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Abstract. We investigate the energy of measures (both positive and signed) on com-
pact Riemannian manifolds. A formula is given relating the energy integral of a positive
measure with the projections of the measure onto the eigenspaces of the Laplacian. This
formula is analogous to the classical formula comparing the energy of a measure in Eu-
clidean space with a weighted L2 norm of its Fourier transform. We show that the bound-
edness of a modified energy integral for signed measures gives bounds on the Hausdorff
dimension of the measure. Refined energy integrals and Hausdorff dimensions are also
studied and applied to investigate the singularity of Riesz product measures of dimension
one.

1. Introduction. In this paper we study the energy of measures on
compact, connected Riemannian manifolds. There is a well known and use-
ful formula relating the energy of a positive, finite measure on Rn to a
weighted L2 norm of its Fourier transform (cf. [16, p. 162]). We obtain an
analogous formula comparing the energy of a positive measure on a com-
pact manifold with a weighted sum of the L2 norms of the projections of the
measure onto the spaces of eigenfunctions of the Laplacian operator. This
weighted sum can be thought of as a weighted harmonic representation. The
corresponding formulas for measures on the n-dimensional sphere or torus,
which were obtained in [8] and [9], can be derived as special cases of our
new formula.

Even on Euclidean space the natural extension of the energy integral to
signed measures need not be well defined. Motivated by [10], we consider
a modification of this integral. Our modified integral is defined for all fi-
nite measures and is comparable to the usual energy integral in the case
of a positive measure. We show that the finiteness of the modified energy

2000 Mathematics Subject Classification: Primary 58C35, 28A12; Secondary 42A55,
28A78.

Key words and phrases: energy, Hausdorff dimension, signed measure, Riesz product.
This research was supported in part by NSERC.

[291]



292 K. E. Hare and M. Roginskaya

integral gives a lower bound on the Hausdorff dimension of the measure, as
was shown in [10] for the energy integral of signed measures on Euclidean
spaces.

Measures can be classified by their Hausdorff dimension, the least dimen-
sion of any Borel set on which they are concentrated. However, there are
many interesting measures which have full Hausdorff dimension but are not
absolutely continuous with respect to the Hausdorff measure of that dimen-
sion. By introducing refined dimensions based on the functions xn|log x|s
(where n equals the dimension of the manifold), rather than the usual func-
tions xt, t ≤ n, we are able to quantify the singularity of (some) measures of
dimension n. We prove that the corresponding refined energy integral can
also be compared with a (suitable) weighted harmonic representation and
that the finiteness of this integral provides an upper bound on the (appro-
priate) refined Hausdorff co-dimension.

Our formula relating the refined energy integral with a weighted har-
monic representation of the measure is applied to study Riesz products on
the torus which have Hausdorff dimension one.

The paper is organized as follows: In Section 2 we derive our analogue
of the classical formula comparing the energy of a measure with the size
of its Fourier transform. The formula is applied to study the dimensions of
central measures on compact Lie groups in Section 3. The modified energy
integral for signed measures and its connection with Hausdorff dimension
are investigated in Section 4. This involves obtaining a variation of the
Besicovitch covering lemma for these manifolds. In Section 5 we study the
refined energy integral and refined Hausdorff co-dimensions, and in Section 6
apply these ideas to Riesz product measures on the torus.

2. Energy of a positive measure and its harmonic representa-
tion. Throughout the paper M will denote a connected, compact Rieman-
nian manifold of dimension n. The notation B(x, r) will denote the ball in
M centred at x and having radius r, and |B(x, r)| will denote its volume.

For a finite, positive, Borel measure µ on a manifold M one can define
the Riesz t-energy of µ by the formula

It(µ) =
�

M

�

M

1
d(x, y)t

dµ(x) dµ(y),

where d(x, y) is the metric on M . As both the kernel and the measure are
positive, the integral is well defined and the energy takes values in [0,∞].

The energy of a measure on Rn has proven to be a useful concept. For
example, if It(µ) <∞, then the Hausdorff dimension of any set on which µ is
concentrated is at least t. There is a well known and important relationship
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between the energy of a measure on Rn and its Fourier transform:

It(µ) = ct,n
�
|x|t−n|µ̂(x)|2 dx,

and this has been used to study a variety of things, including the Hausdorff
dimension of projections and intersections of sets, distance sets and the
average rate of decay of the Fourier transform (cf. [5], [16] and the references
cited therein).

The behaviour of the Laplacian, ∆f = div(∇f), on compact Riemannian
manifolds has been thoroughly studied (cf. [3], [4]). The set of eigenvalues
of the Laplacian is a discrete sequence {−λk} of non-positive real numbers.
The corresponding eigenfunctions are C∞ and can be chosen to form an
orthonormal basis in L2(M). The projection of a function f ∈ L2(M) onto
the finite-dimensional eigenspace corresponding to the eigenvalue −λk can
be obtained by the formula

Pk(f) =
�

M

Kk(x, y)f(y) dy,

where Kk(x, y) =
∑

j ϕjk(x)ϕjk(y), the sum being taken over an orthonor-
mal basis, {ϕjk}j , of the eigenspace associated with the eigenvalue −λk.
The kernel Kk is a C∞ function and thus the projection operator Pk can be
extended to the space of finite measures on M . We continue to denote by
Pk(µ) the image in L2 of this extended operator applied to the measure µ.

The Riesz energy of a measure and its harmonic representation are re-
lated by the following formula.

Theorem 2.1. Let M be a connected , compact , Riemannian manifold
of dimension n and suppose 0 < t < n. There exist constants A,B > 0,
depending on n, t and M , such that if µ is a positive, Borel measure on M
and µk = Pk(µ), then

AIn−t(µ) ≤
∑

k

(λk + 1)−t/2‖µk‖22 ≤ BIn−t(µ).(2.1)

The proof of this theorem depends on bounds of the heat kernel,
H(u, x, y). By the Sturm–Liouville decomposition (cf. [3, 139–140]) the heat
kernel can be represented as

H(u, x, y) =
∞∑

k=0

e−λkuKk(x, y),

with the series converging uniformly for each fixed u > 0. It is well known
that the heat kernel is a strictly positive C∞ function on (0,∞)×M ×M .

As the manifold is compact we may assume that its Ricci curvature is
bounded from below.
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Lemma 2.2 (see [14], [15]). For all δ > 0 there exist positive constants c
and C, depending only on M and δ, such that if x, y ∈M, then

c exp(−d(x, y)2/(4− δ)u)√
|B(x, u1/2)| |B(y, u1/2)|

≤ H(u, x, y) ≤ C exp(−d(x, y)2/(4 + δ)u)√
|B(x, u1/2)| |B(y, u1/2)|

for all u > 0 if M has non-negative curvature and for all u ∈ (0, 1) otherwise.

As the volume of any ball of radius r is comparable with min{r, 1}n (cf.
[18, 9.1.6]), we can reformulate this lemma.

Lemma 2.3. For all δ > 0 there exist positive constants c and C, de-
pending only on M and δ, such that if x, y ∈M , then

c(min{u, 1})−n/2 exp(−d(x, y)2/(4− δ)u)

≤ H(u, x, y) ≤ C(min{u, 1})−n/2 exp(−d(x, y)2/(4 + δ)u)

for all u > 0 if M has non-negative curvature and for all u ∈ (0, 1) otherwise.

Proof. We begin by considering Eu(µ) = � H(u, x, y) dµ(x) dµ(y) for
u > 0. Using the Sturm–Liouville decomposition for H we obtain

�
H(u, x, y) dµ(y) =

∞∑

k=0

e−uλkµk(x).(2.2)

The projection, µk, is pointwise dominated by ‖Kk(x, ·)‖∞‖µ‖. By
Weyl’s asymptotic formula the number of terms in the sum defining Kk

is a polynomial in λk and each of the terms is pointwise bounded by a
polynomial in λk (see [3, pp. 9, 112]). Thus the series (2.2) is uniformly
convergent in x for fixed u and

Eu(µ) =
∑

k

e−uλk
� �
Kk(x, y) dµ(y) dµ(x) =

∑

k

e−uλk‖µk‖22.

Using the estimates of Lemma 2.3 and fixing δ = 1 we have

c
� �

(min{1, u})−n/2 exp(−d(x, y)2/3u) dµ(x) dµ(y)

≤
∑

e−uλk‖µk‖22 ≤ C
� �

(min{1, u})−n/2 exp(−d(x, y)2/5u) dµ(x) dµ(y)

for each u > 0.
If the curvature is non-negative we set T = ∞, otherwise take T = 1.

Multiply both sides of the inequalities by the positive function

ψt(u) =
{
u−1+t/2 if u < 1,

u−1+(t−n)/2 if u ≥ 1,
(2.3)

and integrate over u in (0, T ). If we set

Qj(x, y) =
T�

0

u−1+(t−n)/2e−d(x,y)2/(4+j)u du for j = ±1,
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then after changing the order of integration we obtain

α
� �
Q−1(x, y) dµ(x) dµ(y) ≤

∑

k

T�

0

ψt(u)e−uλk du‖µk‖22(2.4)

≤ β
� �
Q1(x, y) dµ(x) dµ(y)

for new constants α, β which depend only on the dimension. Now

Q1(x, y) =
(
d(x, y)2

5

)(t−n)/2 T/d(x,y)2�

0

τ−1+(t−n)/2e−1/τ dτ

≤
(
d(x, y)2

5

)(t−n)/2∞�

0

τ−1+(t−n)/2e−1/τ dτ

= 5(n−t)/2d(x, y)t−nΓ
(
n− t

2

)
,

with equality holding if T =∞. (Here Γ is the classical gamma function.) As
M is compact, d(x, y)2 ≤ (diamM)2 <∞ for all x, y ∈M , and consequently,

Q−1(x, y) ≥
(
d(x, y)2

3

)(t−n)/2 T/(diamM)2�

0

τ−1+(t−n)/2e−1/τ dτ

≥ A
(
d(x, y)2

3

)(t−n)/2

where A > 0 depends on n and M .
When λk > 0,

T�

0

ψt(u)e−uλk du =
1�

0

u−1+t/2e−uλk du+
T�

1

u−1+(t−n)/2e−uλk du(2.5)

= λ
−t/2
k

λk�

0

τ−1+t/2e−τ dτ +
T�

1

u−1+(t−n)/2e−uλk du.

After changing variables the second integral (which is only present if T =∞)
becomes

∞�

1

u−1+(t−n)/2e−uλk du = λ
(n−t)/2
k

∞�

λk

x−1+(t−n)/2e−x dx

≤ λ−t/2k

∞�

λk

x−1+t/2e−x dx.
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A routine calculus argument shows that for x ≥ λk,

x−1+t/2e−x/2 ≤
{

(t− 2)−1+t/2e−1+t/2 if t > 2,

λ
−1+t/2
1 e−λ1/2 if t ≤ 2.

One should note that the minimal non-zero eigenvalue, λ1, depends only on
the manifold. Since 0 < t < n, in either case

x−1+t/2e−x/2 ≤ σ
where σ is a constant depending on n and the manifold. Thus

∞�

1

u−1+(t−n)/2e−uλk du ≤ σλ−t/2k

∞�

λk

e−x/2dx ≤ 2σλ−t/2k .

Since the first integral in the final sum of (2.5) dominates
λ1�

0

τ−1+t/2e−τ dτ ≥ 2λt/21 e−λ1t−1,

we can bound the first term above and below by

λ
−t/2
k 2λt/21 e−λ1t−1 ≤ λ−t/2k

λk�

0

τ−1+t/2e−τdτ ≤ Γ
(
t

2

)
λ
−t/2
k .

Note that Γ (t/2) ∼ 1/t when t is close to 0, hence
T�

0

ψt(u)e−uλk du ∼ 1
t
λ
−t/2
k .

For λ0 = 0, we have
∞�

0

ψt(u) du =
2
t

+
2

n− t .

Combined with our earlier calculations this implies that for 0 < t < n we
have

α3n−tIn−t(µ) ≤
(

1
t

+
1

n− t

)
‖µ0‖22 +

1
t

∑

k>0

λk
−t/2‖µk‖22(2.6)

≤ β5n−tΓ
(
n− t

2

)
In−t(µ)

for new constants α, β depending on n and M .
We can replace λk with λk + 1 since the minimal value of λk for k > 0

depends only on the manifold. This gives the desired formula (2.1).

Corollary 2.4. Let M be a connected , compact manifold of dimension
n and fix ε > 0. There exist constants A,B > 0, depending on n and ε, such



Energy on manifolds 297

that if µ is a positive, Borel measure on M and µk = Pk(µ), then for each
0 < t < n− ε,

AIn−t(µ) ≤ 1
t

∑

k

(λk + 1)−t/2‖µk‖22 ≤ BIn−t(µ).

Proof. This follows from (2.6) since Γ ((n− t)/2) is bounded above and
below away from zero when t < n− ε.

Remark 2.1. We thank Prof. Colzani for helpful conversations on an
earlier version of this result for manifolds of positive curvature.

Corollary 2.5. (i) Suppose M = Tn and ε > 0. There are constants
A,B > 0, depending on n and ε, such that if µ is a positive, Borel measure
on M , then for each 0 < t < n− ε,

AIn−t(µ) ≤ 1
t

(
|µ̂(0)|2 +

∑

z∈Zn\{0}
|z|−t|µ̂(z)|2

)
≤ BIn−t(µ).

(ii) Suppose M = Sn, the unit sphere in Rn+1, and ε > 0. There are
constants A,B > 0 such that if µ is a positive, Borel measure on M , then
for each 0 < t < n− ε,

AIn−t(µ) ≤ 1
t

(
‖µ0‖22 +

∞∑

k=1

k−t‖µk‖22
)
≤ BIn−t(µ),

where µk denotes the projection of µ onto the space of spherical harmonics
of degree k.

Proof. These results follow from the fact that in the first case the eigen-
functions of the Laplacian are the exponential functions exp(ix · z) with
corresponding eigenvalues −|z|2, and in the second case the eigenfunctions
are the spherical harmonics of degree k with eigenvalues −k(k + n− 1).

Remark 2.2. The result for the torus improves the estimates given in
[8]. The formula for the sphere can essentially be found in [9].

2.1. Energy and Hausdorff dimension. The Hausdorff dimension of a
measure µ is defined as

dimH(µ) = inf{dimH(E) : E is a Borel set with µ(E) > 0}
and the energy dimension of µ is defined as

dime(µ) = sup{t : It(µ) <∞}.
Our results give the following characterization of energy dimension.
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Corollary 2.6. If µ is any positive measure on a connected , compact
manifold of dimension n, then

dime(µ) = sup
{
t :
∑

λk>0

λ
(t−n)/2
k ‖µk‖22 <∞

}
.

Proposition 2.7. If µ is any positive measure on a connected , compact
manifold of dimension n, then dimH(µ) ≥ dime(µ).

Proof. This is proved in [5, 4.13] for measures on Rn. The same proof
holds for any metric space.

3. Energy of central measures on compact Lie groups. An ex-
ample of a connected, compact Riemannian manifold is a connected, simply
connected, compact, simple Lie group G (cf. [18, p. 57]). The coordinate
functions of the irreducible representations of G are eigenfunctions of the
Laplacian and form an orthogonal basis for L2(G). The eigenvalue of the
character of the irreducible representation of G with highest weight λ is
given by

〈%, %〉 − 〈λ+ %, λ+ %〉
where % is half the sum of the positive roots. If we express λ in terms of the
fundamental dominant weights λi by λ =

∑
miλi, and put mλ = maxmi,

then the eigenvalue associated with λ is comparable to −m2
λ. (See [13].)

A measure µ on G is called central if it commutes with all other measures
under convolution. Central measures are characterized by the property that
their Fourier transform satisfies µ̂(λ) = cλIdeg λ for some constants cλ. (Here
deg λ denotes the degree of representation λ.) Using this notation we can
express formula (2.1) as

It(µ) ∼
∑

λ

mt−dimG
λ (deg λ)2|cλ|2.

It is known that if the measure is also continuous, then cλ → 0 as
deg λ → ∞. In particular (see [11], [12]), if µ is a continuous, central mea-
sure supported on a single conjugacy class, then |cλ| ≤ C(deg λ)−s where
s = s(G) ≤ O(1/rankG). If N is the number of positive roots of the Lie
group, then it follows from the Weyl character formula that deg λ ≤ CmN

λ .
Consequently,

It(µ) ≤ C
∑

λ

(deg λ)2−2s+(t−dimG)/N ,

and this sum is known to be finite if the exponent is less than − rankG/N.
An example of a continuous, central measure supported on the conjugacy

class C(g) containing g ∈ G is the orbital measure, µg, which is defined by
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�

G

f dµg =
�

G

f(x−1gx) dx for all continuous functions f,

where dx denotes the Haar measure on G. As the orbital measure is uni-
formly distributed on the submanifoldC(g), it is the t-dimensional Hausdorff
measure on C(g) where t is the dimension of C(g). Thus the energy dimen-
sion of µg coincides with the dimension of the conjugacy class (cf. [5, 4.13]).
Hence

∑

λ

mt−dimG
λ (deg λ)2|cλ|2

{
<∞ for t < dimC(g),

=∞ for t > dimC(g).

4. The dimension of signed measures. In this section by a measure
we mean a signed, regular, Borel measure of finite variation on the compact,
connected Riemannian manifold M of dimension n.

The Hausdorff dimension of a signed measure µ is defined as

dimH µ = inf{dimHE : µ(E) 6= 0}.
This coincides with the Hausdorff dimension of its total variation |µ|.

We continue to denote by H(x, z, y) the heat kernel on the manifold M
and let ψt be the function defined in (2.3). Put

Lt(x, y) =
�
ψt(u)H(u, x, y) du.

Note that Lt(x, y) is comparable to d(x, y)t−n. For 0 < t < n we define the
generalized t-energy of a signed measure µ by

I∗t (µ) = lim
s→0

� � �
H(s, z, y)Ln−t(x, z) dz dµ(x) dµ(y).

For any fixed s > 0 the heat kernel, H(s, z, y), is a continuous function. Also,
z 7→ Lt(x, z) is summable, thus the inner integral is a continuous function
of y.

As in Section 2 we let Kk denote the kernel is of the projection operator
onto the eigenspace of the Laplacian corresponding to the eigenvalue −λk.
An orthogonality argument shows that

�
H(s, z, y)Lt(x, z) dz

can be presented by a uniformly convergent series,
∑
cj(t)e−sλjKj(x, y),

with coefficients

cj(t) =
�
ψt(u)e−uλj du.(4.1)

Note that cj(t) ≥ 0. Thus for any finite measure µ,
� � ( �

H(s, z, y)Lt(x, z) dz
)
dµ(x) dµ(y) =

∑

j

cj(t)e−sλj‖µj‖22.(4.2)
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This shows that the generalized energy is well defined. Indeed, as cj ≥ 0 we
have

I∗n−t(µ) = lim
s→0

∑

j

cj(t)e−sλj‖µj‖22 =
∑

j

cj(t)‖µj‖22.

Moreover, the proof of Theorem 2.1 shows that this is equivalent to the
classical Riesz (n− t)-energy when µ is a positive measure.

We should note that It(µ) <∞ does not imply It(|µ|) <∞, even in the
classical case (see [10]). Even so, we will show that the energy of a signed
measure can be used to obtain lower bounds on the Hausdorff dimension
of the measure, as was noted in Proposition 2.7 for positive measures. Our
methods are similar to those used for measures in Euclidean space in [10].
The main new ingredient is a variation of the Besicovitch covering lemma
valid for compact Riemannian manifolds (Lemma 4.2 below).

Lemma 4.1. There is a positive integer k(n) and real number ∆ = ∆(M)
> 0 such that if a1, . . . , ak belong to M and r1, . . . , rk ∈ (0,∆) are given with

ai 6∈ B(aj , rj) for j 6= i, and
k⋂

i=1

B(ai, ri) 6= ∅,

then k ≤ k(n).

Proof. Choose k(n) so that there are no more than k(n) vectors in n-
dimensional Euclidean space, having interior angles greater than π/4 to each
other.

Now consider a collection of balls as above and choose a point O in the
intersection. Since the manifold is complete there exists a segment σ(O, ai)
connecting O with the centre of each of the balls ([18, 5.7.2]). Since O ∈
B(ai, ri) the length of the segment σ(O, ai) is no more than ri. Similarly,
there is a segment σ(ai, aj) joining ai and aj , and as each ball B(ak, rk) does
not contain any other’s centre, the length of this segment is greater than
both ri and rj . These segments give a triangle on the manifold.

As M is compact and smooth we may assume the sectional curvature is
bounded from below. Upon rescaling the metric we can assume the manifold
has curvature at least −1. By [18, 11.2.1] there is a comparison triangle (i.e.
with the same side lengths) in Sn−1, the n-dimensional space of constant
curvature −1. The law of cosines (see [18, 11.2.3]) states that any triangle
in Sn−1 with side lengths a, b, c and angle α opposite a satisfies

cosh a = cosh b cosh c− 2 sinh b sinh c cosα.

It is easy to see that if c ≤ b ≤ a then

cosα ≤ 2ec cosh b/(ec + 1)2.

As the right side of the inequality tends to 1/2 as b, c→ 0, it follows that for
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sufficiently small triangles α ≥ π/4. By Toponogov’s Theorem ([18, 11.2.2])
the angles of the original triangle are larger than the angles of those of
the comparison triangle and hence are also at least π/4. But these angles
correspond to the angles between tangent vectors to the segments in the
tangent space at the point O. Since there can be at most k(n) such vectors,
and each ball is associated with such a vector, k ≤ k(n).

Using this lemma one can derive the following variation of the Besicovitch
covering lemma. Just imitate the proof found in [16, pp. 29–33], replacing
Lemma 2.6 of that proof by the lemma above.

Lemma 4.2. Let A ⊆ M and suppose B is a family of closed balls of
radii less than ∆ such that each point of A is the centre of some ball of B.
There is a finite or countable collection of balls Bi ∈ B which cover A and
every point of M belongs to at most k(n) balls.

What we will actually need is the following consequence of the covering
lemma.

Lemma 4.3. Let µ1 and µ2 be two finite, positive, regular , mutually sin-
gular measures on M . For any constants C, c, ε > 0 there exists a Borel set
K = K(C, c, ε) such that µ1(M \K) < ε and cµ1(B(ξ, τ)) ≥ Cµ2(B(ξ, τ))
for all ξ ∈ K and τ ≤ % = %(ε).

Proof. As the measures are mutually singular we can choose two disjoint
sets A1 and A2 such that µj(M \Aj) = 0 for j = 1, 2. Choose two compact
sets K1 and K2 such that Kj ⊂ Aj and µj(M \ Kj) < c′ε, where the
constant c′ depends on c, C and n and will be specified later. Let % =
min

(
∆, 1

2 dist(K1,K2)
)
.

Let us denote by K ′ the Borel set

K ′ = {ξ ∈ K1 : cµ1(B(ξ, τ)) < Cµ2(B(ξ, τ)) for some τ ≤ %}.
We wish to estimate µ1(K ′). By definition, for each point x ∈ K ′ there exists
a ball Bx centred at x of radius less than ∆ which does not intersect K2 and
for which cµ1(Bx) < Cµ2(Bx). By the version of the Besicovitch covering
lemma proved above we can choose a covering {Bk} of K ′ by these balls,
with the property that each point of K ′ belongs to at most k(n) balls. Then

µ1(K ′) ≤
∑

µ1(Bk) ≤
∑

c−1Cµ2(Bk) ≤ c−1Ck(n)µ2

(⋃
Bk

)
.

Since the balls Bk are disjoint from K2 we obtain

µ1(K ′) ≤ c−1Ck(n)µ2(M \K2) < c−1Ck(n)c′ε.

If we choose c′ = min(1/2, c/2Ck(n)), then the set K = K1 \K ′ satisfies the
required conditions.

There is one additional technical result we need.
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Lemma 4.4. Let 0 < t < n. There exist constants A,B, depending only
on the manifold and t, such that for any small s > 0 there is a positive,
piecewise smooth, decreasing function Fs,t satisfying

AFs,t(d(x, y)) ≤
�
Ln−t(x, z)H(s, z, y) dz ∼

�
d(x, z)−tH(s, z, y) dz

≤ BFs,t(d(x, y)).

Proof. The function which we will see works is

Fs,t(τ) = min{β1s
−t/2, β2τ

−t}
for a suitable choice of β1, β2.

Case 1: d(x, y) <
√
s. Divide the area of integration into the ball

B(x, c
√
s) and the remainder of the manifold. Since the volume of a small

ball in M is comparable to the volume of the corresponding ball in Rn,
Lemma 2.2 implies that inside B(x, c

√
s) the heat kernel can be estimated

above and below by cs−n/2 (for s < 1). Thus the integral is comparable to

(c
√
s)−n

�

|y|≤c√s
|y|−t dy = c1s

−t/2.

Outside the ball the function | · |−t is dominated by (c
√
s)−t. Also, the

integral of the heat kernel is less than the integral over the whole sphere,
which is one. Thus the right side estimate is Bs−t/2 and the left estimate is
As−t/2.

Case 2: d(x, y) ≥ √s. We consider two balls: B(x, d(x, y)/2) and
B(y, d(x, y)/2). For z in the first ball the distance between y and z varies
between d(x, y)/2 and 3d(x, y)/2. Thus the heat kernel on the first ball can
be estimated below and above (for short time) by s−n/2e−27d(x,y)2/4s and
s−n/2e−d(x,y)2/20s respectively. Hence

Ae−27d(x,y)2/4s
(
d(x, y)2

s

)n/2
d(x, y)−t

≤
�

B(x,d(x,y)/2)

d(x, z)−tH(s, z, y) dz

≤ Be−d(x,y)2/20s
(
d(x, y)2

s

)n/2
d(x, y)−t.

For z in the second ball,
1
2d(x, y) ≤ d(z, x) ≤ 3

2d(x, y),

and thus Ln−t(x, z) is equivalent to d(x, y)−t. As this ball contains the ball
of radius c

√
s, on which the heat kernel is greater than c2s

−n/2, the integral
of the heat kernel is at least c0 and at most 1. Thus the integral of the
product over the second ball is equivalent to d(x, y)−t. The integral over
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the rest of the space is positive and less than (d(x, y)/2)−t, and therefore is
inconsequential. To complete this case we simply remark that the functions

e−d(x,y)2/ks

(
d(x, y)2

s

)n/2
d(x, y)−t + d(x, y)−t,

for any fixed k > 0, are equivalent to d(x, y)−t as d(x, y)2 ≥ s.
It is clear that Fs,t is decreasing.

We are now ready to prove the main result of this section.

Theorem 4.5. Suppose µ is a non-zero signed measure on M and I∗t (µ)
<∞. Then dimH(µ) ≥ t.

Proof. To prove this we will approximate µ+ and µ− in the strong
sense by positive measures with finite t-energy. As the approximation is
constructed in same way for µ+ and µ−, we give the proof only for µ+.

Let K = K(C, c, ε) be the set given by Lemma 4.3 with the singular
measures being µ+ and µ− and with c = A/2, C = 2B (A,B as in Lemma
4.4) and arbitrary ε > 0. Let % = %(ε). Denote µ+|K by µ% and let µr =
µ+ − µ%. For small s > 0 let

θ(x, y) ≡ θs,t(x, y) ≡
�

M

Ln−t(x, z)H(s, z, y) dz.

Since I∗t (µ) <∞, for s near zero there is some fixed number Θ such that

Θ ≥
�
θ(x, y) dµ(x) dµ(y)

=
�
θ(x, y) (dµ+(x)dµ+(y) + dµ−(x)dµ−(y)− 2dµ+(x)dµ−(y))

≥
�
θ(x, y) (dµ%(x)dµ+(y)− 2dµ%(x)dµ−(y))

+
�
θ(x, y) (dµr(x)dµr(y) + dµ−(x)dµ−(y)− 2dµr(x)dµ−(y)).

The final integral in the expression above is equal to
∑

j

cje
−sλj‖(µr − µ−)j‖22

where we remind the reader that cj = cj(n− t) was defined in (4.1). As the
coefficients cj are non-negative, the final integral is non-negative. So

Θ ≥
�
θ(x, y) (dµ%(x)dµ+(y)− 2dµ%(x)dµ−(y))

=
�

d(x,y)≥%
θ(x, y) ((dµ+(y)− 2dµ−(y))dµ%(x))

+
�

d(x,y)<%

θ(x, y) (dµ+(y)− 2dµ−(y))dµ%(x).
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The explicit formula for Fs,t given in the proof of Lemma 4.4 shows
that for small enough s the integral over the region {(x, y) : d(x, y) ≥ %}
dominates �

d(x,y)≥%
θ(x, y) dµ+(y) dµ%(x)− 2Bβ2‖µ−‖ ‖µ%‖%−t.

The integral over {(x, y) : d(x, y) < %} can be estimated from below as
follows: Lemma 4.4 again shows (writing F for Fs,t)

�

d(x,y)<%

θ(x, y) (dµ+(y)− 2dµ−(y))

≥ A
�

d(x,y)<%

F (d(x, y)) dµ+(y)− 2B
�

d(x,y)<%

F (d(x, y)) dµ−(y).

The definition of integral shows that the last expression equals

(4.3) A
(
F (%)µ+{y : F (d(x, y)) > F (%)}+

∞�

F (%)

µ+{F (d(x, y)) > ω} dω
)

− 2B
(
F (%)µ−{F (d(x, y)) > F (%)}+

∞�

F (%)

µ−{F (d(x, y)) > ω} dω
)
.

Since F is decreasing, the sets {y : F (d(x, y)) > ω} for ω > F (%) are balls
of radii less than %. Hence the choice of K ensures that

A

2
µ+{y : F (d(x, y)) > ω} ≥ 2Bµ−{F (d(x, y)) > ω}

for any x ∈ K. Thus for µ%-a.e. x expression (4.3) dominates

1
2
A
(
F (%)µ+{F (d(x, y)) > F (%)}+

∞�

F (%)

µ+{F (d(x, y)) > ω} dω
)

=
1
2
A

�

d(x,y)<%

F (d(x, y)) dµ+(y) ≥ 1
2
AB−1

�

d(x,y)<%

θ(x, y) dµ+(y).

Consequently,
� �

d(x,y)<%

θ(x, y) (dµ+(y)− 2dµ−(y)) dµ%(x)

≥ 1
2
AB−1

� �

d(x,y)<%

θ(x, y) dµ+(y) dµ%(x).

As all the estimates are independent of s, and dµ+ ≥ dµ%, these argu-
ments imply

Θ ≥ 1
2
AB−1I∗t (µ%)− 2Bβ2‖µ−‖ ‖µ%‖%−t,
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and consequently, I∗t (µ%) <∞. To conclude, note that by construction µ% →
µ+ in the strong sense as ε→ 0.

5. Refined Hausdorff and energy dimensions. Many measures
have Hausdorff dimension equal to the dimension of the manifold and yet
are concentrated on sets which are small, in some sense. For instance, many
Riesz product measures on the torus have dimension one but are singular
to Lebesgue measure as they are concentrated on sets of Lebesgue measure
zero.

In this section we study generalized Hausdorff measures and refined en-
ergy integrals based on the functions xn|logx|s (with n equal to the dimen-
sion of the manifold), rather than the usual functions xt. These measures
and integrals give rise to refined Hausdorff and energy co-dimensions which
can be used to quantify the singularity of (some) measures of maximum
Hausdorff dimension.

We will obtain formulas for the refined energy integrals analogous to
(2.1). The finiteness of these refined energy integrals will be seen to give an
upper bound on the corresponding refined Hausdorff co-dimensions.

5.1. Definitions and basic properties of refined dimensions. Suppose h :
[0,∞)→ [0,∞] is a right continuous function which is increasing near zero
and satisfies h(0) = 0. We define the h-Hausdorff measure of a Borel set E
in a metric space X by (see [2], [20])

hδ(E) = inf
{∑

h(diamUj) :
⋃
Uj ⊇ F, diamUj ≤ δ

}

and

h(E) = lim
δ→0

hδ(E).

Of course, the special case when h(x) = xt is the usual t-dimensional Haus-
dorff measure.

Similarly, we can define the h-energy of a finite, regular, Borel measure
on X by

Ih(µ) =
� � dµ(x) dµ(y)

h(d(x, y))
.

When h(x) = xt we simply write It(µ) for the usual t-energy of µ.
It is natural to assume h satisfies the doubling condition, i.e., there is a

constant C such that h(2r) ≤ Ch(r) for all r > 0. Under this assumption
the following relationships hold.

Proposition 5.1. Suppose µ is a measure on X and F ⊆ X is a Borel
set.
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(i) There is a constant A such that if

lim sup
r→0

µ(B(x, r))/h(2r) < c <∞

for all x ∈ F, then h(F ) ≥ Aµ(F )/c.
(ii) Suppose X = Rn. There is a constant B such that if

lim sup
r→0

µ(B(x, r))/h(2r) > c > 0

for all x ∈ F, then h(F ) ≤ Bµ(Rn)/c.

Proposition 5.2. If there exists a measure µ on F ⊆ X such that
Ih(µ) <∞, then h(F ) =∞.

The proofs of both these results are analogous to those given in [5, p. 61]
for t-dimensional Hausdorff measure and t-energy.

Now suppose the metric space X is a compact manifold M . We will write
% = %(M) for twice the diameter of M . As M is compact, % <∞.

Our main interest is in the special case when

hn,s(x) = xn|log(x/%)|s for n = dimM and s ≥ 0.

This function is continuous (defining h(0) = 0), increasing near zero and
satisfies the doubling condition. The measures hn,s are clearly a refinement
of n-dimensional Hausdorff measure. We will write In,s for Ihn,s .

For small x, xn|log(x/%)|s increases as s increases, thus (for fixed n) the
measures hn,s(F ) also increase as s increases. It easily follows that if s < t
and hn,t(F ) < ∞, then hn,s(F ) = 0. Thus it seems natural to consider the
functions hn,s(F ) as measuring the co-dimension of F and we define the fine
n-Hausdorff co-dimension of a subset E ⊆M of Hausdorff dimension n as

Finen dimH(F ) ≡ sup{s : hn,s(F ) = 0} = inf{s : hn,s(F ) =∞}.
Recall (see [6, p. 171]) that the Hausdorff dimension of a measure µ on

M is defined by

dimH(µ) ≡ inf{dimH(F ) : µ(F ) > 0}.
For measures µ of Hausdorff dimension n, we define the fine n-Hausdorff
co-dimension of µ as

Finen dimH(µ) ≡ sup{Finen dimH(F ) : µ(F ) > 0}.
The energy dimension of µ is given by

dime(µ) ≡ inf{s : Is(µ) =∞} = sup{s : Is(µ) <∞}.
Analogously, we define the fine n-energy co-dimension by

Finen dime(µ) ≡ inf{s : In,s(µ) <∞} = sup{s : In,s(µ) =∞}.
With this notation the propositions yield the following corollaries:
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Corollary 5.3. (i) If lim supr→0 µ(B(x, r))/hn,s(2r) < c for all x ∈
F ⊆ X, then the fine n-Hausdorff co-dimension of F is bounded above by s.

(ii) If lim supr→0 µ(B(x, r))/hn,s(2r) > c > 0 for all x ∈ F ⊆ Rn, then
the fine n-Hausdorff co-dimension of F is bounded below by s.

Corollary 5.4. If there exists a measure µ on F such that In,s(µ) <∞,
then Finen dimH(F ) ≤ s. Consequently ,

Finen dimH(µ) ≤ Finen dime(µ).

There is also a partial converse to this result.

Proposition 5.5. Suppose there exists a constant c and r0 > 0 such
that µ(B(x, r)) ≤ chn,s(r) for µ a.e. x and r ≤ r0. Then In,t(µ) <∞ for all
t > s+ 1.

Proof. Set ω(r) = µ(B(x, r)). Let

φt(y) ≡
�

d(x,y)≤r0

dµ(x)
d(x, y)n|log(d(x, y)/%)|t =

r0�

0

r−n| log(r/%)|−t dω(r).

Upon integrating by parts it follows that

φt(y) = r−n
∣∣∣∣log

r

%

∣∣∣∣
−t
ω(r)|r00 +

r0�

0

nω(r)
rn+1

∣∣∣∣log
r

%

∣∣∣∣
−t(

1− t

n

∣∣∣∣log
r

%

∣∣∣∣
−1)

dr

≤ C1 +
r0�

0

nr−1
∣∣∣∣log

r

%

∣∣∣∣
s−t(

1− t

n

∣∣∣∣log
r

%

∣∣∣∣
−1)

dr,

and this is finite as t > s+ 1. Since
� �

d(x,y)≥r0

dµ(x) dµ(y)
d(x, y)n|log(d(x, y)/%)|t = C(r0) <∞,

it follows that for t > s+ 1,

In,t(µ) ≤ C(r0) +
�
φt(y) dµ(y) <∞.

5.2. The refined energy integral and its harmonic representation. Next,
we show how to use formula (2.1) to obtain a similar formula for the refined
energy integral. We continue to use the notation of Section 2.

Theorem 5.6. Let M be a connected , compact , Riemannian manifold
of dimension n. Suppose s > 1. There are constants A,B > 0, depending
on M and n, such that if µ is any finite, regular , Borel measure on M with
energy dimension n and µk = Pk(µ), then the refined energy integral , In,s,
satisfies

AIn,s(µ) ≤ ‖µ0‖22 +
∑

λk 6=0

(log |λk + 1|)1−s‖µk‖22 ≤ BIn,s(µ).
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Proof. We can rewrite the estimates of (2.1) (see Cor. 2.4), with different
constants, in a form more useful for our arguments: for 0 < t < 1/2,

A
� � dµ(x) dµ(y)

(d(x, y)/%)n−t
≤ 1
t

(
‖µ0‖22 +

∑

λk 6=0

(λk + 1)−t/2‖µk‖22
)

≤ B
� � dµ(x) dµ(y)

(d(x, y)/%)n−t
.

Multiply through by tα with α = s− 1 and integrate over t ∈ [0, 1/2]. After
invoking Fubini’s theorem and changing variables, the inner integral (for the
two outside terms in the inequality) simplifies to

1/2�

0

%n−ttα

d(x, y)n−t
dt =

%n

d(x, y)n

1/2�

0

tα
(
d(x, y)
%

)t
dt

=
%n

d(x, y)n|log(d(x, y)/%)|α+1

1
2 |log(d(x,y)/%)|�

0

ταe−τ dτ.

Since 2d(x, y) ≤ % < ∞, |log(d(x, y)/%)| is finite and bounded away from
zero. Hence

1/2�

0

%n−ttα

d(x, y)n−t
dt ∼ %n

d(x, y)n|log(d(x, y)/%)|α+1 .

As the eigenvalues of the Laplacian are discrete there is some C > 1 such
that log(λk + 1) ≥ logC for all λk 6= 0. Thus

1/2�

0

tα−1(λk + 1)−t/2 dt =
2

(log(λk + 1))α

1
4 log(λk+1)�

0

τα−1e−τ dτ

∼ 2
(log(λk + 1))α

.

Of course, � 1/2
0 tα−1 dt = O(1/α). Together these estimates give

A1

� � dµ(x) dµ(y)
d(x, y)n|log(d(x, y)/%)|s ≤ ‖µ0‖22 +

∑

λk 6=0

(log |λk + 1|)1−s‖µk‖22

≤ B1

� � dµ(x) dµ(y)
d(x, y)n|log(d(x, y)/%)|s ,

which is the desired result.

If we apply these results to the specific case of measures on an n-
dimensional torus or sphere, then we obtain the following corollaries.
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Corollary 5.7. (i) If µ is any measure on Tn of Hausdorff dimen-
sion n, then

In,s(µ) ∼ |µ̂(0)|2 +
∑

k∈Zn\{0}
(log(|k|+ 1))1−s|µ̂(k)|2.

(ii) If µ is any measure on Sn, the unit sphere in Rn+1, then

In,s(µ) ∼ ‖µ0‖22 +
∞∑

k=1

(log |k + 1|)1−s‖µk‖22

where µk denotes the projection of µ onto the space of spherical harmonics
of degree k.

6. Refined dimension of Riesz products on the torus. A sequence
{γk} ⊆ Zn is called dissociate if for any positive integer N ,

N∑

k=1

εkγk = 0 for εk = 0,±1,±2 implies εk = 0 for all k.

A lacunary sequence {nk} of positive integers with nk+1/nk ≥ 3 is an ex-
ample of a dissociate sequence in Z.

Given a dissociate sequence {γk} and a sequence {ak} of complex num-
bers satisfying supk |ak| ≤ 1, we define trigonometric polynomials Pk(x) =∏k
j=1(1 + Re ajeiπγj ·x) for x ∈ Tn. By a Riesz product measure

µ{aj} ≡
∞∏

j=1

(1 + Re ajeiπγj ·x)

we mean the weak* limit of the measures Pk(x)dx on Tn.
6.1. Refined Hausdorff co-dimension. Estimates of the Hausdorff di-

mension of Riesz products on T were first obtained by Peyrière in [19] us-
ing probabilistic ideas. He proved that if supk |ak| < 1, nk+1/nk ∈ Z and
nk+1/nk ≥ 3, then the Hausdorff dimension of the Riesz product measure
µ{aj} =

∏∞
j=1(1 + Re ajeiπnjx) satisfies

1− lim inf
k→∞

( � logPk dµ{aj}
lognk+1

)
≥ dimH(µ{aj}) ≥ 1− lim sup

k→∞

( � logPk dµ{aj}
lognk

)

([19, 2.8]). This implies that the Hausdorff dimension of the Riesz product
µ{aj} is bounded below by

1− lim sup
k→∞

( k∑

j=1

|aj |/lognk
)
,(6.1)
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and when the coefficients are small in modulus it is bounded above by ap-
proximately

1− lim inf
k→∞

(
1
4

k∑

j=1

|aj |2/lognk

)
.

Of course, if |ak| → 0 or nk →∞ sufficiently quickly, then the Hausdorff
dimension of µ{aj} is 1, even though µ{aj} is a singular measure unless
{aj} ∈ l2. This is true, for example, if k/lognk → 0 or nk+1/nk → ∞.
For such measures the refined Hausdorff co-dimension is of interest and for
certain of these measures there is an analogue of Peyrière’s result.

Proposition 6.1. Suppose supk |ak| < 1, nk+1/nk ∈ Z,
∑

(log lognk)−2

< ∞. Let µ = µ{aj} be the Riesz product µ =
∏∞
j=1(1 + Re ajeiπnjx). Then

the refined Hausdorff co-dimension of µ satisfies

lim inf
k→∞

( � logPk dµ{aj}
log lognk+1

)
≤ Fine1 dimH(µ{aj}) ≤ lim sup

k→∞

( � logPk dµ{aj}
log lognk

)
.

Proof. Set

s0 = lim inf
k→∞

( � logPk dµ{aj}
log lognk+1

)
, t0 = lim sup

k→∞

( � logPk dµ{aj}
log lognk

)
.

Proposition 2.5 of [19] shows that under the assumption
∑

(log lognk)−2

<∞, the series
∑

(log lognk)−1
(

log(1 + Re(akeiπnkx))−
�
log(1 + Re(akeiπnkt)) dµ

)

converges for µ-a.e. x. By Kronecker’s lemma ([17, p. 147])

(log lognk)−1
(

logPk(x)−
�
logPk(t) dµ

)
= γk(x)

where γk(x) tends to zero for a.e. x.
Choose an interval I whose length satisfies 2/nk+1 ≤ |I| ≤ 1/nk. It is

easy to see that if x, t ∈ I then

|logPk(t)− logPk(x)| ≤ c
where c is a constant depending on the sequence {aj}. If we let µk denote the
Riesz product

∏∞
j=k+1(1 + Re ajeiπnjx), then µ(I) = � I Pk(t) dµk and there-

fore is comparable to Pk(x)µk(I). Peyrière shows that µk(I) is comparable
to |I| so that µ(I)/|I| ∼ Pk(x). Therefore, for a suitable constant C,

logPk(x)− logC
log lognk

≤ log(µ(I)/|I|)
log log nk

≤ logPk(x) + logC
log lognk

.

But
logPk(x)
log log nk

= γk(x) +
� logPk dµ
log lognk
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and
log log(nk+1/2) ≥ log

∣∣log |I|
∣∣ ≥ log lognk.

Thus if ε > 0 and |I| is sufficiently small, then

t0 − ε ≤
log(µ(I)/|I|)
log |log |I|| ≤ s0 + ε.

It follows that for all suitably small intervals,

µ(I)

|I|
∣∣log |I|

∣∣s0+ε ≤ 1 and
µ(I)

|I|
∣∣log |I|

∣∣t0−ε ≥ 1.

The bounds on the refined 1-Hausdorff co-dimension of µ follow from Corol-
lary 5.3.

Some of the work of Peyrière was improved by Brown et al. in [1] and
Fan in [7], but significant restrictions on the dissociate set were still re-
quired. More recently, the lower bound (6.1) was improved in [8] by using
the formula relating energy and the Fourier transform. It was shown there
that if {nj} is any dissociate set of increasing, positive integers satisfying
supnk−1∑k−1

j=1 nj < 1, then the energy dimension of µ{aj} =
∏∞
j=1(1 +

Re ajeiπnjx) is equal to 1− α0 where

α0 = max
(

lim sup
k→∞

(
2 log |ak|+

∑k−1
j=1 log(1 + |aj|2/2)

lognk

)
, 0
)
,

and the Hausdorff dimension is bounded below by

dimH(µ{aj}) ≥ 1− lim sup
k→∞

(
1
2

k∑

j=1

|aj |2/lognk

)
.

This too extends to the refined dimensions.

Proposition 6.2. Suppose {nj} is a dissociate set of increasing , posi-
tive integers and assume supn−1

k

∑k−1
j=1 nj < 1. Let {ak} ⊆ C, |ak| ≤ 1 and

suppose the Riesz product µ =
∏∞
j=1(1 + Re ajeiπnjx) has energy dimension

one. For s > 1,

I1,s(µ) ∼
∞∑

k=1

(lognk)1−s |ak|2
2

k−1∏

j=1

(
1 +
|aj |2

2

)
.

Proof. To calculate the energy of µ we should observe that if

n ∈ Γk ≡
{
±nk +

k−1∑

j=1

εjnj : εj = 0,±1
}
,
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then

|µ̂(n)| = |ak|
2

∏

j : εj 6=0

|aj|
2

(where the empty product is one). Furthermore, if n ∈ Γk then |n| ∼ nk.
Thus

∑

n∈Γk
(log(n+ 1))1−s|µ̂(n)|2 ∼ (lognk)1−s |ak|2

2

k−1∏

j=1

(
1 +
|aj|2

2

)
,

and therefore, provided s > 1,

I1,s(µ) ∼ 1 +
∞∑

k=1

(lognk)1−s |ak|2
2

k−1∏

j=1

(
1 +
|aj|2

2

)
.(6.2)

Let us define

α0 ≡ lim sup
k→∞

(
2 log |ak|+

∑k−1
j=1 log(1 + |aj |2/2)

log lognk

)
.

Corollary 6.3. Suppose α0 > 0. Then Fine1 dime(µ) ≥ 1 + α0. If we
assume, in addition, that k/log log(nk) is bounded , then

Fine1 dimH(µ{aj}) ≤ Fine1 dime(µ) = 1 + α0

≤ 1 + lim sup
k→∞

(
1
2

k∑

j=1

|aj |2/log lognk

)
.

Proof. Clearly, the sum on the right hand side of (6.2) is infinite if in-
finitely many of the summands are at least one. This occurs if

(1− s) log lognk + log
|ak|2

2
+

k−1∑

j=1

log
(

1 +
|aj|2

2

)
≥ 0

for infinitely many k. If s < 1 + α0, then this is certainly true and therefore
I1,s(µ) =∞ for all s < 1 + α0.

Conversely, the sum in (6.2) is finite if there is some A < 1 such that for
all but finitely many k,

(lognk)1−s |ak|2
2

k−1∏

j=1

(
1 +
|aj |2

2

)
≤ Ak

or, equivalently,

s− 1 ≥
log(|ak|2/2) +

∑k−1
j=1 log(1 + |aj |2/2) + k| logA|

log lognk
.
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If we assume k/log lognk is bounded, then this occurs provided

s− 1 ≥ lim sup
k

(
log(|ak|2/2) +

∑k−1
j=1 log(1 + |aj|2/2)

log lognk
+ c| logA|

)

for some A < 1. If s > 1 + α0 we can achieve this by choosing A suitably
close to one.

To complete the argument just note that log(1 + x) ≤ x for x > 0.

Corollary 6.4. Let µ =
∏∞
j=1(1 + cosπ33jx). Then Fine1 dime(µ) =

2− ln 2/ln 3.

Remark 6.1. Similar results can obviously be proved for Riesz products
∞∏

j=1

(1 + Re ajeiπγj ·x)

in Tn where {γj} ⊆ Zn is dissociate and satisfies
∑k−1

j=1 |γj | ≤ c|γk| for some
c < 1.
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