE1,2 ↪→ ΠF,2.

Proof. By the preceding proposition we check that

{λF (2n)/λE1(2n) · . . . · λEN (2n)} ∈ `1.
To see this take ε > 0 such that δ := αE1 + . . .+ αEN − βF − 2εN > 0. By
the definition of αEj and βF we have, for all j = 1, . . . , N ,

λF (n) ≺ nβF+Nε, n
αEj−ε ≺ λEj (n).

Altogether we conclude as desired that
∑

n

λF (2n)
λE1(2n) · . . . · λEN (2n)

≺
∑

n

1
2δn

<∞.

Obviously, the preceding result recovers the classical `p-case, which is
due to König, Retherford and Tomczak-Jaegermann. To show that our result
really leads to new applications we add the following

Example 4.4. Let 0 < α < 1, 0 < β <∞, 1 ≤ p <∞,

w = {n−α(1 + logn)−β},
and let ϕ be an Orlicz function. Then

(i) λE(n) � n(1−α)/p/(1 + logn)β/p, and hence αE = (1 − α)/p with
E := d(w, p).

(ii) If 2 ≤ p < ∞, then d(w, p) is 2-convex , and hence an exact inter-
polation space with respect to the couple (`2, `∞).

(iii) λ`ϕ(n) = 1/ϕ−1(1/n) and `ϕ is 2-convex provided that the function
t 7→ ϕ(

√
t) is equivalent to a convex function.

Proof. (i) Approximating the Riemann sums of � n1 t−α(1+log t)−β dt, we
conclude that

n1−α(1 + logn)−β �
n∑

k=1

k−α(1 + log k)−β.

In particular, this yields λE(n) � n(1−α)/p/(1 + logn)β/p.
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(ii) It is easy to see that any Lorentz space d(w, p) is p-convex, and thus
it is also 2-convex whenever 2 ≤ p <∞. Finally (iii) is an easy exercise.

In the case F = `2 the theorem allows the following improvement.

Corollary 4.5. Assume that E1, . . . , EN are symmetric sequence Ba-
nach spaces which all contain `2, and let Tj : Xj−1 → Xj be (Ej , 2)-summing
operators between Banach spaces, j = 1, . . . , N . Then TN ◦ . . . ◦ T1 is a
2-summing compact operator whenever αE1 + . . .+ αEN > 1/2.

Proof. For F = `2, we have βF = 1/2. Thus T := TN ◦ . . . ◦ T1 ∈
Π2(X0,XN ) by Theorem 4.3. To prove that T is compact we need only
show that

lim
n→∞

n1/2xn(T ) = 0

(see [18, Theorem 2.10.8]). To see this note that similarly to the proof of
Proposition 4.1, we obtain

ΠEN ,2 ◦ . . . ◦ΠE1,2 ↪→ Lxmψ
with ψ(n) := λE1(n) · . . . · λEN (n) for any n ∈ N, hence xn(T ) ≺ 1/ψ(n).
Now fix ε > 0 so that

δ := αE1 + . . .+ αEN − εN − 1/2 > 0,

and note that naEj−ε ≺ λEj (n) for all j = 1, . . . , N . Combining these in-
equalities yields n1/2xn(T ) ≺ 1/nδ, which clearly gives our conclusion.

We finish with a result on powers of the Banach operator ideal ΠE,2
(cf. [17, Theorem 7] for E = `p with 2 < p < ∞). Recall that an operator
T ∈ L(X,Y ) is nuclear, T ∈ N (X,Y ), if there are sequences {x∗n} ⊂ X∗,
{yn} ⊂ Y with

T =
∞∑

n=1

x∗n ⊗ yn,
∞∑

n=1

‖x∗n‖ ‖yn‖ <∞.

Corollary 4.6. Assume that E is a symmetric Banach sequence space
which contains `2, and αE > 1/2n for a positive integer n. Then Π2n

E,2 ↪→N ,
where N denotes the Banach ideal of nuclear operators.

Proof. The previous corollary yields Πn
E,2 ↪→ Π2. To finish the proof we

need only recall the well known fact that the composition of two 2-summing
operators is nuclear (see, e.g., [7, Theorem 5.31]).

It is well known that each nuclear operator has 2-summable eigenvalues.
We note that it is an open problem whether the eigenvalues of nuclear op-
erators on Banach spaces of nontrivial type are better than 2-summable. It
is known (see [8, p. 110]) that if X is a Banach space such that

L(`1,X) = Πs,2(`1,X)
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for some 2 < s <∞, then for each nuclear operator T : X → X the sequence
of its eigenvalues belongs to `r for some 1 < r < 2.

Combining the following proposition with the inequality connecting
eigenvalues and Weyl numbers due to Weyl (for E = `p) and König (gen-
eral case, see [8, 2a.8]) yields further information on eigenvalues of nuclear
operators. We leave the details to the interested reader.

Proposition 4.7. Let X be a Banach space such that L(`1,X) =
ΠE,2(`1,X) for some symmetric Banach sequence space E with `2 ↪→ E.
Then the sequence of Weyl numbers of any nuclear operator T on X satis-
fies {n1/2xn(T )} ∈ E.

Proof. It is well known that any nuclear operator T : X → X has a
factorization

T : X R→ `∞
D→ `1

S→ X

with D being a diagonal operator. Clearly, D has a factorization

D : `∞
D1−→ `2

D2−→ `1,

where both D1 and D2 are diagonal operators. Since D1 is 2-summing,
T = UV with V ∈ Π2(X, `2) and U ∈ ΠE,2(`2,X). Combining these remarks
with Theorem 3.1 and Proposition 4.1 we obtain the desired result.

We conclude the paper with the following corollary:

Corollary 4.8. Let ϕ be an Orlicz function such that the function
t 7→ ϕ(

√
t) is equivalent to a concave function on R+ and let ϕ be su-

permultiplicative (i.e., there exists C > 0 such that ϕ(st) ≥ Cϕ(s)ϕ(t) for
all s, t > 0). Then the sequence of Weyl numbers of any nuclear operator T
on the Orlicz space `ϕ satisfies the condition

{n1/2xn(T )} ∈M(`2, `φ),

where φ is any Orlicz function such that φ−1(t) � t3/2ϕ−1(1/t).

Proof. It is shown in [3] that under the above assumptions we have
L(`1, `ϕ) = Πφ,1(`1, `ϕ). By applying [5, Lemma 3.4], we obtain

L(`1, `ϕ) = ΠE,2(`1, `ϕ)

with E = M(`2, `φ). The claim now follows by Proposition 4.7.
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[9] H. König, J. R. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of

(p, 2)-summing operators and constants associated to normed spaces, J. Funct. Anal.
37 (1980), 149–168.

[10] S. G. Krĕın, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators,
Transl. Math. Monogr. 54, Amer. Math. Soc., 1980.

[11] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Sprin-
ger, 1979.

[12] —, —, Classical Banach Spaces II. Function Spaces, Springer, 1979.
[13] L. Maligranda and M. Mastyło, Notes on non-interpolation spaces, J. Approx. The-

ory 56 (1989), 333–347.
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