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On BMO-regular couples of lattices
of measurable functions
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S. V. Kislyakov (St. Petersburg)

Dedicated to A. Pełczyński on the occasion of his 70th anniversary

Abstract. We introduce a new “weak” BMO-regularity condition for couples (X,Y )
of lattices of measurable functions on the circle (Definition 3, Section 9), describe it in
terms of the lattice X1/2(Y ′)1/2, and prove that this condition still ensures “good” in-
terpolation for the couple (XA, YA) of the Hardy-type spaces corresponding to X and Y
(Theorem 1, Section 9). Also, we present a neat version of Pisier’s approach to interpo-
lation of Hardy-type subspaces (Theorem 2, Section 13). These two main results of the
paper are proved in Sections 10–18, where some related material of independent interest
is also discussed. Sections 1–8 are devoted to the background and motivations, and also
include a short survey of some previously known results concerning BMO-regularity. To a
certain extent, the layout of the paper models that of the lecture delivered by the author
at the conference in functional analysis in honour of Aleksander Pełczyński (Będlewo,
September 22–29, 2002).

1. The set-up. By a lattice of measurable functions (or simply a lat-
tice) we mean a quasi-Banach space X consisting of measurable functions on
some σ-finite measure space (Σ,µ) and satisfying the following condition:
if f ∈ X, g is measurable, and |g| ≤ |f |, then g ∈ X and ‖g‖ ≤ C‖f‖.
When talking of a Banach lattice, we also assume that C = 1. In this pa-
per, for the basic measure space we take the product (T×Ω,m×µ), where
m is the normalized Lebesgue measure on the unit circle T, and (Ω,µ) is
some σ-finite measure space. For technical reasons (see [6]), we often as-
sume that the measure µ is discrete. This assumption is not too restrictive,
however, because still fairly often it can be lifted by approximation by step
functions. The case of functions on T is included by taking a point mass
for µ.
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Let N+ be the boundary Smirnov class (see, e.g., [11]). The analytic part
XA of a lattice X is defined as follows:

XA = {f ∈ X : f(·, ω) ∈ N+ for a.e. ω}.
In order to avoid degeneration, we impose the following condition on X: for
every nonzero f in X there exists g ∈ X with g ≥ |f |, ‖g‖ ≤ c‖f‖, and
log |g(·, ω)| ∈ L1(T) for a.e. ω. See [3, 6] for more details, in particular, for
the proof that a Banach lattice X satisfies this condition if and only if so
does its order dual

X ′ =
{
g :

�
|fg| dmdµ <∞ for all f ∈ X

}
.

In what follows, this condition is tacitly assumed to be satisfied for all lattices
that occur.

Clearly, Lp(T)A is the Hardy space Hp (so, the spaces XA are also called
Hardy-type spaces).

2. Interpolation. We recall some facts about interpolation of Hardy-
type subspaces (for more details see, e.g., the survey [5] and the references
therein). If we mean real interpolation, it is most natural to study the basic
property of K-closedness.

We remind the reader (see [10]) that a subcouple (F0, F1) of an interpo-
lation couple (E0, E1) of quasi-Banach spaces is said to be K-closed if for
every vector f ∈ F0 +F1 and every decomposition f = e0 + e1 with ei ∈ Ei
(i = 0, 1) there exists another decomposition f = f0 + f1, where fi ∈ Fi
and ‖fi‖Ei ≤ C‖ei‖Ei (i = 0, 1). Of course, here C must not depend on the
particular vectors involved.

If the couple (XA, YA) is K-closed in (X,Y ), we say that the couple
(X,Y ) is analytically K-stable (or AK-stable). It is important that this con-
dition is self-dual. To state this in precise terms, we recall that a Banach
lattice X of measurable functions has the Fatou property if

fn → f a.e., fn ∈ X, ‖fn‖X ≤ C ⇒ f ∈ X and ‖f‖X ≤ C.
It is well known that every order dual Y ′ has this property and that the
Fatou property in X is equivalent to the identity X ′′ = X (see, e.g., [4]).

Proposition 1. Assume Banach lattices X and Y have the Fatou prop-
erty. Then the couple (X,Y ) is analytically K-stable if and only if so is the
couple (X ′, Y ′).

If X and Y are σ-order continuous Banach lattices, then, in a natu-
ral way, the Banach duals X∗ and Y ∗ can be identified with X ′ and Y ′,
and in this case Proposition 1 is a well known and easy exercise in separa-
tion theorems (moreover, in this case the Fatou property is irrelevant); see
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[10, 5]. In the present form Proposition 1 is more involved and was proved
in [6, Lemma 7].

3. BMO-regularity. Analytic K-stability occurs fairly often and is
rather well understood (see, e.g., [10, 7, 5]). The author’s feeling is that
in this topic only one serious question remains unanswered, namely, the
question about the relationship between this property and some kind of
BMO-regularity. The latter notion exists in at least two forms: for spaces
and for couples.

Definition 1. A quasi-Banach lattice X on T×Ω is said to be BMO-
regular (see [3]) if for every f ∈X with f 6= 0 there exists g ∈X satisfying
|f | ≤ g, ‖g‖X ≤ C‖f‖X , and ‖ log g(·, ω)‖BMO ≤ C for a.e. ω, where C does
not depend on f .

We remind the reader that the BMO-norm of every constant function
is 0, so that the above relations are homogeneous. The function g will be
called a BMO-majorant for f .

Definition 2. A couple (X,Y ) of quasi-Banach lattices on T×Ω is said
to be BMO-regular (see [5]) if for every nonzero x ∈ X and y ∈ Y there
exist u ∈ X, v ∈ Y with |x| ≤ u, |y| ≤ v, ‖u‖X ≤ C‖x‖X , ‖v‖Y ≤ C‖y‖Y ,
and ∥∥∥∥log

u(·, ω)
v(·, ω)

∥∥∥∥
BMO

≤ C

for a.e. ω. The pair (u, v) will be called a BMO-majorant for (x, y).

Clearly, if both X and Y are BMO-regular, then the couple (X,Y ) is
also BMO-regular. The converse is not true. Indeed, a couple of the form
(X,X) is always BMO-regular: as a BMO-majorant for a pair (x, y) we
can take (‖x‖ϕ, ‖y‖ϕ), where ϕ = x/‖x‖ ∨ y/‖y‖ + εψ, ψ ∈ X is strictly
positive a.e., and ε is a small positive number. On the other hand, not all
lattices X are BMO-regular. For example, Lp(w) is BMO-regular if and only
if esssupω∈Ω ‖logw(·, ω)‖ <∞ (see [3, 5]).

The following fact was proved in [5] (another proof will be given in
Subsection 14.2 below).

Proposition 2. Every BMO-regular couple is analytically K-stable.

At present no other examples of AK-stable couples are known.

4. Duality. In Sections 4–8 we present a summary of known results
about BMO-regularity. We can say that for individual spaces this property
is fairly well understood, whereas for couples it is still somewhat elusive.
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Since some form of BMO-regularity is conjectured to be equivalent to
AK-stability, by Proposition 1, BMO-regularity is expected to be a self-dual
property. In [6] it was proved that for individual spaces this is really the case.

Proposition 3 ([6]). Let (Ω,µ) be a discrete space. Suppose a Banach
lattice X of measurable functions on T×Ω has the Fatou property. If X is
BMO-regular , then so is X ′.

Since the Fatou property in X is equivalent to the identity X ′′ = X, the
reverse implication is also true.

No analog of this statement for BMO-regular couples is available at
present.

5. Arithmetic. For a quasi-Banach lattice X of measurable functions
and a positive number a, we put

Xa = {x : |x|1/a ∈ X}, ‖x‖Xa =
∥∥|x|1/a

∥∥a.
This is a quasi-Banach lattice, which is Banach if X is Banach and a ≤ 1.

For two quasi-Banach lattices X and Y , we put

XY = {xy : x ∈ X, y ∈ Y }, ‖f‖XY = inf ‖x‖X‖y‖Y ,
where the infimum is taken over all factorizations f = xy. The space XY is
a quasi-Banach lattice. If X and Y are Banach lattices and 0 < α < 1, then
X1−αY α is also Banach and (X1−αY α)′ = (X ′)1−α(Y ′)α (see [9]). If X is a
Banach lattice, then XX ′ = L1 (the Lozanovskĭı factorization theorem, see
[9]). Next, (L∞)a = L∞ for every a and XL∞ = X for every X.

The following statements are direct consequences of the definitions.

If X is BMO-regular and a > 0, then Xa is BMO-regular. If both X and
Y are BMO-regular , then so is XY .

If the couple (X,Y ) is BMO-regular and a > 0, then the couple (Xa, Y a)
is BMO-regular. If the couples (X,Y ) and (E,F ) are BMO-regular , then so
is the couple (XE,Y F ).

6. Examples of BMO-regular spaces. Let H be the harmonic con-
jugation operator. It acts also on functions on T×Ω in the first variable.

1◦ If H is bounded on X, then X is BMO-regular. See [5, 6].
Let w be a positive measurable function on T × Ω (to avoid degen-

eration, in accordance with Section 1 we must also impose the condition
logw(·, ω) ∈ L1(T) for a.e. ω). For 0 < p <∞, we define Lp(w) in the usual
way (‖f‖Lp(w) = ( � |f |pw dmdµ)1/p). It is convenient to put L∞(w) = {f :
|f | ≤ Cw for some constant C}, with the natural norm.

2◦ For 0 < p ≤ ∞, the space Lp(w) is BMO-regular if and only if
esssupω∈Ω ‖ logw(·, ω)‖BMO<∞.
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For p = ∞, the “if” part is true because ‖x‖w is a BMO-majorant for
x ∈ L∞(w). Then for 0 < p < ∞ the “if” part is a consequence of 1◦ and
the arithmetic discussed in Section 5 (note that multiplication of Lp by a
weighted L∞ leads to a weighted Lp). The “only if” part can be deduced,
for example, from Proposition 2 and the results of [7].

3◦ A less trivial example is L∞(T, lp), 0 < p <∞ (this can be regarded
as a space of functions on T×N). Here BMO-regularity follows, for instance,
from the criterion in Section 7 below.

7. A criterion. With some unessential reservations, a Banach lattice X
with the Fatou property is BMO-regular if and only if H acts on ((Xa)′)1/2

for some a > 0.
The “only if” part is an easy consequence of the Helson–Szegő theorem

(see [2] concerning the latter). The argument can be found in [12, 5]. Two
proofs of the “if” part are known. One of them is basically due to Rubio de
Francia [12] and involves the Grothendieck inequality among other things.
See [5] for a detailed exposition. A slight additional restriction on X is
needed in that proof, which is certainly satisfied if, e.g., µ is discrete. In
the latter case another proof is available, which is very short modulo the
rather involved Proposition 3: by 1◦ in Section 6, the space ((Xa)′)1/2 is
BMO-regular, and it suffices to resort to taking powers and duals.

8. Division. The arithmetic discussed in Section 5 can be supplemented
with the following statement.

Proposition 4 (see [6]). Suppose µ is discrete, X and Y are Banach
lattices on (T × Ω, m × µ) with the Fatou property , and 0 < α < 1. If
X1−αY α and Y are BMO-regular spaces, then so is X.

An equivalent formulation is as follows: if EF and F are BMO-regular
and Eγ , F γ are Banach lattices for some γ > 0, then E is BMO-regular.
That is why we refer to Proposition 4 as the division property.

We include the proof of Proposition 4 because similar patterns will be
used below repeatedly. By Proposition 3, Y ′ is BMO-regular, and conse-
quently, so is (X1−αY α)(Y ′)α = X1−α(L1)α. Passing to the dual again, we
see that (X1−α(L1)α)′ = (X ′)1−α(L∞)α = (X ′)1−α is BMO-regular. Then
we raise to the power 1/(1− α) and dualize once again.

9. Weak BMO-regularity. For couples, no division theorem is avail-
able at present. As will be clear from what follows, such a statement would
be equivalent to the conjectural duality theorem. Precisely this gap hinders
a handy description of BMO-regular couples. However, this difficulty can be
bypassed. To this end, we introduce yet another kind of BMO-regularity.
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Definition 3. A couple (X,Y ) of Banach lattices is said to be weakly
BMO-regular if there is a BMO-regular couple (E,F ) of Banach lattices and
a number α > 0 such that the couple (XαE, Y αF ) is BMO-regular.

Basically, this notion serves to substitute the division property. The ex-
ponent α is of technical nature. Note that we cannot get rid of α by mere
raising to a power because E1/α and F 1/α may fail to be Banach. However,
elimination of α is possible (see the theorem below).

Now we state the first main result of the paper.

Theorem 1. Suppose (Ω,µ) is a discrete measure space and X, Y are
Banach lattices of measurable functions on (T × Ω,m × µ) with the Fatou
property.

(a) For the couple (X,Y ), weak BMO-regularity still suffices for AK-
stability.

(b) The following statements are equivalent :

(I) the couple (X,Y ) is weakly BMO-regular ;
(II) the couple (XL1, Y L1) is BMO-regular ;

(III) the space XY ′ is BMO-regular.

It is possible to remain within Banach lattices in this statement by tak-
ing the power 1/2 throughout in (II) and (III). We still assume the Fatou
property in the next corollary.

Corollary. If µ is discrete, then weak BMO-regularity is a self-dual
property.

Proof. Indeed (X1/2(Y ′)1/2)′ = (X ′)1/2Y 1/2, and it suffices to refer to
Proposition 3.

I conjecture that, in fact, weak BMO-regularity is the same as BMO-
regularity for couples.

10. An auxiliary result. First, we discuss statement (b) in Theorem 1.
It will be deduced by simple “arithmetic” from the following basic lemma.

Lemma 1. Suppose µ is a discrete measure, and Banach lattices X and Y
have the Fatou property. If the lattice Y and the couple (X,Y ) are BMO-
regular , then the lattice X is BMO-regular.

We prove this statement by using the following result due to N. Kalton
[3, Lemma 4.4].

Lemma 2. Let Z be a Banach lattice on T × Ω. Suppose there exist
constants c, C, and M with 0 < c < 1 such that for every f ∈ X with f ≥ 0,
f 6= 0, there is a measurable set A ⊂ T × Ω and a function g ≥ fχA with
the following properties:
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(i) ‖f − fχA‖Z ≤ c‖f‖Z ;
(ii) ‖g‖Z ≤M‖f‖Z ;
(iii) ‖log g (·, ω)‖BMO ≤ C for a.e. ω.

Then Z is a BMO-regular lattice.

Surely, the proof goes by iteration: after the first step the assumption of
the lemma is applied to f − fχA, and so on. A sequence of gi’s satisfying
(iii) will arise. The crucial observation is that (iii) can be rephrased with the
help of the Helson–Szegő theorem (see, e.g., the monograph [2]): for some
γ ≤ 1 depending only on C and for all “reasonable” functions ϕ on T, we
have �

T
|Hϕ(·)|2gi(·, ω)γ ≤ D(C)

�

T
|ϕ(·)|2gi(·, ω)γ .

These inequalities can be added, etc. See [3] for the details.

Proof of Lemma 1. By Proposition 4 (note that this is the only point
where we use the assumption that µ is discrete), it suffices to prove that the
lattice X1/2Y 1/2 is BMO-regular. We verify the conditions of Lemma 2 for
Z = X1/2Y 1/2. Suppose 0 ≤ f ∈ X1/2Y 1/2 and ‖f‖ = 1. Since Y is BMO-
regular, by the definition of the norm in X1/2Y 1/2 we can find x ∈ X with
x ≥ 0, ‖x‖X ≤ 1 and y ∈ Y with y ≥ 0, ‖y‖Y ≤ 1 such that f ≤ Dx1/2y1/2

and ‖log y (·, ω)‖BMO ≤ D (here D does not depend on f). Since the couple
(X,Y ) is BMO-regular, we can find x1 ≥ x and y1 ≥ y such that

‖x1‖X ≤ D1, ‖y1‖Y ≤ D1,

∥∥∥∥ log
x1(·, ω)
y1(·, ω)

∥∥∥∥
BMO

≤ D1.

(Again, D1 does not depend on f .) Let δ > 0. We put A = {y/y1 > δ} and
g = Dδ−1(x1y

−1
1 )1/2y, and check that if δ is sufficiently small, then (i)–(iii)

are satisfied with these g and A.
First, g ≤ Dδ−1x

1/2
1 y1/2, so that ‖g‖X1/2Y 1/2 ≤ Dδ−1D

1/2
1 (this is (ii)).

Second, clearly, ‖log g(·, ω)‖BMO ≤ D1/2 +D (this is (iii)). Third,

‖f − fχA‖ ≤ D‖x‖1/2X ‖y(1− χA)‖1/2Y ≤ D‖δy1‖1/2Y ≤ D(δD1)1/2

(this is (i)). Finally,

g ≥ Dδ−1(x1y
−1
1 )1/2yχA

≥ Dδ−1(x1y
−1
1 )1/2(δy1)χA ≥ Dx1/2

1 y
1/2
1 χA ≥ fχA,

as required.

11. Proof of statement (b) in Theorem 1. We start with the im-
plication (I)⇒(III). First, assume that the couple (X,Y ) itself is BMO-
regular. Taking the product of two BMO-regular couples (X1/2, Y 1/2) and
((Y ′)1/2, (Y ′)1/2) and recalling the Lozanovskĭı factorization theorem, we see
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that the couple (X1/2(Y ′)1/2, (L1)1/2) = (X1/2(Y ′)1/2, L2) is BMO-regular.
Since L2 is BMO-regular, (III) follows from Lemma 1.

In the general case, we only know that the couple (XaE, Y aF ) is BMO-
regular for some a > 0 and some BMO-regular couple (E,F ) of Banach
lattices. We raise the former couple to the power γ = (a+1)−1 to obtain the
BMO-regularity of the couple (X1−γEγ , Y 1−γF γ), in which both elements
are Banach. By the first part of the proof, the spaces (X1−γEγ)(Y 1−γF γ)′ =
(XY ′)1−γ(EF ′)γ and EF ′ are BMO-regular. Application of Proposition 4
(see also the comments after it) shows thatXY ′ is BMO-regular, as required.

Now we prove that (III)⇒(II). For this we observe that the couple
(XY ′, L1) is BMO-regular, multiply it by the BMO-regular couple (Y, Y ),
and again use the fact that Y Y ′ = L1.

Finally, the implication (II)⇒(I) is trivial.

12. Strong AK-stability. Before discussing statement (a) of Theo-
rem 1, we make a technical remark. The K-closedness of the couple (XA, YA)
in (X,Y ) means that an arbitrary measurable decomposition of a function
f ∈ XA + YA can be replaced by an “analytic” decomposition with good
estimates of norms. It is natural to ask whether the same can be done un-
der the assumption f ∈ (X + Y )A instead of f ∈ XA + YA. If yes, we say
that the couple (X,Y ) is strongly AK-stable. Often this property is satisfied
automatically in the presence of AK-stability.

Lemma 3. (a) If X and Y are Banach lattices having the Fatou property
and the couple (X,Y ) is AK-stable, then it is strongly AK-stable.

(b) If (X,Y ) is a BMO-regular couple of quasi-Banach lattices, then it
is strongly AK-stable.

Since we are going to reprove Proposition 2 anyway, we postpone the
explanation of (b) till that moment. Now, we prove (a). Suppose f(·, ω) ∈
N+ for a.e. ω and |f | ≤ g+h, where g ∈ X, h ∈ Y . Without loss of generality
we assume that log g(·, ω) ∈ L1(T) for a.e. ω. For every n ∈ N we construct
the “outer” function

ϕn = exp
[
log
(

1 ∧ ng|f |

)
+ iH

(
log
(

1 ∧ ng|f |

))]
.

Then |fϕn| ≤ ng, so that fϕn ∈ XA ⊂ XA + YA. Next, |ϕn| ≤ 1, whence
|fϕn| ≤ g + h. By K-closedness, fϕn = gn + hn, where gn ∈ XA,
hn ∈ YA, ‖gn‖X ≤ C‖g‖X , and ‖hn‖Y ≤ C‖h‖Y .

Now, ϕn → 1 in measure on every set of finite measure, whence fϕn → f
in the same sense. Passing to a subsequence, we can make this conver-
gence fast. We use the (nontrivial) result of Bukhvalov and Lozanovskĭı
[4, Chapter 10, §5] stating that the Fatou property implies that some “si-
multaneous” finite convex combinations of the form Gk =

∑
n≥k λ

(k)
n gn and
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Hk =
∑
n≥k λ

(k)
n gn converge (say, to u and v) in the same sense as k →∞.

It can easily be arranged that the same convex combinations of fϕn’s con-
verge to f . Finally, by the Fatou property, the balls of XA and YA are closed
under convergence in measure on every set of finite measure [6, Lemma 3].
Thus, u ∈ XA, v ∈ YA, and f = u+ v with the required norm estimates.

13. A version of Pisier’s method. In [10] G. Pisier proposed a
method for verifying AK-stability. See also the survey [5] about this. The
original version of that method was based on duality (as in Proposition 1)
and a construction involving powers of the lattices in question. Here we give
a neat version of this second ingredient, which is another main result of the
paper.

Theorem 2. Suppose Banach lattices X, Y , and F have the Fatou prop-
erty. If for some α ∈ (0, 1) the couple (F 1−αXα, F 1−αY α) is analytically
K-stable, then so is the couple (X,Y ).

We shall apply this theorem only with F = L∞. Then it reads as follows:
if (Xα, Y α) is AK-stable for some α ∈ (0, 1), then (X,Y ) is AK-stable. This
differs from Pisier’s original version [10] and some subsequent refinements
(see, e.g., [5]) by the absence of any additional “interpolation” assumptions
about the spaces in question.

14. Applications. We postpone the proof of Theorem 2 to give some
applications of it.

14.1. First, we prove statement (a) of Theorem 1. By statement (b) of
that theorem, the couple (X1/2(L1)1/2, Y 1/2(L1)1/2) is BMO-regular, and
Theorem 2 applies. However, we may get the result by using only the version
of Theorem 2 with F = L∞, as follows. By Proposition 2, the above couple
is AK-stable, and by Proposition 1 so is the couple of the order duals,
i.e., ((X ′)1/2, (Y ′)1/2). By the restricted version of Theorem 2, the couple
(X ′, Y ′) is AK-stable, and another reference to Proposition 1 finishes the
proof.

14.2. Now we prove Proposition 2; moreover, we verify statement (b) of
Lemma 3. The beginning is as in [5]. Let (X,Y ) be a BMO-regular couple
of quasi-Banach lattices, let f ∈ (X + Y )A, and let |f | ≤ g + h, where
g ∈ X, h ∈ Y . We take a BMO-majorant (see Definition 2) (u, v) for (x, y).
Clearly, f ∈ (L∞(u) + L∞(v))A, and a moment’s reflection shows that it
suffices to prove that the couple (L∞(u), L∞(v)) is strongly AK-stable. By
statement (a) of Lemma 3, this will be proved if we show that this couple
is AK-stable. A change of density reduces this to the AK-stability of the
couple (L∞(w), L∞), where w = u/v, so that ‖logw(·, ω)‖BMO ≤ C for
a.e. ω.
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Now, in contradistinction to the procedures in [5], we use Pisier’s method.
Theorem 2 shows that, instead of (L∞(w), L∞), we may consider the couple
(L∞(w)α, (L∞)α) = (L∞(wα), L∞) for small α > 0. By duality (Proposi-
tion 1), it suffices to prove that the couple (L1(wα), L1) is AK-stable (note
that L∞(a)′ = L1(a) for every weight a). Another application of Theorem 2
reduces the matter to the couple (L1(wα)1/2, (L1)1/2) = (L2(wα), L2).

But if α is small, then the function w(·, ω)α satisfies the Helson–Szegő
condition (see [2]) uniformly in ω, i.e., the Riesz projection (in the first
variable) is bounded on L2(wα). Since it is bounded also on L2, the result
follows.

15. Multiplication and division. The proof of Theorem 2 presented
below is almost entirely “soft”: the principal ingredient is the statement
about abstract interpolation couples presented in the next section. Here
we discuss another ingredient, related to the specific features of the spaces
involved.

Lemma 4. Let X, Y , and F be quasi-Banach lattices of measurable func-
tions on (T×Ω,m×µ). If the couple (X,Y ) is strongly AK-stable, then so
is the couple (XF, Y F ).

Proof. Let f ∈ (XF+Y F )A, and let |f | ≤ g+h, where g ∈ XF , h ∈ Y F .
Then g = xe1, h = ye2, where ‖e1‖F = ‖e2‖F = 1, ‖x‖X ≤ 2‖g‖XF ,
‖y‖Y ≤ 2‖h‖Y F . We put a = e1∨e2 and find b ≥ a such that ‖b‖F ≤ C‖a‖F
and log a(·, ω) ∈ L1(T) for a.e. ω.

Next, let B = exp(log b + iH(log b)). Then |fB−1| ≤ x + y, so that
fB−1 ∈ (X + Y )A. By assumption, we can write fB−1 = x1 + y1, where
x1 ∈ XA, y1 ∈ YA, ‖x1‖X ≤ C‖x‖X , and ‖y1‖Y ≤ C‖y‖Y . Then f =
Bx1 +By1 is the required decomposition of f .

Corollary. If X, Y , and F are Banach lattices with the Fatou property
and 0 < α < 1, then the couples (F 1−αXα, F 1−αY α) and (Xα, Y α) may be
(strongly) AK-stable only simultaneously.

Proof. Under the assumptions of the corollary, strong AK-stability is
the same as AK-stability.

If the couple (F 1−αXα, F 1−αY α) is strongly AK-stable, then by
Lemma 4 so is the couple ((F ′F )1−αXα, (F ′F )1−αY α) = ((L1)1−αXα,
(L1)1−αY α). Passing to the duals (Proposition 1), we see that the couple
((X ′)α, (Y ′)α) is AK-stable. Next, we multiply it by (L1)1−α and again pass
to the duals.

In the other direction we simply multiply the couple (Xα, Y α) by F 1−α

in accordance with Lemma 4.
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16. Gluing scales. A somewhat weaker version of the proposition be-
low was proved in [8] (see also the survey [5]). Let (X0,X1) be an in-
terpolation couple of quasi-Banach spaces, and let θ ∈ (0, 1). We recall
that a space E compatible with the couple (X0,X1) is said to be of class
C(θ,X0,X1) (see [1, pp. 48, 56]) if E ⊂ (X0,X1)θ,∞ (continuous inclusion)
and ‖e‖E ≤ C‖e‖1−θX0

‖e‖θX1
for e ∈ X0 ∩X1.

Proposition 5. Let (X0,X1) be an interpolation couple of quasi-Ba-
nach spaces, and let Y0 and Y1 be closed subspaces of X0 and X1, respectively.
Suppose 0 < θ < δ < 1, and suppose E0 ∈ C(θ,X0,X1), E1 ∈ C(δ,X0,X1).
Let F0 and F1 be closed subspaces of E0 and E1 both containing Y0∩Y1 and
satisfying F0 ⊂ Y0 + F1, F1 ⊂ F0 + Y1. If the couples (Y0, F1) and (F0, Y1)
are K-closed in (X0, E1) and (E0,X1), respectively , then the couple (Y0, Y1)
is K-closed in (X0,X1).

Vaguely, the proposition says that if K-closedness occurs on two “over-
lapping intervals” (0, δ) and (θ, 1) of the “real interpolation scale”, we can
“glue” these intervals to obtain K-closedness throughout.

Proof. In [8] (and in [5]) this fact was proved under the following stronger
assumptions:

E0 = (X0,X1)θ,p, E1 = (X0,X1)δ,q,

F0 = (Y0, Y1)θ,p, F1 = (X0,X1)δ,q

for some p, q ∈ (0,∞]. If we show that, in Proposition 5, F0 is of class
C(θ,X0,X1) and F1 is of class C(δ, Y0, Y1), the statement can easily be re-
duced to that particular case by the reiteration theorem and the Holmstedt
formula (see [1, Theorems 3.5.3 and 3.11.5, and Corollary 3.6.2]; the initial
θ and δ change slightly after this).

We only prove that F0 ∈ C(θ,X0,X1). (The relation F1 ∈ C(δ, Y0, Y1) is
verified in a similar way.) Since E0 ∈ C(θ,X0,X1), the inequality ‖a‖F0 ≤
C‖a‖1−θY0

‖a‖θY1
, a ∈ Y0 ∩ Y1, is clear. It remains to show that F0 is included

continuously in (Y0, Y1)θ,∞.
By the reiteration theorem, we have

E0 ⊂ (X0,X1)θ,∞ = (X0, E1)η,∞, where η = θδ−1,(1)

E1 ⊂ (X0,X1)δ,∞ = (E0,X1)ξ,∞, where δ = (1− ξ)θ + ξ.(2)

Suppose f ∈ F0 and ‖f‖F0 = 1. By (1), for every t > 0 we can write
f = u + v, where u ∈ X0, v ∈ E1, ‖u‖X0 ≤ Ctη, and ‖v‖E1 ≤ Ctη−1. By
K-closedness, we may assume that u ∈ Y0 and v ∈ F1 (surely, C changes,
but it remains independent of f and t).

We do the same for v using (2): for every τ > 0, we can write v = f ′+w,
where f ′ ∈ F0, w ∈ Y1, ‖f ′‖F0 ≤ C ′τ ξtη−1, and ‖w‖Y1 ≤ C ′τ ξ−1tη−1. This
leads to the relation f = (u+ w) + f ′.
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Now, we introduce a new parameter s > 0 and fix t and τ so as to have

Ctη = Asθ, C ′τ ξ−1tη−1 = Asθ−1,

where A is a constant to be chosen momentarily. Simple calculations show
that ‖f ′‖F0 ≤ C ′′A−γ , where γ > 0 depends only on θ and δ. Taking A in
such a way that C ′′A−γ = 1/2, for the decomposition f = u + w + f ′ we
obtain ‖u‖Y0 ≤ Asθ, ‖w‖Y1 ≤ Asθ−1, and ‖f ′‖F0 ≤ 1

2 . The error term f ′ is
eliminated by iteration: the same procedure yields f ′ = u1 + v1 + f ′′, where
‖u1‖Y0 ≤ 1

2As
θ, ‖w1‖Y1 ≤ 1

2As
θ−1, ‖f ′′‖F0 ≤ 1

4 , and so on.

17. Proof of Theorem 2. By the Corollary to Lemma 4, we may
assume that the couple (Xα, Y α) is (strongly) AK-stable. Next, we may
assume that α > 1/2 (otherwise we repeat the argument several times). In
this case we prove a slightly stronger statement.

Lemma 5. Let 1/2 < α < 1, and let U and V be quasi-Banach lattices.
If the couple (Uα, V α) is strongly AK-stable, then the couple (U, V ) is AK-
stable.

Observe that, under the conditions of Theorem 2, strong AK-stability
arises automatically by the Fatou property (Lemma 3).

Proof of Lemma 5. By Lemma 4, the couples (U 1−αUα, U1−αV α) =
(U, U1−αV α) and (UαV 1−α, V αV 1−α) = (U1−(1−α)V 1−α, V ) are strongly
AK-stable. We verify the conditions of Proposition 5 with θ = 1−α, η = α
(note that θ < η because α > 1/2), X0 = U , X1 = V , Y0 = UA, Y1 =
VA and E0 = U1−θV θ, E1 = U1−δV δ, F0 = (E0)A, F1 = (E1)A. Indeed,
the Young inequality says that |x1−θyθ| ≤ tθ(1 − θ)|x| + tθ−1θ|y|, whence
E0 ⊂ (X0,X1)θ,∞. Next, clearly, ‖x1−θyθ‖E0 ≤ ‖x‖1−θX0

‖y‖θX1
, so that E0 ∈

C(θ,X0,X1). Similarly, E1 ∈ C(δ,X0,X1). The inclusion Y0 ∩ Y1 ⊂ F0 ∩ F1

is obvious, and the inclusions F0 ⊂ Y0 + F1 and F1 ⊂ F0 + Y1 follow from
strong AK-stability and the inclusions E0 ⊂ X0 + E1, E1 ⊂ E0 +X1.

18. Our knowledge concerning the question of whether AK-stability im-
plies some form of BMO-regularity is still incomplete. Beyond the positive
answer for weighted Lp-spaces (see [7]), I can only name Theorem 1 in [6],
which requires one supplementary variable.

On the measure space Z with the counting measure, consider the weight
wλ given by wλ(n) = λn (λ > 1). If X is a lattice on T×Ω, then the symbols
like X(lp(Z)) = X(lp) and X(lp(wλ)) have an obvious meaning.

Theorem 1 in [6] says that if µ is discrete and X is a Banach lattice on
(T × Ω,m × µ) having the Fatou property, then X is BMO-regular if and
only if the couple (X(lr), L∞(l∞(wλ)) is AK-stable for some (equivalently,
for all) r ∈ [1,∞) and λ > 1. By duality, the same is true if we replace
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L∞(l∞(wλ)) by L1(l1(wλ)) and the condition r ∈ [1,∞) by r ∈ (1,∞]. The
results of the present paper allow us to supplement these statements. We
present two facts as examples. Other exercises in the same spirit are possible.

Corollary 1. Under the above assumptions, if the couple (X1/p(lr),
Lp(lp(wλ)) is AK-stable for some λ > 1 and r ∈ (p,∞], then X is BMO-
regular.

Corollary 2. If Y is another Banach lattice on T × Ω, the couple
(X(lp), Y (l1(wλ)) is AK-stable for some λ > 1 and some p ∈ (1,∞], and
XY ′ is a Banach lattice, then XY ′ is BMO-regular. The converse is also
true (for all λ > 1 and p ∈ (1,∞]), even without the assumption that XY ′

is a Banach lattice.

Corollary 1 is quite easy. We indicate the proof of Corollary 2. For the di-
rect statement, we multiply the couple mentioned in the corollary by Y ′(l∞)
to obtain the AK-stability of the couple ((XY ′)(lp), L1(l1(wλ)), and refer
to the preceding discussion. For the converse, we show that the couple men-
tioned in the corollary is weakly BMO-regular. By (b)(III) in Theorem 1,
it suffices to show that the space (XY ′)(lp(wλp)) is BMO-regular, and this
can be done as in the proof of the corollary in Subsection 2.1 of [6].
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