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Convergence of greedy approximation I.
General systems

by

S. V. Konyagin (Moscow) and V. N. Temlyakov (Columbia, SC)

Abstract. We consider convergence of thresholding type approximations with re-
gard to general complete minimal systems {en} in a quasi-Banach space X. Thresh-
olding approximations are defined as follows. Let {e∗n} ⊂ X∗ be the conjugate (dual)
system to {en}; then define for ε > 0 and x ∈ X the thresholding approximations as
Tε(x) :=

∑
j∈Dε(x) e

∗
j (x)ej , where Dε(x) := {j : |e∗j (x)| ≥ ε}. We study a generalized

version of Tε that we call the weak thresholding approximation. We modify the Tε(x) in
the following way. For ε > 0, t ∈ (0, 1) we set Dt,ε(x) := {j : tε ≤ |e∗j (x)| < ε} and consider
the weak thresholding approximations Tε,D(x) := Tε(x) +

∑
j∈D e∗j (x)ej , D ⊆ Dt,ε(x).

We say that the weak thresholding approximations converge to x if Tε,D(ε)(x) → x as
ε→ 0 for any choice of D(ε) ⊆ Dt,ε(x). We prove that the convergence set WT{en} does
not depend on the parameter t ∈ (0, 1) and that it is a linear set. We present some appli-
cations of general results on convergence of thresholding approximations to A-convergence
of both number series and trigonometric series.

1. Introduction. LetX be a quasi-Banach space (real or complex) with
the quasi-norm ‖·‖ such that for all x, y ∈ X we have ‖x+y‖ ≤ α(‖x‖+‖y‖)
and ‖tx‖ = |t| ‖x‖. It is well known (see [KBR, Lemma 1.1]) that there is a
p, 0 < p ≤ 1, such that

(1.1)
∥∥∥
∑

n

xn

∥∥∥ ≤ 41/p
(∑

n

‖xn‖p
)1/p

.

Let {en} ⊂ X be a complete minimal system in X with the conjugate (dual)
system {e∗n} ⊂ X∗. We assume that supn ‖e∗n‖ < ∞. This implies that for
each x ∈ X we have

(1.2) lim
n→∞

e∗n(x) = 0.
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Any element x ∈ X has a formal expansion

(1.3) x ∼
∑

n

e∗n(x)en,

and various types of convergence of the series (1.3) can be studied. In this
paper we deal with greedy type approximations with regard to the sys-
tem {en}.

For any x ∈ X we define the greedy ordering for x as the map % : N →
N such that {j : e∗j (x) 6= 0} ⊂ %(N) and so that if j < k then either
|e∗%(j)(x)| > |e∗%(k)(x)|, or |e∗%(j)(x)| = |e∗%(k)(x)| and %(j) < %(k). The mth
greedy approximation is given by

Gm(x) := Gm(x, {en}) :=
m∑

j=1

e∗%(j)(x)e%(j).

The system {en} is called a quasi-greedy system (see [KT1]) if there ex-
ists a constant C such that ‖Gm(x)‖ ≤ C‖x‖ for all x ∈ X and m ∈ N.
Wojtaszczyk [W] proved that these are precisely the systems for which
limm→∞Gm(x) = x for all x. If a quasi-greedy system {en} is a basis then
we say that {en} is a quasi-greedy basis. It is clear that any unconditional
basis is a quasi-greedy basis. We note that there are conditional quasi-greedy
bases {en} in some Banach spaces [KT1, W]. Hence, for such a basis {en}
there exists a permutation of {en} which forms a quasi-greedy system but
not a basis. This remark justifies the study of the class of quasi-greedy sys-
tems rather than the class of quasi-greedy bases.

Greedy approximations are close to thresholding approximations (some-
times they are called “thresholding greedy approximations”). Thresholding
approximations are defined as

Tε(x) =
∑

|e∗j (x)|≥ε
e∗j (x)ej, ε > 0.

Clearly, for any ε > 0 there exists an m such that Tε(x) = Gm(x). Therefore,
if {en} is a quasi-greedy system then

(1.4) ∀x ∈ X lim
ε→0

Tε(x) = x.

Conversely, following Remark from [W, pp. 296–297], it is easy to show that
the condition (1.4) implies that {en} is a quasi-greedy system.

The following weak type greedy algorithm was considered in [T1]. Let
t ∈ (0, 1] be a fixed parameter. For a given system {en} and a given x ∈ X
denote by Λm(t) any set of m indices such that

min
j∈Λm(t)

‖e∗j (x)ej‖ ≥ t max
j 6∈Λm(t)

‖e∗j (x)ej‖

and define



Convergence of greedy approximation I 145

Gtm(x) := GX,tm (x, {en}) :=
∑

j∈Λm(t)

e∗j (x)ej .

We note that the greedy approximant Gtm(x) does not depend on normal-
ization of the system {en}, and the previously defined greedy approximant
Gm(x) does depend on normalization. Usually we will denote by {en} a
general system and by {ψn} a normalized one or a system which can be
assumed normalized without loss of generality. By σm(x, {en})X we denote
the best m-term approximation in X of x with regard to the system {en}.

It was proved in [T1] that if X = Lp, 1 < p < ∞, and {en} is the Haar
system H, then for any f ∈ Lp,
(1.5) ‖f −GLp,tm (f,H)‖p ≤ C(p, t)σm(f,H)p.

This result motivated us to introduce a concept of greedy basis (see [KT1]).

Definition 1.1. We call a normalized basis Ψ a greedy basis if for every
x ∈ X there exists a realization {GX,1m (x, Ψ)} such that

‖x−GX,1m (x, Ψ)‖X ≤ Gσm(x, Ψ)X

with a constant independent of x and m.

We note here that the proof of [T1, (1.5)] works for any greedy basis in
place of the Haar system H. Thus for any greedy basis Ψ of a Banach space
X and any t ∈ (0, 1] we have, for each x ∈ X,

(1.6) ‖x−GX,tm (x, Ψ)‖X ≤ C(t)σm(x, Ψ)X .

This means that for greedy bases we have more flexibility in constructing
nearly best m-term approximants. Similarly to the above, one can define
weak thresholding approximations. Fix t ∈ (0, 1). For ε > 0 define

Dt,ε(x) := {j : tε ≤ |e∗j (x)| < ε}.
The weak thresholding approximations are defined as all possible sums

Tε,D(x) =
∑

|e∗j (x)|≥ε
e∗j (x)ej +

∑

j∈D
e∗j (x)ej ,

where D ⊆ Dt,ε(x). We say that the weak thresholding algorithm converges
for x ∈ X and write x ∈WT{en}(t) if for any D(ε) ⊆ Dt,ε,

lim
ε→0

Tε,D(ε)(x) = x.

It is clear that the above relation is equivalent to

lim
ε→0

sup
D⊆Dt,ε(x)

‖x− Tε,D(x)‖ = 0.

We shall prove in Section 2 (see Theorem 2.1) that the set WT{en}(t) does
not depend on t. Therefore, we can drop t from the notation: WT{en} =
WT{en}(t).
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It turns out that the weak thresholding algorithm has more regularity
than the thresholding algorithm: we will see that the set WT{en} is lin-
ear while WT{en}(1) can be nonlinear (see [KT2, Remark 2.4]). On the
other hand, by “weakening” the thresholding algorithm (making conver-
gence stronger) we do not narrow the convergence set too much. It is known
that for many natural classes of subsets Y of a Banach space X the conver-
gence of Tε(x) to x for all x ∈ Y is equivalent to Y ⊆WT{en}. In particular,
it can be derived from [W, Proposition 3] that the above two conditions are
equivalent for Y = X.

2. General properties of the weak thresholding algorithm. We
suppose that X and {en} satisfy the conditions stated at the beginning of
the paper.

Theorem 2.1. Let t, t′ ∈ (0, 1), x ∈ X. Then the following conditions
are equivalent :

(1) limε→0 supD⊆Dt,ε(x) ‖Tε,D(x)− x‖ = 0;
(2) limε→0 Tε(x) = x and

(2.1) lim
ε→0

sup
D⊆Dt,ε(x)

∥∥∥
∑

j∈D
e∗j (x)ej

∥∥∥ = 0;

(3) limε→0 Tε(x) = x and

(2.2) lim
ε→0

sup
|aj |≤1 (j∈Dt,ε(x))

∥∥∥
∑

j∈Dt,ε(x)

aje
∗
j (x)ej

∥∥∥ = 0;

(4) limε→0 Tε(x) = x and

(2.3) lim
ε→0

sup
|bj |<ε (j : |e∗j (x)|≥ε)

∥∥∥
∑

j : |e∗j (x)|≥ε
bjej

∥∥∥ = 0;

(5) limε→0 supD⊆Dt′,ε(x) ‖Tε,D(x)− x‖ = 0.

Proof. The equivalence of (1) and (2) follows easily from the definitions
of Tε(x) and Tε,D(x).

The condition (2) follows from (3) since for any D ⊆ Dt,ε(x) we can take
aj = 1 for j ∈ D and aj = 0 for j 6∈ D. To prove the implication (2)⇒(3) we
use the following lemma essentially proven in [W, Proposition 3]. We note
that if X is a Banach space X, this lemma is trivial.

Lemma 2.1. There is a constant C = C(α) such that for any x1, . . . , xn
∈ X we have

max
|aj |≤1

∥∥∥
n∑

j=1

ajxj

∥∥∥ ≤ C max
aj∈{0,1}

∥∥∥
n∑

j=1

ajxj

∥∥∥.
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Proof of Lemma 2.1. Define

M = max
aj∈{0,1}

∥∥∥
n∑

j=1

ajxj

∥∥∥.

Let us estimate the sum
∑n

j=1 ajxj for aj ∈ [0, 1] first. Let aj =
∑∞

s=1 aj,s2
−s,

where aj,s ∈ {0, 1}, be a digital expansion of aj . Then, using (1.1), we obtain

∥∥∥
n∑

j=1

ajxj

∥∥∥
p

=
∥∥∥
∞∑

s=1

2−s
n∑

j=1

aj,sxj

∥∥∥
p

≤ 4
∞∑

s=1

2−sp
∥∥∥

n∑

j=1

aj,sxj

∥∥∥
p

≤ 4
∞∑

s=1

2−spMp = (C1M)p.

Hence,
∥∥∥

n∑

j=1

ajxj

∥∥∥ ≤ C1 max
bj∈{0,1}

∥∥∥
n∑

j=1

bjxj

∥∥∥.

The case of arbitrary coefficients |aj | ≤ 1 can be easily reduced to the case
aj ∈ [0, 1] by using a representation aj = a

(1)
j − a

(2)
j with a(1)

j ∈ [0, 1], a(2)
j ∈

[0, 1] for X real and a similar representation aj = a
(1)
j − a

(2)
j + ia

(3)
j − ia

(4)
j

for X complex, and Lemma 2.1 follows.

Applying Lemma 2.1 for the set {x1, . . . , xn} = {e∗j (x)ej : j ∈ Dt,ε(x)},
we get

sup
|aj |≤1 (j∈Dt,ε(x))

∥∥∥
∑

j∈Dt,ε(x)

aje
∗
j (x)ej

∥∥∥ ≤ C
∥∥∥ sup
D⊆Dt,ε(x)

∑

j∈D
e∗j (x)ej

∥∥∥,

and therefore (2) implies (3). Thus, we have proved that (2) and (3) are
equivalent.

We will prove that (3) follows from (4) by proving that (4) implies (2).
Indeed, for any D ⊆ Dt,ε(x) we set bj = te∗j (x) for j ∈ D, and bj = 0 for
j 6∈ D. Then |bj | < tε, and, by (4),

sup
D⊆Dt,ε(x)

∥∥∥
∑

j∈D
bjej

∥∥∥→ 0

as ε→ 0, and (2) holds.
Let us show that (3) implies (4). Let x ∈ X. For u > 0 define

(2.4) Φ(u) := sup
|aj |≤1 (j∈Dt,u(x))

∥∥∥
∑

j∈Dt,u(x)

aje
∗
j (x)ej

∥∥∥.

Then limu→0 Φ(u) = 0 by (3). Take bj (j : |e∗j (x)| ≥ ε) with |bj | < ε, and
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estimate the sum
S =

∑

j : |e∗j (x)|≥ε
bjej .

We have

(2.5) S =
∞∑

s=1

Ss, Ss =
∑

j : t−(s−1)ε≤|e∗j (x)|<t−sε
bjej .

By (2.4) with u = t−sε we get

‖Ss‖ =
∥∥∥

∑

j : t−(s−1)ε≤|e∗j (x)|<t−sε
bjej

∥∥∥ ≤ ts−1Φ(t−sε).

By (1.1) and (2.5),

(2.6) ‖S‖p ≤ 4
∞∑

s=1

tp(s−1)Φ(t−sε)p.

It follows from the properties of the function Φ that the right-hand side of
(2.6) tends to 0 as ε→ 0. Hence, (4) holds.

Finally, note that the condition (4) does not depend on the choice of
t ∈ (0, 1). This shows that (1) is equivalent to (5) and completes the proof
of the theorem.

So, the set WT{en} defined in Section 1 is indeed independent of t ∈
(0, 1).

Theorem 2.2. The set WT{en} is linear.

Proof. It is enough to prove that x + y ∈ WT{en} whenever x, y ∈
WT{en}. By Theorem 2.1 it is sufficient to consider a particular parameter
t ∈ (0, 1). Let us specify t = 1/2 and prove that

(2.7) lim
ε→0

sup
D⊆D1/2,ε(x+y)

‖Tε,D(x+ y)− (x+ y)‖ = 0.

Take ε > 0 and D ⊆ D1/2,ε(x+y). We will estimate ‖Tε,D(x+y)− (x+y)‖.
Let

D1 = D ∪ {j : |e∗j (x+ y)| ≥ ε}, D2 = N \D1.

Notice that j ∈ D1 implies |e∗j (x+ y)| ≥ ε/2 and therefore |e∗j (x)| ≥ ε/4 or
|e∗j (y)| ≥ ε/4. We have

(2.8) Tε,D(x+ y) =
∑

j∈D1

e∗j (x+ y)ej .

Consider the sets

A := {j : |e∗j (x)| ≥ ε/4, |e∗j (y)| < ε/4},
A′ := {j : |e∗j (y)| ≥ ε/4, |e∗j (x)| < ε/4},
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B := {j : |e∗j (x)| ≥ ε/4, |e∗j (y)| ≥ ε/4}.
It is clear that D1 ⊆ A ∪ A′ ∪B. It is also clear that

(2.9) A ∪ A′ ∪B = D1 ∪ E ∪ F,
where

E := {j : |e∗j (x)| ≥ ε/4, j ∈ D2},
F := {j : |e∗j (y)| ≥ ε/4, |e∗j (x)| < ε/4, j ∈ D2}.

Define
S1 =

∑

{j : |e∗j (x)|≥ε/4}
e∗j (x)ej , S4 =

∑

j∈A′
e∗j (x)ej,

S2 =
∑

{j : |e∗j (y)|≥ε/4}
e∗j (y)ej, S5 =

∑

j∈E
e∗j (x+ y)ej,

S3 =
∑

j∈A
e∗j (y)ej, S6 =

∑

j∈F
e∗j (x+ y)ej.

Then
S1 + S2 + S3 + S4 =

∑

j∈A∪A′∪B
e∗j (x+ y)ej.

Taking into account this fact, (2.8), and (2.9), we see that

Tε,D(x+ y)− (x+ y) = (S1 − x) + (S2 − y) + S3 + S4 − S5 − S6.

The terms S1 − x and S2 − y tend to 0 as ε → 0 since x, y ∈ WT{en}.
The sums Sj , j = 3, 4, 5, 6, tend to 0 by the condition (4) of Theorem 2.1.
This proves Theorem 2.2.

Remark 2.1. Using the same technique as in the proofs of Theorems
2.1 and 2.2 one can show that the linear set WT{en} equipped with the
quasi-norm

|||x||| = sup
ε

sup
D⊆Dt,ε(x)

‖Tε,D(x)‖

is a quasi-Banach space embedded in X. The system {en} is a quasi-greedy
system in the space (WT{en}, ||| · |||).

We note that the space (WT{en}, ||| · |||) need not be a Banach space
even if X is. Moreover, we will show in Section 3 (see Theorem 3.2) that the
quasi-norm ||| · ||| is not necessarily equivalent to any norm. Thus it would
be unnatural to restrict ourselves to Banach spaces in studying quasi-greedy
systems.

Let us now discuss the convergence of GX,tm (x, Ψ) for quasi-greedy bases.
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Theorem 2.3. Let Ψ be a normalized quasi-greedy basis for a Banach
space X. Then for any fixed t ∈ (0, 1] and each x ∈ X,

GX,tm (x, Ψ)→ x as m→∞.
Proof. Let

GX,tm (x, Ψ) =
∑

j∈Λm(t)

cj(x)ψj = SΛm(t)(x, Ψ).

We set

α := max
j 6∈Λm(t)

|cj(x)|,

Λ1
m := {j : |cj(x)| > α} ⊆ Λm(t), Λ2

m := {j : |cj(x)| ≥ tα} ⊇ Λm(t).

Then
SΛm(t)(x, Ψ) = SΛ1

m
(x, Ψ) + SΛm(t)\Λ1

m
(x, Ψ).

The assumption that Ψ is quasi-greedy implies that

(2.10) SΛ1
m

(x, Ψ)→ x as m→∞.
We will prove that

‖SΛm(t)\Λ1
m

(x, Ψ)‖ → 0 as m→∞.
We note that

(2.11) SΛm(t)\Λ1
m

(x, Ψ) = SΛm(t)\Λ1
m

( ∑

j : tα≤|cj(x)|≤α
cj(x)ψj , Ψ

)
.

We need a lemma on properties of quasi-greedy systems.

Lemma 2.2. Let Ψ be a normalized quasi-greedy basis. Then for any two
finite sets A ⊆ B of indices, and coefficients 0 < t ≤ |aj | ≤ 1, j ∈ B, we
have ∥∥∥

∑

j∈A
ajψj

∥∥∥ ≤ C(X,Ψ, t)
∥∥∥
∑

j∈B
ajψj

∥∥∥.

Proof. The proof is based on the following known lemma (see [DKKT]),
essentially due to Wojtaszczyk [W].

It will be convenient to define the quasi-greedy constant K to be the
least constant such that

‖Gm(x)‖ ≤ K‖x‖ and ‖x−Gm(x)‖ ≤ K‖x‖, x ∈ X.
Lemma 2.3. Suppose Ψ is a normalized quasi-greedy basis with a quasi-

greedy constant K. Then for any real numbers aj and any finite set P of
indices we have

(4K2)−1 min
j∈P
|aj |
∥∥∥
∑

j∈P
ψj

∥∥∥ ≤
∥∥∥
∑

j∈P
ajψj

∥∥∥ ≤ 2K max
j∈P
|aj |
∥∥∥
∑

j∈P
ψj

∥∥∥.
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Using this lemma, we get∥∥∥
∑

j∈A
ajψj

∥∥∥ ≤ 2K
∥∥∥
∑

j∈A
ψj

∥∥∥ ≤ (2K)2
∥∥∥
∑

j∈B
ψj

∥∥∥ ≤ (2K)4t−1
∥∥∥
∑

j∈B
ajψj

∥∥∥.

This proves Lemma 2.2.

We continue the proof of Theorem 2.3. Define

xα :=
∑

j : tα≤|cj(x)|≤α
cj(x)ψj .

Then by Lemma 2.2, from (2.11) we get

‖SΛm(t)\Λ1
m

(x, Ψ)‖ ≤ C‖xα‖.
It remains to remark that α→ 0 as m→∞, and xα → 0 as α→ 0.

We note that the mth greedy approximant Gm(x, {en}) changes if we
renormalize the system {en} (replacing it by {λnen}). This gives us more
flexibility in adjusting a given system {en} for greedy approximation. Let
us make one simple observation in this direction.

Proposition 2.1. Let Ψ = {ψn}∞n=1 be a normalized basis for a Banach
space X. Then the system {en}∞n=1, where en := 2nψn, n = 1, 2, . . . , is a
quasi-greedy system in X.

Proof. For a given x ∈ X set δN (x) := supn≥N |ψ∗n(x)|. Then

(2.12) δN (x)→ 0 as N →∞.
For ε > 0 we denote by N(ε) := N(x, ε) the smallest integer N satisfying
|ψ∗n(x)| < 2nε for n ≥ N + 1. By (2.12) we get

lim
ε→0

2N(ε)ε = 0.

Let
Tε(x) =

∑

n∈Dε
e∗n(x)en.

Then by the definition of en and N(ε) we obtain Dε ⊆ [1, N(ε)]. Therefore,
defining

SN (x, Ψ) :=
N∑

n=1

ψ∗n(x)ψn

we get

‖SN(ε)(x, Ψ)− Tε(x)‖ =
∥∥∥

∑

n≤N(ε) : |e∗n(x)|<ε
e∗n(x)en

∥∥∥

=
∥∥∥

∑

n≤N(ε) : |ψ∗n(x)|<2nε

ψ∗n(x)ψn
∥∥∥ ≤ 2N(ε)+1ε→ 0

as ε→ 0. This completes the proof of Proposition 2.1.
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We apply Proposition 2.1 to the trigonometric system {ψn}n≥0, where
ψ0 = 1, ψ2n−1 := eint, ψ2n := e−int, n = 1, 2, . . . It is known (see [T2]) that
this system is not a quasi-greedy system for Lp(T) for p 6= 2. Proposition 2.1
implies that {2|n|eint} is a quasi-greedy system for Lp(T), 1 < p <∞.

Let us discuss relations between the weak thresholding algorithm Tε,D(x)
and the weak greedy algorithm Gtm(x). We define a modification of Gtm(x)
that coincides with Gtm(x) for a normalized system {en} and is close to
Gm(x) for a general system when t = 1. For a given system {en}, t ∈ (0, 1],
x ∈ X and m ∈ N, we denote by Wm(t) any set of m indices such that

(2.13) min
j∈Wm(t)

|e∗j (x)| ≥ t max
j 6∈Wm(t)

|e∗j (x)|,

and define

G̃tm(x) := G̃tm(x, {en}) := SWm(t)(x) :=
∑

j∈Wm(t)

e∗j (x)ej .

It is clear that for any t ∈ (0, 1] and any D ⊆ Dt,ε(x) there exist m and
Wm(t) satisfying (2.13) such that

Tε,D(x) = SWm(t)(x).

Thus the convergence G̃tm(x) → x as m → ∞ implies the convergence
Tε,D(x)→ x as ε→ 0 for any t ∈ (0, 1]. We will now prove that for t ∈ (0, 1)
the converse is also true.

Proposition 2.2. Let t ∈ (0, 1) and x ∈ X. Then the following two
conditions are equivalent :

lim
ε→0

sup
D⊆Dt,ε(x)

‖Tε,D(x)− x‖ = 0;(2.14)

lim
m→∞

‖G̃tm(x)− x‖ = 0(2.15)

for any realization G̃tm(x).

Proof. The implication (2.15)⇒(2.14) is simple and follows from a re-
mark preceding Proposition 2.2. We prove that (2.14)⇒(2.15). Set

εm := max
j 6∈Wm(t)

|e∗j (x)|.

Clearly εm → 0 as m→∞. We have

(2.16) G̃tm(x) = T2εm(x) +
∑

j∈Dm
e∗j (x)ej

with Dm having the following property: for any j ∈ Dm,

tεm ≤ |e∗j (x)| < 2εm.

Thus by condition (5) from Theorem 2.1 for t′ = t/2 we obtain (2.15).
Proposition 2.2 is now proved.
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Proposition 2.2 and Theorem 2.1 imply that the convergence set of the
weak greedy algorithm G̃tm(·) does not depend on t ∈ (0, 1) and coincides
with WT{en}. By Theorem 2.2 this set is linear.

Let us make a comment on the case t = 1, not covered by Proposition 2.2.
It is clear that Tε(x) = Gm(x) with some m, and therefore Gm(x) → x as
m → ∞ implies Tε(x) → x as ε → 0. It is also not difficult to understand
that in general Tε(x)→ x as ε→ 0 does not imply Gm(x)→ x as m→∞.
This can be seen, for instance, by considering the trigonometric system in Lp,
p 6= 2, and using the Rudin–Shapiro polynomials (see [T2]). However, if for
the trigonometric system we put the Fourier coefficients with equal absolute
values in a natural order (say, lexicographic), then in the case 1 < p < ∞
by the Riesz theorem we obtain convergence of Gm(f) from convergence of
Tε(f). The results of [KS] show that the situation is different for p = 1. In
this case the natural order does not help to derive convergence of Gm(f)
from convergence of Tε(f).

3. A-convergence of number series. A series
∑

n an, an ∈ C, is said
to A-converge to s ∈ C if the following conditions hold:

lim
ε→0+

∑

n : |an|≥ε
an = s;(3.1)

lim
ε→0+

ε|{n : |an| ≥ ε}| = 0.(3.2)

We then write
(A)

∑

n

an = s.

The notion of A-convergent series has been studied in [U2]; see also [U3].
It is similar to the well known notion of the A-integral (see, e.g., [U1]). We
show that A-convergence can be treated as weak thresholding convergence
of number series. Recall that c0 is the space of sequences convergent to zero:

c0 = {x = (x0, x1, . . .) : xn ∈ C, lim
n→∞

xn = 0},

with the norm of x ∈ c0 defined as ‖x‖ = maxn |xn|. It is known that

c∗0 = l1 =
{

(x0, x1, . . .) : xn ∈ C, ‖x‖ =
∞∑

n=0

|xn| <∞
}
.

Consider the system {en}n∈N ⊂ c0 defined as e0
n = enn = 1, ejn = 0 for

j 6= 0, n. It is clear that {en} is a minimal system. It is also easy to see
that {en} is complete in c0. For instance, for the coordinate vectors un
(unn = 1, ujn = 0 for j 6= n), n = 0, 1, . . . , we have

∥∥∥∥u0 −
1
m

m∑

n=1

en

∥∥∥∥
c0

≤ 1
m

;
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un = en − u0, n = 1, 2, . . .

The elements e∗n of the conjugate system are e∗n = un, n = 1, 2, . . . Thus,
the formal expansion (1.2) takes the form

x ∼
∞∑

n=1

xnen.

Clearly, this expansion converges to x for x ∈ c0 satisfying

x0 =
∞∑

n=1

xn.

Theorem 3.1. Define the system {en}n∈N ⊂ c0 as e0
n = enn = 1, ejn = 0

for j 6= 0, n. Let
∑

n∈N an be a number series with limn→∞ an = 0, and let
s ∈ C, t ∈ (0, 1). Then the following conditions are equivalent :

(1) the series
∑

n an A-converges to s;
(2) limε→0 supD⊆Dt,ε |Tε,D − s| = 0, where

Dt,ε = {j : tε ≤ |aj | < ε}, Tε,D =
∑

|aj |≥ε
aj +

∑

j∈D
aj ;

(3) the element x ∈ c0 defined as x = (s, a1, a2, . . .) belongs to WT{en}.
Proof. We begin by proving that (1)⇒(2). Using (3.2) we get, for any

D ⊆ Dt,ε,

(3.3)
∣∣∣
∑

j∈D
aj

∣∣∣ ≤
∑

j∈Dt,ε
|aj | ≤

∑

j : |aj |≥tε
ε = o(1/ε)ε = o(1).

Therefore, taking into account (3.1) we get

sup
D⊆Dt,ε

|Tε,D − s| = o(1).

We now prove the implication (2)⇒(1). It is a corollary of the following
lemma.

Lemma 3.1. The property (2) from Theorem 3.1 implies

|Dt,ε| = o(1/ε), ε→ 0.

Proof of Lemma 3.1. Note that we can take D′ ⊆ Dt,ε such that

(3.4)
∣∣∣
∑

j∈D′
aj

∣∣∣ ≥ 1
4

∑

j∈Dt,ε
|aj |.

Indeed, for u ∈ R set u+ = max(0, u). For any z ∈ C we have |z| ≤
(<z)+ + (−<z)+ + (=z)+ + (−=z)+. Therefore, at least one of the following
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inequalities holds:
∑

j∈Dt,ε
(<aj)+ ≥

1
4

∑

j∈Dt,ε
|aj |,(3.5)

∑

j∈Dt,ε
(−<aj)+ ≥

1
4

∑

j∈Dt,ε
|aj |,(3.6)

∑

j∈Dt,ε
(=aj)+ ≥

1
4

∑

j∈Dt,ε
|aj |,(3.7)

∑

j∈Dt,ε
(−=aj)+ ≥

1
4

∑

j∈Dt,ε
|aj |.(3.8)

If, say, (3.5) holds, then for D′ = {j ∈ Dt,ε : <aj ≥ 0} we have
∣∣∣
∑

j∈D′
aj

∣∣∣ ≥
∑

j∈D′
<aj =

∑

j∈Dt,ε
(<aj)+,

and (3.4) holds. Other cases are studied similarly.
Thus, specifying D = ∅ and D = D′ we deduce from (2) that

∑

j∈Dt,ε
|aj | → 0 (ε→ 0).

Using the fact that |aj | ≥ tε for j ∈ Dt,ε we obtain

|Dt,ε| = o(1/ε) (ε→ 0).

Similarly to the proof of the implication (3)⇒(4) in Theorem 2.1 we hence
obtain

(3.9) |{j : |aj | ≥ ε}| = o(1/ε).

So, (3.2) is proved. The property (3.1) follows directly from (2) (take D = ∅).
We continue the proof of Theorem 3.1. The equivalence of the condi-

tions (2) and (3) follows easily from the definition of the weak thresholding
approximation. Theorem 3.1 is proved.

Remark 3.1. In Theorem 3.1 we indexed (enumerated) the elements of
the series

∑
n an by the set of positive integers. Actually, this is not essential,

we can assume that n runs over any countable set.

The following corollary of Theorems 2.2 and 3.1 has been proved in [U2].

Corollary 3.1. The set of A-convergent series is linear. Moreover ,

(A)
∑

n

(an + bn) = (A)
∑

n

an + (A)
∑

n

bn.

Remark 3.2. One can see from the proof of Theorem 3.1 that for any
t ∈ (0, 1) the quasi-norm ||| · |||t in the space Y = WT{en} ∈ c0 defined as
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in Remark 2.1,
|||x|||t = sup

ε
sup

D⊆Dt,ε(x)
‖Tε,D(x)‖,

is equivalent to the quasi-norm

|||x||| = max(|x0|, sup
ε
ε|{n ≥ 1 : |xn| ≥ ε}|).

Also, a quasi-norm in Y can be treated as a quasi-norm in the space of
A-convergent series.

Theorem 3.2. The quasi-norm ||| · ||| in the space Y = WT{en} ∈ c0 is
not equivalent to any norm.

Proof. It is sufficient to show that for any M > 0 there exist a positive
integer m and x1, . . . , xm ∈ Y such that

|||xj||| ≤ 1 (j = 1, . . . ,m),(3.10)
∣∣∣∣
∣∣∣∣
∣∣∣∣

1
m

m∑

j=1

xj

∣∣∣∣
∣∣∣∣
∣∣∣∣ > M.(3.11)

Take an even m ∈ N and set xnj = 0 for n > m, and xnj = (−1)n/k
for 1 ≤ n ≤ m, where k ∈ {1, . . . ,m} is defined as k ≡ n + j (modm),
x0
j =

∑m
n=1 x

n
j . It is easy to see that all the elements xj = (x0

j , x
1
j , . . .)

satisfy (3.10). Further, for x = m−1∑m
j=1 xj = (x0, x1, . . .) we have

|xn| = 1
m

m∑

k=1

1
k

(n = 1, . . . ,m).

Therefore, |||x||| ≥∑m
k=1 1/k, and (3.11) holds for sufficiently large m. The

proof of Theorem 3.2 is complete.

4. A-convergence of trigonometric series. In this section we use the
results of the previous section to study the A-convergence of trigonometric
series. The main results of this section concern the univariate case. However,
we begin with the multivariate case. Consider a periodic function f ∈ C(Td),
defined on the d-dimensional torus Td. Denote the Fourier coefficients of f
by

f̂(k) := (2π)−d
�

Td
f(x)e−i(k,x) dx.

We will discuss the pointwise convergence of the Fourier expansion

(4.1) f(x) ∼
∑

k∈Zd
f̂(k)ei(k,x).
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We can define weak thresholding approximations Tε,D(f) of the function
f with respect to the trigonometric system {ei(k,x)}. Theorem 3.1 and Re-
mark 3.1 give us the following criteria for pointwise A-convergence of (4.1).

Theorem 4.1. Let f ∈ C(Td), x ∈ Td, and t ∈ (0, 1). Then the follow-
ing conditions are equivalent :

(1) the series
∑

k∈Zd f̂(k)ei(k,x) A-converges to f(x);
(2)

lim
ε→0

sup
D⊆Dt,ε(x)

|Tε,D(f)(x)− f(x)| = 0.

From now on we consider only the univariate case d = 1. For a real
function f ∈ C(T) we can write its Fourier series in the real form:

(4.2) f ∼
∑

n∈Z+

Bn(x),

where B0 = f̂(0), Bn(x) = f̂(n)einx + f̂(−n)e−inx for n > 0. The problem
of pointwise A-convergence of Fourier series has been studied in [U2]. We
will study relations between A-convergence of the complex expansion (4.1)
and the real expansion (4.2) of Fourier series. In particular, we will prove
that A-convergence of (4.1) implies A-convergence of (4.2). For f ∈ C(T)
we denote by Ac(f) (resp. Ar(f)) the set of points x ∈ T at which the series∑

n∈Z f̂(n)einx (resp.
∑

n∈Z+
Bn(x)) A-converges to f(x).

Observe first that if Ac(f) 6= ∅ then

(4.3) lim
ε→0+

ε|{k : |f̂(k)| ≥ ε}| = 0.

Indeed, let x ∈ Ac(f). Then by (3.2) we get (4.3).

Theorem 4.2. Let f ∈C(T) be a real function. Then either Ac(f)=∅ or
Ac(f) = Ar(f). Moreover , if the measure of Ar(f) is positive then Ac(f) =
Ar(f).

Proof. We first prove that if Ac(f) 6= ∅ then Ac(f) = Ar(f). Take x ∈
Ac(f). The series

∑
n∈Z f̂(n)einx and

∑
n∈Z f̂(−n)e−inx A-converge to f(x).

By Corollary 3.1, their sum must be A-convergent to 2f(x). This means that

(A)
∑

n∈Z+

2Bn(x) = 2f(x),

or x ∈ Ar(f).
Conversely, take x ∈ Ar(f) and ε > 0. We have

(4.4) lim
ε→0+

∑

n∈Z+: |Bn(x)|≥ε
Bn(x) = f(x).
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Write

(4.5)
∑

n∈Z+: |Bn(x)|≥ε
Bn(x)− f(x) = S1 + S2,

where

S1 =
∑

n∈Z+: |Bn(x)|≥ε
Bn(x)−

∑

n∈Z : |f̂(n)|≥ε/2

f̂(n)einx,

S2 =
∑

n∈Z : |f̂(n)|≥ε/2

f̂(n)einx − f(x).

We need to prove that

(4.6) S2 = o(1).

For S1 we have the following estimate:

(4.7) |S1| ≤
∑

n∈Z+: |Bn(x)|<ε
|f̂(n)|≥ε/2

|Bn(x)| ≤
∑

n∈Z+: |f̂(n)|≥ε/2

ε = εo(1/ε) = o(1).

The relation (4.6) follows from (4.4), (4.5), (4.7). By (4.3) and (4.6), we have
x ∈ Ac(f).

We proceed to the proof of the second part of Theorem 4.2. Taking into
account the part already proved, we conclude that it is sufficient to prove
that if Ac(f) = ∅ then mes(Ar(f)) = 0. We note that in the first part we
have proved that if (4.3) is satisfied then Ac(f) = Ar(f). Thus, it is sufficient
to show that if (4.3) is not satisfied then mes(Ar(f)) = 0. We will prove that
if (4.3) is not satisfied then the relation

lim
ε→0+

ε|{n : |Bn(x)| ≥ ε}| = 0

does not hold for almost all x ∈ T. This follows from the assertion below,
which is a generalization of the classical Denjoy–Lusin theorem [Z, p. 232].

Theorem 4.3. Let X be a quasi-Banach space of sequences z :={zn}∞n=0
with the following properties:

(1) if z ∈ X and |yn| ≤ |zn| for all n then y := {yn} ∈ X and ‖y‖ ≤ ‖z‖;
(2) if z ∈ X and zN ∈ X is defined as: zNn = zn for n ≤ N , zNn = 0 for

n > N , then
‖zM − zN‖ → 0 (M,N →∞).

Let
∑
n∈Z f̂(n)einx be a trigonometric series, |f̂(−n)| = |f̂(n)|, x ∈ T,

B0 = f̂(0), Bn(x) = f̂(n)einx + f̂(−n)e−inx for n > 0, and E be a subset
of T of positive measure. If {Bn(x)} ∈ X for all x ∈ E, then {fn}∞n=0 :=
{f̂(n)}∞n=0 ∈ X.
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In the case X = l1 Theorem 4.3 is the Denjoy–Lusin theorem. Applying
Theorem 4.3 to the space of sequences {an} satisfying (3.2) with the quasi-
norm supε>0 ε|{n : |an| ≥ ε}|, we complete the proof of Theorem 4.2.

Proof of Theorem 4.3. By (2), for any x ∈ E,

(4.8) lim
M,N→∞

‖{BMn (x)} − {BNn (x)}‖ = 0.

Note that the mappings x 7→ {|BMn (x)|} and x 7→ {|BNn (x)|} are continuous.
By (1) the mappings x 7→ ‖{|BMn (x)|}‖ and x 7→ ‖{|BNn (x)|}‖ are also
continuous. For x ∈ E define

gN (x) := sup
M>N

‖{BMn (x)} − {BNn (x)}‖.

These are measurable functions such that for each x ∈ E (see (4.8)),

lim
N→∞

gN (x) = 0.

By Egorov’s theorem we can take a subset E1 ⊂ E of positive measure such
that the convergence in (4.8) is uniform. Thus,

(4.9) lim
M,N→∞

sup
x∈E1

‖{BMn (x)} − {BNn (x)}‖ = 0.

Consider n with |f̂(n)| > 0. There exists x0 ∈ T such that e2πinx0 =
−f̂(−n)/f̂(n), or Bn(x0) = 0. For x ∈ T we have

|Bn(x)| = 2|sin(n(x− x0))| |f̂(n)|.
This implies

mes{x ∈ T : |Bn(x)|/|f̂(n)| ≤ 2 sinu} = 4u (0 ≤ u ≤ π/2).

Therefore,

(4.10)
�

E1

|Bn(x)| ≥ C|f̂(n)|, C =
mesE1�

0

2 sin(u/4) du.

For arbitrary positive integers M and N with M > N we find from
(4.10) and the condition (1) of the theorem that

(4.11)
∥∥∥

�

E1

({|BMn (x)|} − {|BNn (x)|}) dx
∥∥∥ ≥ C‖{|fMn |} − {|fNn |}‖.

It follows from (1.1) that
∥∥∥

�

E1

({|BMn (x)|} − {|BNn (x)|}) dx
∥∥∥
p

≤ 4
�

E1

‖{|BMn (x)|} − {|BNn (x)|}‖p dx.

Combining this inequality with (4.11) we obtain

‖{|fMn |} − {|fNn |}‖p ≤ 4C−p
�

E1

‖{|BMn (x)|} − {|BNn (x)|}‖p dx,
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and by (4.9),
lim

M,N→∞
‖{|fMn |} − {|fNn |}‖ = 0.

So, the sequence {|f̂(n)N |} is a Cauchy sequence. It has a limit w ∈ X.
Consider the linear functional e∗n on X defined by e∗n(y) = yn for y ∈ X.
We have

wn = e∗n(w) = lim
N→∞

e∗n(fNn ) = fn.

Therefore, {fn}∞n=0 = w ∈ X. This completes the proof of Theorem 4.3.
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