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Abstract. In this paper we make use of a new concept of ϕ-stability for Banach
spaces, where ϕ is a function. If a Banach space X and the function ϕ satisfy some
natural conditions, then X is saturated with subspaces that are ϕ-stable (cf. Lemma 2.1
and Corollary 7.8). In a ϕ-stable Banach space one can easily construct basic sequences
which have a property P (ϕ) defined in terms of ϕ (cf. Theorem 4.5).

This leads us, for appropriate functions ϕ, to new results on the existence of uncondi-
tional basic sequences with some special properties as well as new proofs of some known
results. In particular, we get a new proof of the Gowers dichotomy theorem which produces
the best unconditionality constant (also in the complex case).

1. Introduction. Let us recall briefly some definitions and facts from
Banach space theory; the reader is referred to [L-T.1] and [J-L] for a more
complete introduction to the subject.

A sequence (xn) of non-zero elements of a Banach space X is said to be
an unconditional basic sequence if it is M -unconditional for some M < ∞,
i.e., if (xn) satisfies the inequality

∥∥∥
∑

n

λnanxn

∥∥∥ ≤M
∥∥∥
∑

n

anxn

∥∥∥

for each choice of scalars (an) and (λn) such that all but finitely many an’s
are zero and |λn| ≤ 1 for each n. The unconditionality constant of (xn) is
the least M with the above property. A basic sequence is unconditional if
and only if it is a basic sequence in any ordering. An unconditional basis in
X is an unconditional basic sequence which is a Schauder basis in X.
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A Banach space Y is said to be decomposable if there exist closed infinite-
dimensional subspaces U , V of Y such that U ∩ V = {0} and U +V = Y
(this is equivalent to the natural projections of U + V onto U and V being
bounded). It is clear that every space with an unconditional basis is decom-
posable (let U and V be closed linear subspaces spanned by two infinite
complementary subsets of the basis).

The long-standing question whether every infinite-dimensional Banach
space contains an unconditional basic sequence was answered in the negative
by W. T. Gowers and B. Maurey [G-M]. In fact, they constructed Banach
spaces which are hereditarily indecomposable, i.e., contain no decomposable
subspaces. The Gowers dichotomy discovered in [G] says that every Banach
space either contains an unconditional basic sequence or has a hereditarily
indecomposable subspace.

In this paper we present a method whose early version was suggested by
Maurey’s proof in [M.1]. Our method can also be used in other situations,
thus leading to constructions of unconditional basic sequences with some
special properties. Those properties are expressed and studied in terms of
some functions defined on products of Grassmann manifolds.

Given an infinite-dimensional Banach space X, we let G(X) denote the
set of all closed linear subspaces of X. We let Gfin(X) denote the subset
{E ∈ G(X) : dimE <∞} and put G∞(X) = G(X) \ Gfin(X).

Observe that the decomposability of a subspace of X into a direct sum
U+V , where U , V ∈ G∞(X), is equivalent to the finiteness of the expression

ϕ(U, V ) := sup{‖u− v‖ : u ∈ U, v ∈ V, ‖u+ v‖ = 1},(1)

while the existence of a decomposable subspace in a given subspace Y ∈
G∞(X) is equivalent to the finiteness of

φ(Y ) := inf{ϕ(U, V ) : U, V ∈ G∞(Y )}.
Clearly, a subspace Y ∈ G∞(X) is hereditarily indecomposable if and only if
φ(Y ) =∞. Thus the dichotomy theorem is equivalent to the statement that
if φ(G∞(X)) ⊆ [1,∞) then X contains an unconditional basic sequence.

Our result is more precise. If X is a real Banach space and φ(G∞(X))
⊆ [1,M) for some M ≤ ∞ then X contains a sequence (xi) whose uncondi-
tionality constant is < M (Theorem 6.1). We also obtain an analogous result
for complex Banach spaces. These results yield nearly optimal bounds for
unconditionality constants, because no basic sequence in Y can have its un-
conditionality constant < φ(Y ). On the other hand, it is an easy fact that
since the function φ is monotone on G∞(X), it has a stabilization property.
Namely, one can find Y ∈ G∞(X) such that φ is constant on G∞(Y ), i.e.,
φ(Z) = φ(Y ) for each Z ∈ G∞(Y ). If Y is φ-stable in this sense, then for
any given M > φ(Y ) we can produce a basic sequence in Y whose un-
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conditionality constant is < M . Thus for φ-stable spaces our bounds for
unconditionality constants are essentially the best possible.

The proof given in this paper is somewhat more complicated than the
description in the preceding paragraph. We introduce and exploit a much
stronger stabilization property (cf. Lemma 2.1). Namely, a function ϕ̃ we use
in the selection procedure is defined on the Cartesian product T × G∞(X),
where T is a set of parameters. Thus ϕ̃ may represent an uncountable fam-
ily of [1,∞]-valued functions on G∞(X) (those functions are indexed by
elements t ∈ T ). Then Y ∈ G∞(X) is said to be ϕ̃-stable if each of the
functions in that family is constant on G∞(Y ).

The existence of ϕ̃-stable elements in G∞(X) is assured if there is a topol-
ogy on T such that T is separable and ϕ̃(·, Y ) is continuous on T for each
fixed Y ∈ G∞(X). The continuity proofs can be found in Section 7. They
are presented in a way that can provide an easy proof of the continuity for
natural examples of functions ϕ different from those listed in Definition 5.1.

In Section 4 our inductive construction of basic sequences in ϕ-stable
spaces is presented. Theorem 4.5 is really a scheme from which various such
results can be obtained. The proofs of those theorems are quite simple,
because they rely on specially designed combinatorial concepts and make a
crucial use of ϕ-stability. In Section 6 we include some specific results which
can be obtained by applying Theorem 4.5 to the functions ϕ defined in
Section 5. We also give necessary and sufficient conditions for the existence
of basic sequences with the T (p)-property and introduce the concept of
generalized Tsirelson bases.

The scope of our approach is not restricted to Banach spaces. E.g.,
with a suitable choice of ϕ, one can also obtain results for operator spaces
([E-R], [Pi]). We are going to present those results in another paper.

The authors wish to thank the referee of an early version of this paper
for pertinent critical comments and also Professor William B. Johnson for
several helpful discussions.

2. The stabilization property. We present here a general result which
in particular can be applied to various functions Φ of the form ϕ̃, defined in
formula (2) below.

A partially ordered set (S,≤) is said to satisfy (CCB) (i.e., countable
chains in S are bounded in S) provided that, for each sequence (si) in S
such that si ≤ si+1 for each i, there is an s ∈ S such that si ≤ s for each
i. A subset S′ ⊆ S is said to be cofinal in S if for each s ∈ S there is an
s′ ∈ S′ such that s ≤ s′. If Φ is a function defined on the product T × S
where T is a set, then we denote by St(Φ) the set of Φ-stable elements, i.e.,

St(Φ) = {s ∈ S : ∀t ∈ T ∀s′ ∈ S (s ≤ s′ ⇒ Φ(t, s) = Φ(t, s′))}.
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Lemma 2.1. Assume that (S,≤) satisfies (CCB) and T is a separable
topological space. Let Φ : T × S → [0,∞] be a function such that Φ(t, ·) is
nondecreasing for each t ∈ T , while Φ(·, s) is continuous for each s ∈ S.
Then St(Φ) is cofinal in S.

Proof. First we consider Case 1 which occurs if Card(T ) = 1. In this case
the assertion follows easily from (CCB). Case 2 occurs when T = {t0, t1, . . .}
is countable. In this case we again make use of the (CCB) condition after
applying Case 1 consecutively to each Φ(ti, ·). In the general case, where
T is a topological space with a dense countable subset T ′, we first apply
Case 2 to the function Φ|T ′×S and then we make use of the continuity as-
sumption.

The proof of the following lemma is an easy exercise.

Lemma 2.2. Assume that (S,≤) satisfies (CCB) and suppose that (Φi)
is a countable family of functions such that Φi : Ti×S → [0,∞] and the set
St(Φi) is cofinal in S for each i. Then

⋂
i St(Φi) is also cofinal in S.

In what follows we consider only those (CCB) partial orders which are
described in the following lemma.

Lemma 2.3. Let X be an infinite-dimensional Banach space and let �
denote the partial order on G∞(X) defined by the formula: Y � Z if and
only if Z ⊆ Y +E for some E ∈ Gfin(X). Then (G∞(X),�) satisfies (CCB).

Proof. Let (Xn)∞n=1 be a sequence in G∞(X) such that Xn � Xn+1 for
each n. Put Yn =

⋂
1≤i≤nXi. Then Yn ∈ G∞(X), because dim(Xn/Yn) <∞

for each n. Thus it is easy to construct by induction a linearly independent
sequence (yn) such that yn ∈ Yn for each n. Let Y denote the closed linear
span of (yn). Then Xn � Y for each n, because Y ⊆ span{y1, . . . , yn−1}+Yn
and Yn ⊆ Xn. This completes the proof.

Remark 2.4. Note that some results in [P] are deduced from Lemma 2.1
therein, which is a special case of our Lemma 2.1 (with no topology involved).
Those two lemmas have been discovered independently of each other.

3. Notation and preliminaries. Observe that if E,F ∈ Gfin(X), then
E + F ∈ Gfin(X), i.e., Gfin(X) has a natural structure of an Abelian semi-
group. Also if E ∈ Gfin(X) then E + U ∈ G∞(X) for U ∈ G∞(X), hence
Gfin(X) acts in this way on the set G∞(X). For each positive integer k, there
are analogous operations on the semigroup Gfin(X)k and the set G∞(X)k.
The neutral element ({0})ki=1 of the semigroup Gfin(X)k will be denoted
by ~0k.
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We let G(X)k0 denote the set of nonsingular elements of Gfin(X)k, i.e.,

G(X)k0 =
{
~E ∈ Gfin(X)k : dim

( k∑

i=1

Ei

)
=

k∑

i=1

dimEi

}
.

If ~U = (U1, . . . , Uk) ∈ G(X)k, w ∈ X and 1 ≤ i ≤ k, we let ~U +i w
denote the element (V1, . . . , Vk) ∈ G(X)k such that Vj = Uj for j 6= i and
Vi = span(Ui ∪ {w}).

The set Gfin(X) will be given the topology defined by the Hausdorff
metric %, i.e., the distance of two subspaces E,F ∈ Gfin(X) is defined to be

%(E,F ) = inf{t ≥ 0 : BE ⊆ BF + tBX and BF ⊆ BE + tBX},
where BZ = {z ∈ Z : ‖z‖ ≤ 1} denotes the closed unit ball of a subspace
Z ∈ G(X). It is an easy and well known fact that if the Banach space X is
separable, then so is the metric space (Gfin(X), %).

The identity operator on a Banach space Y will be denoted by IY , and N
will denote the set of positive integers.

4. Selecting sequences in ϕ-stable spaces. Let k ∈ N and let ϕ :
G∞(X)k → [0,∞] be a nondecreasing function, i.e.,

ϕ(~U) ≤ ϕ(~V )

whenever ~U, ~V ∈ G∞(X)k and Ui ⊆ Vi for each i. Let ϕ̃ denote the function
which maps Gfin(X)k × G∞(X) into [0,∞] and is defined by the formula

ϕ̃( ~E, Y ) = inf{ϕ( ~E + ~U) : ~U ∈ G∞(Y )k}.(2)

Definition 4.1. Let T ⊆ Gfin(X)k. We say that X is (ϕ, T )-stable if

ϕ̃( ~E, Y ) = ϕ̃( ~E,X)

for each ~E ∈ T and Y ∈ G∞(X). We say that X is ϕ-stable if X is
(ϕ,G(X)k0)-stable.

Alternatively, we could have defined ϕ-stability to be an abbreviation for
the (ϕ,Gfin(X)k)-stability. This merely requires some extra work to verify
the continuity on Gfin(X)k rather than on G(X)k0. The details are given in
the final section.

Definition 4.2. A subset S of the Banach space X is said to be plentiful
in X if for each subspace Y ∈ G∞(X) there is a Z ∈ G∞(Y ) such that Z ⊆ S.

Clearly, if S1, . . . , Sn ⊆ X are plentiful in X, then so is S1 ∩ . . . ∩ Sn.

Lemma 4.3. If X is ϕ-stable, ~E ∈ G(X)k0 and d > ϕ̃( ~E,X), then the
set

{w ∈ X : ϕ̃( ~E +i w,X) < d}
is plentiful in X for 1 ≤ i ≤ k.
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Proof. Fix Y ∈ G∞(X) and d > ϕ̃( ~E,X). Since X is ϕ-stable, we have
ϕ̃( ~E, Y ) < d and hence we can find ~U = (U1, . . . , Uk) ∈ G∞(Y )k such that
ϕ( ~E + ~U) < d. Now fix i ∈ {1, . . . , k}. Then for each w ∈ Ui one has

ϕ̃( ~E +i w,X) ≤ ϕ(( ~E +i w) + ~U) = ϕ( ~E + ~U) < d.

This shows that the set {w ∈ X : ϕ̃( ~E +i w,X) < d} is plentiful, because
Ui ∈ G∞(Y ) and the subspace Y ∈ G∞(X) was arbitrary. Since i can be any
number in {1, . . . , k}, this completes the proof of the lemma.

Definition 4.4. The quantity M(ϕ̃; (xi)∞i=m) defined as

sup{ϕ̃((span{xi : m ≤ i ≤ n, f(i) = j})kj=1,X)} : n ∈ N, f : N→ N},
will be called the ϕ̃-constant of the sequence (xi)∞i=m.

Let N be a finite or countable set. Suppose that (ks)s∈N ∈ NN and we
are given a family (ϕs)s∈N of functions ϕs : G∞(X)ks → [1,∞] for s ∈ N .
Fix (ns) ∈ NN such that {s ∈ N : ns ≤ n} is finite for each n ∈ N and let
(ηn)n≥1 be a nonincreasing sequence in (1,∞). (If N is finite, then only the
case where ns = 1 for s ∈ N is interesting.)

Theorem 4.5. Suppose that X is ϕs-stable and ϕ̃s(~0ks ,X) < ds for
s ∈ N . Then there is a basic sequence (xi)∞i=1 in X such that M(ϕ̃s; (xi)∞i=ns)
≤ ds and the basis constant of the tail sequence (xi)∞i=ns is ≤ ηns for s ∈ N .

If Card(N ) = 1, then the theorem follows readily from

Proposition 4.6. Let X be ϕ-stable, d > ϕ̃(~0k,X) and η > 1. Then
there is a basic sequence (xi)∞i=1 in X with basis constant ≤ η such that

ϕ̃((span{xj : 1 ≤ j ≤ n, f(j) = i})ki=1,X) < d

for each n ≥ 1 and each function f : {1, . . . , n} → {1, . . . , k}.
Proof. Note that if Y ∈ G(X) and dimX/Y < ∞, then Y is plentiful

in X. This will allow us to construct the sequence (xi)∞i=1 by induction,
using repeatedly Lemma 4.3 and the finite intersection property of plentiful
subsets of X.

We let Y1 = X. If n ≥ 1 and Yn, x1, . . . , xn−1 have been defined so that
dimX/Yn <∞, then using Lemma 4.3 we select a nonzero xn ∈ Yn so that
for each f : {1, . . . , n} → {1, . . . , k} one has

ϕ̃((span{xj : 1 ≤ j ≤ n, f(j) = i})ki=1,X) < d.

Then we choose Yn+1 ⊆ Yn so that dimX/Yn+1 < ∞ and ‖x‖ ≤ η‖x + y‖
for each x ∈ span{x1, . . . , xn} and y ∈ Yn+1. Standard arguments show that
the sequence (xi) so defined has the required properties. This completes the
proof of the proposition.

The general case of Theorem 4.5 is a consequence of the following.
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Proposition 4.7. Suppose that X is ϕs-stable and ϕ̃s(~0ks ,X) < ds for
s ∈ N . Let (ns) ∈ NN be such that {s ∈ N : ns ≤ n} is finite for each
n ∈ N and let η1 ≥ η2 ≥ . . . > 1. Then there is a basic sequence (xi)∞i=1
in X such that the basis constant of the tail sequence (xi)∞i=ns is ≤ ηns for
s ∈ N and

ϕ̃s((span{xj : ns ≤ j ≤ n, f(j) = i})ksi=1,X) < ds(3)

for each n ≥ 1, each s ∈ N and each function f : N→ N.

Indeed, a proof of this proposition can be easily obtained by adapting
that of Proposition 4.6, because for each n the inductive choice of Yn and
xn ∈ Yn is subject only to a finite number of conditions (pertaining to those
s ∈ N such that ns ≤ n).

Namely, for each n there is a finite set Fn of functions which has the
property that if (3) is satisfied for s ∈ N such that ns ≤ n and for each
f ∈ Fn then for this n condition (3) is automatically satisfied for each s ∈ N
and f ∈ NN.

5. Some examples of functions ϕ. Given a Banach space X and
k ≥ 2, we shall consider two recipes for producing families of functions
ϕ : G∞(X)k→ [0,∞]. For any function h : Xk→ [0,∞] and ~U = (U1, . . . , Uk)
∈ G∞(X)k, we let

h↑(~U) = sup{h(x) : x ∈ U}, h↓(~U) = (inf{h(x) : x ∈ U})−1,

where U = {(u1, . . . , uk) ∈ U1 × . . .× Uk : ‖∑k
i=1 ui‖ = 1}.

Consider the following examples of functions on Xk:

h±,k(x1, . . . , xk) := max
{∥∥∥

k∑

i=1

εixi

∥∥∥ : εi = ±1, 1 ≤ i ≤ k
}

;

if X is a complex Banach space, then

hC,k(x1, . . . , xk) := sup
{∥∥∥

k∑

i=1

λixi

∥∥∥ : |λi| = 1, 1 ≤ i ≤ k
}

;

and finally, if q is a 1-unconditional norm on Rk, then

hq(x1, . . . , xk) := q(‖x1‖, . . . , ‖xk‖).(4)

Definition 5.1. We put ϕ±,k = (h±,k)↑, ϕC,k = (hC,k)↑, ϕ>q,k = (hq)↑

and ϕ<q,k = (hq)↓.

Observe that for each (u1, . . . , uk) ∈ U1 × . . .× Uk one has

‖ε1u1 + . . .+ εkuk‖) ≤ ϕ±,k(U1, . . . , Uk)‖u1 + . . .+ uk‖,(5)

‖λ1u1 + . . .+ λkuk‖) ≤ ϕC,k(U1, . . . , Uk)‖u1 + . . .+ uk‖,(6)
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q(‖u1‖, . . . , ‖uk‖) ≤ ϕ>q,k(U1, . . . , Uk)‖u1 + . . .+ uk‖,(7)

‖u1 + . . .+ uk‖ ≤ ϕ<q,k(U1, . . . , Uk)q(‖u1‖, . . . , ‖uk‖),(8)

and the respective coefficients ϕ(~U) are the smallest possible.
Note that the function ϕ±,2 coincides with the function ϕ defined by

formula (1), i.e., ϕ±,2(U1, U2) = ϕ(U1, U2) for U1, U2 ∈ G∞(X).

Proposition 5.2. Let (S,≤) = (G∞(X),�) and let T = Gfin(X)k with
the topology induced by the metric %. If ϕ : G∞(X)k → [0,∞] is one of the
functions introduced in Definition 5.1, then the function ϕ̃ : T × S → [0,∞]
defined by (2) satisfies the assumptions of Lemma 2.1.

Actually, for any function h : Xk → [0,∞], if either ϕ = h↑ or ϕ = h↓,
then ϕ̃( ~E, ·) is nondecreasing for each ~E ∈ Gfin(X)k. Only the proof of the
continuity of ϕ̃(·, Y ) requires some work. We shall prove a more general
statement in Section 7.

6. Some special classes of basic sequences. In this section whenever
we assert the existence of stable subspaces it is always an easy consequence
of Proposition 5.2 and the results in Section 2, so we shall refrain from any
further comments.

Theorem 6.1. Let 1 < M ≤ ∞. Let X be a Banach space such that
ϕ̃±,2(~0, Y ) < M for each Y ∈ G∞(X). Then there is a basic sequence (xi)∞i=1
in X whose real unconditionality constant is < M . If X is a complex Banach
space, then the complex unconditionality constant of (xi) is < 2M .

Clearly, Theorem 6.1 implies the Gowers dichotomy theorem, because if
X fails the assumptions of Theorem 6.1 for M = ∞, then ϕ̃±,2(~0, Y ) = ∞
for some Y ∈ G∞(X), which implies that Y is hereditarily indecomposable.

Proof. Let ϕ = ϕ±,2. Let Y ∈ G∞(X) be a ϕ-stable subspace and let
M ′ ∈ (ϕ̃(~0, Y ),M). Fix an η > 1 and apply Proposition 4.6 with d = M ′

in order to produce a basic sequence (xi) in Y whose basis constant is ≤ η
such that for each n ≥ 1 and each function f : {1, . . . , n} → {1, 2}, one has

ϕ̃((span{xj : 1 ≤ j ≤ n, f(j) = i})2
i=1, Y ) < M ′.

By (5), the latter estimate implies that for each n ≥ 1, each sequence (ai)ni=1
of scalars and each function ε : {1, . . . , n} → {1,−1} one has

∥∥∥
n∑

i=1

ε(i)aixi
∥∥∥ ≤M ′

∥∥∥
n∑

i=1

aixi

∥∥∥.

This shows that the real unconditionality constant of (xi) is ≤ M ′. If
X is a complex Banach space it is well known that the latter property
together with the fact that (xi) is linearly independent implies that the
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complex unconditionality constant of (xi) is ≤ 2M ′. This completes the
proof.

Remark 6.2. This theorem should be compared with the following easy
fact. If X has an M -unconditional basis and Y ∈ G∞(X), then ϕ̃±,2(~02, Y )
≤M , and if X is a complex Banach space, then also supk ϕ̃C,k(~0k, Y ) ≤M .

For our next theorem we need to estimate the complex unconditionality
constant of a sequence by an expression that involves a bounded number of
coefficients. Put T = {z ∈ C : |z| = 1} and Tk = {z ∈ C : zk = 1}.

Lemma 6.3. If Y is a complex Banach space and y1, . . . , yn ∈ Y , then

sup
µ1,...,µn∈Tk

∥∥∥
n∑

j=1

µjyj

∥∥∥ ≥
(

cos
π

k

)
sup

λ1,...,λn∈T

∥∥∥
n∑

j=1

λjyj

∥∥∥.

Proof. Put a = cos(π/k). Let f ∈ Y ∗ be a linear functional of norm 1 and
let (λj)nj=1 ∈ Tn. For 1 ≤ j ≤ n we can find µj ∈ Tk so that <(µjf(yj)) ≥
a|f(yj)|. Then we can estimate

∥∥∥
n∑

j=1

µjyj

∥∥∥ ≥ <f
( n∑

j=1

µjyj

)
≥ a

n∑

j=1

|f(yj)| ≥ a
∣∣∣f
( n∑

j=1

λjyj

)∣∣∣.

This estimate completes the proof, since ‖y‖ = sup‖f‖≤1 |f(y)| for y ∈ Y .

Theorem 6.4. Let X be a complex Banach space. Suppose that M <∞
and supk ϕ̃C,k(~0k, Y ) < M for each Y ∈ G∞(X). Then there is a basic
sequence (xi)∞i=1 in X whose complex unconditionality constant is < M .

Proof. Using Lemma 2.2, we find Y ∈ G∞(X) which is ϕC,k-stable for
each k ≥ 2. Fix M ′ < M so that ϕC,k(~0k, Y ) < M ′ for each k. Then fix k so
that cos(π/k) > M ′/M . Fix η > 1. Using Proposition 4.6 with d = M ′, we
obtain a basic sequence (xi) in Y whose basis constant is ≤ η such that for
each n ≥ 1 and each function f : {1, . . . , n} → {1, . . . , k} one has

ϕ̃C.k((span{xj : 1 ≤ j ≤ n, f(j) = i})ki=1, Y ) < M ′.

By (6), the latter estimate implies that for each n ≥ 1, each sequence (ai)ni=1
of scalars and each function µ : {1, . . . , n} → Tk one has

∥∥∥
n∑

i=1

µ(i)aixi
∥∥∥ ≤M ′

∥∥∥
n∑

i=1

aixi

∥∥∥.

Using this estimate and Lemma 6.3 we infer that the complex uncondition-
ality constant of (xi) is ≤M ′/cos(π/k) < M . This completes the proof.

Remark 6.5. Theorem 6.1 could be strengthened if one could show
that if X is ϕ±,2-stable and ϕ̃±,2(~02,X) = M < ∞, then X contains an
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M -unconditional basic sequence. We are only able to show that X con-
tains an asymptotically M -unconditional basic sequence (xi), i.e., (xi)i≥n
is Mn-unconditional, where limn→∞Mn = M . This follows easily by using
Proposition 4.7 with appropriate parameters.

An analogous comment can be made with regard to Theorem 6.4.

Let R<ω denote the linear space of all real sequences (xi)∞i=1 such that
{i ∈ N : xi 6= 0} is finite. Let X be a real or complex Banach space. If q is
a 1-unconditional norm on R<ω, we put

Φ>q(X) = sup{ϕ̃>q|Rk ,k(~0k, Y ) : k ≥ 2, Y ∈ G∞(X)},(9)

Φ<q(X) = sup{ϕ̃<q|Rk ,k(~0k, Y ) : k ≥ 2, Y ∈ G∞(X)}.(10)

The most interesting special case occurs when q = qp for some p ∈ [1,∞],
where q∞(x) := maxi |xi| and qp(x) := (

∑
i |xi|p)1/p if 1 ≤ p <∞.

Theorem 6.6. Let X be a Banach space and let q, r be 1-unconditional
norms on R<ω. Then, for each η > 1, there is a basic sequence (xj)∞j=1
in X whose basis constant is ≤ η such that for each n ≥ 1, each function
f : N → N and each k ≥ 2, if Ai = {j ∈ N : f(j) = i, k ≤ j ≤ n} for
1 ≤ i ≤ k and Ai = ∅ for i > k, then for each sequence (aj) of scalars,

q
((∥∥∥

∑

j∈Ai
ajxj

∥∥∥
)
i

)
≤ ηΦ>q(X)

∥∥∥
n∑

j=k

ajxj

∥∥∥,(11)

∥∥∥
n∑

j=k

ajxj

∥∥∥ ≤ ηΦ<r(X)r
((∥∥∥

∑

j∈Ai
ajxj

∥∥∥
)
i

)
.(12)

Moreover , if Φ>q(X) < ∞, then the basic sequence (xj) can be chosen to
be M -unconditional , where M is defined in Theorem 6.1 (or Theorem 6.4).

Proof. By passing to a suitable subspace of X, we may assume that X
is ϕ±,2-stable and for each k ≥ 2, X is ϕ-stable for ϕ ∈ {ϕ>q|Rk ,k, ϕ<r|Rk ,k},
and ϕC,k-stable if X is a complex space. Then the sequence (xi) can be
constructed by using Proposition 4.7 with appropriate parameters. The es-
timate (11) follows from (3) and (7), while (12) follows from (3) and (8).

Finally, it is easy to check that if Φ>q(X) < ∞ then the quantity M is
finite. Since the estimates in the proof of Theorem 6.1 (resp. Theorem 6.4)
make use of a single function ϕ̃±,2 (resp. ϕ̃C,k) and X is ϕ-stable for that ϕ,
our inductive construction of the xj ’s yields the M -unconditionality of the
whole sequence, although the estimates (11) and (12) are obtained only for
its tail sequnces (xi)i≥k. This completes the proof.

Observe that if Y has a basis (xj) satisfying the estimates (11) and (12)
with some finite constants, then Y contains a sequence of subspaces of the
form Yn = Yn1 + . . . + Ynn which admit both upper r-estimates and lower
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q-estimates with uniformly bounded constants. It suffices to take Yni to be
the closure of span({xnm+i}∞m=1) for i = 1, . . . , n.

If X is a Banach space such that Φ>q(X) < ∞ and Φ<q(X) < ∞, then
q must be equivalent to a qp. Namely, one has

Corollary 6.7. Let q be a 1-unconditional norm on R<ω. If there ex-
ists a Banach space X such that Φ>q(X) <∞ and Φ<q(X) <∞, then there
exist p ∈ [1,∞] and C <∞ such that q ≤ Cqp and qp ≤ Cq.

Proof. By Theorem 6.6 (with r := q), the assumption implies that there
exists a Banach space Y with an unconditional basis (xj) which satisfies
(11) and (12). Thus the conclusion can be obtained by adapting the well
known argument due to M. Zippin [Z]. This completes the proof.

The preceding results motivate adopting the following definition.

Definition 6.8. Let m ∈ NN. We say that a sequence (Ai)ni=1 of finite
subsets of N is m-allowable if min

⋃
iAi ≥ mn and the Ai’s are mutually

disjoint. A basic sequence (xj) is said to have the T (m, p)-property if there
is K < ∞ such that for every m-allowable sequence (Ai)ni=1, if (aj) is a
sequence of scalars and yi =

∑
j∈Ai ajxj for i = 1, . . . , n, then

K−1||(‖yi‖)ni=1‖p ≤
∥∥∥

n∑

i=1

yi

∥∥∥ ≤ K||(‖yi‖)ni=1‖p.

We say that the basic sequence (xj) has the T (p)-property if it has the
T (m, p)-property for some m ∈ NN. If, in addition to the T (p)-property,
the closed linear span of (xj) contains no subspace isomorphic to lp or c0,
then we say that (xj) is a generalized Tsirelson basic sequence.

Clearly, if m is a bounded sequence, then each basis with the T (m, p)-
property is equivalent to the natural basis of lp (if 1 ≤ p < ∞) or of c0
(if p = ∞). Needless to say, for each p ∈ [1,∞] there exist generalized
Tsirelson basic sequences with the T (p)-property. We refer the reader to
[C-S] for many interesting results in this area. The first example of such
a basic sequence was constructed by B. S. Tsirelson [T] for p = ∞. We
should mention that only after a few years it was discovered and proved
in [C-O] that Tsirelson’s example was isomorphic to its modified version
defined by W. B. Johnson, which was the archetype of the property defined
in Definition 6.8.

Note that a special case of Theorem 6.6 yields the following corollary.

Corollary 6.9. Let X be a Banach space, 1 ≤ p ≤ ∞ and suppose
that Φ>qp(X) <∞ and Φ<qp(X) <∞. Then every subspace of X contains
an unconditional basic sequence with the T (p)-property. Moreover , if X con-
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tains no isomorphic copy of lp (resp. of c0 if p =∞), then X is saturated
with generalized Tsirelson basic sequences with the T (p)-property.

Definition 6.10. A Banach space X is said to be an asymptotic Lp
space if there exists K <∞ such that for each n there is Yn ∈ G∞(X) such
that dimX/Yn <∞ and for each E ∈ Gfin(Yn) with dimE = n there exists
F ∈ Gfin(Yn) such that F ⊇ E and the Banach–Mazur distance d(F, ldimF

p )
is ≤ K.

Proposition 6.11. If 1 ≤ p ≤ ∞ and X is a Banach space which has
a basis with the T (p)-property , then X is an asymptotic Lp space.

We omit the proof, since it can be obtained using standard methods.

7. Continuity of functions ϕ̃. Let X be a Banach space, let ϕ :
G∞(X)k → [0,∞] and let ϕ̃ be defined by (2).

We consider three conditions on ϕ, denoted as (A), (B) and (C). We
shall show that if ϕ satisfies (A) and (B), then Lemma 2.1 can be applied
to ϕ̃ : G(X)k0 × G∞(X) → [0,∞], hence X has ϕ-stable subspaces. If ϕ
satisfies (C) as well, then Lemma 2.1 can be applied to ϕ̃ : Gfin(X)k ×
G∞(X)→ [0,∞], hence X has (ϕ,Gfin(X)k)-stable subspaces. This reduces
Proposition 5.2 to the easy verification of (A), (B) and (C) (in one case (C)
fails, but Lemma 7.10 takes care of that).

Definition 7.1. We say that ϕ satisfies condition (A) if ϕ( ~F + ~U)
≥ ϕ(~U) for each ~F ∈ Gfin(X)k and ~U ∈ G∞(X)k.

Lemma 7.2. If ϕ satisfies (A) then, for each ~E ∈ Gfin(X)k, one has

ϕ̃( ~E, Y ) ≤ ϕ̃( ~E,Z),(13)

whenever Y,Z ∈ G∞(X) and Z ⊆ F + Y for some F ∈ Gfin(X).

Proof. It follows from (A) and (2) that ϕ̃( ~E, Y ) ≤ ϕ̃( ~E, F + Y )
≤ ϕ̃( ~E,Z).

Let Gl(X) denote the group of those linear isomorphisms R : X → X

such that R− IX is a finite rank operator. If ~U = (U1, . . . , Uk) ∈ G(X)k and
R ∈ Gl(X) we let R~U = (R(U1), . . . , R(Uk)).

Definition 7.3. We say that ϕ satisfies condition (B) if for each ε > 0
there exists a δ > 0 such that if R ∈ Gl(X) and ~U ∈ G∞(X)k, then

‖R− IX‖ < δ ⇒ ϕ(R~U) ≤ (1 + ε)ϕ(~U).(14)

Observe that if ϕ satisfies (14), then for each ε > 0 there exists a δ > 0
such that if R ∈ Gl(X) and ~U ∈ G∞(X)k, then

‖R− IX‖ < δ ⇒ (1 + ε)−1ϕ(~U) ≤ ϕ(R~U) ≤ (1 + ε)ϕ(~U).(15)
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For, if δ > 0 and ‖R−IX‖< δ/(1+δ), then R−1 ∈Gl(X) and ‖R−1−IX‖< δ,
hence the lower estimate in (15) follows from (14) with R replaced by R−1.

Lemma 7.4. If ϕ satisfies (15) and (13) then for each ε > 0 there exists
a δ > 0 such that if R ∈ Gl(X), ~E ∈ G∞(X)k and Y ∈ G∞(X), then

(16) ‖R−IX‖< δ ⇒ (1+ε)−1ϕ̃( ~E, Y )≤ ϕ̃(R( ~E), Y )≤ (1+ε)ϕ̃( ~E, Y ).

Proof. Fix ε > 0 and let δ > 0 be as in (15). Fix R ∈ Gl(X) such that
‖R− IX‖ < δ. Let Z be the kernel of R− IX , so that dimX/Z <∞.

Fix ~E ∈ G∞(X)k and Y ∈ G∞(X). To prove the upper estimate, we
may assume that ϕ̃( ~E, Y ) < ∞. Now we fix b ∈ (ϕ̃( ~E, Y ),∞). It fol-
lows from (13) that ϕ̃( ~E, Y ∩ Z) = ϕ̃( ~E, Y ). Hence, by (2), we can pick
~U ∈ G∞(Y ∩Z)k such that ϕ( ~E+~U) < b. Observe that R( ~E+~U) = R( ~E)+~U ,
because R(Ei + Ui) = R(Ei) + Ui for i = 1, . . . , k. Therefore,

ϕ̃(R( ~E), Y ) ≤ ϕ(R( ~E) + ~U) = ϕ(R( ~E + ~U)).

Using the upper estimate in (15), we obtain

ϕ(R( ~E + ~U)) ≤ (1 + ε)ϕ( ~E + ~U) < (1 + ε)b.

Letting b tend to ϕ̃( ~E, Y ), we obtain the upper estimate in (16).
If δ is as in (15), then we have just also proved the upper estimate for

R−1. The latter yields the lower estimate in (16). This completes the proof.

Let p : Gfin(X)k → [0,∞] be defined as follows. If ~E ∈ G(X)k0 we let

p( ~E) = max{‖Pi‖ : 1 ≤ i ≤ k},
where Pi is the unique linear projection of E := E1 + . . . + Ek onto Ei
such that Pi(x) = 0 for x ∈ Ej with j 6= i. If ~E ∈ Gfin(X)k \ G(X)k0 we let
p( ~E) =∞. It is easy to verify that the function p is continuous on Gfin(X)k.

Definition 7.5. We say that ϕ satisfies condition (C) if there exists
a > 0 such that ϕ( ~F + ~U) ≥ ap( ~F ) for each ~F ∈ Gfin(X)k and ~U ∈ G∞(X)k.

Lemma 7.6. For each ~E ∈ G(X)k0 there exists γ ≥ 1 such that for each
~F ∈ Gfin(X)k, if %(~F , ~E) < 1/γ then ~F = R( ~E) for some R ∈ Gl(X) such
that ‖R− IX‖ ≤ γ%( ~F , ~E).

Proof. Let n =
∑k

i=1 dimEi. The case where n = 0 is trivial (one may
take γ = 1). Thus we may and do assume that n > 0. Put t = p( ~E),
r = %(~F , ~E) and let γ = tn. We shall construct an operator T on X of rank
n such that ‖T‖ ≤ γr and R := IX + T maps isomorphically Ei onto Fi for
1 ≤ i ≤ k. Then the assumption γr < 1 will imply that R ∈ Gl(X).

To this end, for each j, 1 ≤ j ≤ k, we choose an Auerbach basis in Ej ,
i.e., we let (eij)

dimEj
i=1 be norm one vectors in Ej such that the biorthogonal
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functionals (e∗ij)
dimEj
i=1 in E∗j also have norm one. Let x∗ij ∈ X∗ be a norm

preserving extension of the linear functional P ∗j (e∗ij) defined on E. Then
‖x∗ij‖ ≤ ‖Pj‖ ≤ t and x∗ij |Es = 0 for s 6= j.

Now, for each 1 ≤ j ≤ k and 1 ≤ i ≤ dimEj , pick an element fij ∈ Fj
such that ‖fij − eij‖ ≤ r. Let T be the linear operator on X defined by

Tx =
k∑

j=1

dimEj∑

i=1

x∗ij(x)(fij − eij).

Then dimT (X) ≤ n and ‖T‖ ≤ ntr = γr, since T is the sum of n rank one
operators whose norms are ≤ tr.

It remains to verify that R(Ej) = Fj for 1 ≤ j ≤ k. Observe first
that R(Ej) ⊆ Fj , because Reij = eij + Teij = fij ∈ Fj for all elements
of our Auerbach basis of Ej . Thus it suffices to observe that dimR(Ej) =
dimEj = dimFj . The first equality is obvious and the second one follows
from a theorem of M. G. Krein, M. A. Krasnosel’skĭı and D. P. Milman
(cf. [K, p. 199]), because the condition r < 1 implies that %(Ej , Fj) < 1.
This completes the proof.

Proposition 7.7. If ϕ : G∞(X)k → [0,∞] satisfies condition (A), then
for each fixed ~E ∈ Gfin(X)k the function ϕ̃ is �-nondecreasing on G∞(X).

If ϕ satisfies conditions (A) and (B), then for each fixed Y ∈ G∞(X)
the function ϕ̃ is continuous at each ~E ∈ G(X)k0.

If ϕ satisfies condition (C), then for each fixed Y ∈ G∞(X) the function
ϕ̃ is continuous at each ~E ∈ Gfin(X)k \ G(X)k0.

Proof. The first assertion follows from Lemma 7.2. The second one fol-
lows from Lemmas 7.2, 7.4 and 7.6. The final assertion is proved as follows.
Let ~E and Y be fixed. Clearly, (C) implies that ϕ̃( ~F , Y ) ≥ ap( ~F ) for each
~F ∈ Gfin(X)k. Thus ϕ̃( ~E, Y ) ≥ ap( ~E) = ∞ and lim inf ~F→ ~E ϕ̃( ~F , Y ) ≥
lim inf ~F→ ~E ap(

~F ) =∞, because p is continuous. This completes the proof.

Corollary 7.8. Let X be a Banach space and ϕ : G∞(X)k → [0,∞].
If ϕ satisfies (A) and (B), then X is saturated with ϕ̃-stable subspaces.

Proof. This follows from Lemma 2.1 and Proposition 7.7.

The following statement is easy to verify for each h : Xk → [0,∞].

Proposition 7.9. Both h↑ and h↓ have property (A).
If for each x ∈ Xk one has h(tx) = th(x) for each t ≥ 0 and

h(Rx1, . . . , Rxk) ≤ ‖R‖ ‖R−1‖h(x1, . . . , xk)

for each R ∈ Gl(X), then both h↑ and h↓ have property (B).
If there exists a > 0 such that for each x ∈ Xk one has h(x1, . . . , xk)

≥ a‖xi‖ for 1 ≤ i ≤ k, then h↑ has property (C).
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Thus all the functions ϕ introduced in Definition 5.1 have properties (A)
and (B). The functions ϕ±,k, ϕC,k and ϕ>q,k have property (C).

It follows from Propositions 7.7 and 7.9 that the functions ϕ±,k, ϕC,k and
ϕ>q,k have the property asserted in Proposition 5.2. However, ϕ<q,k fails
property (C), because it is a bounded function. The proof of Proposition 5.2
will be complete when we have proved the following.

Lemma 7.10. The function ϕ̃<q,k is a continuous function on Gfin(X)k

for each fixed Y ∈ G∞(X).

Proof. Let h denote the function hq defined by (4). Clearly, h is a norm
on Xk. Put b = max1≤i≤k q((δij)kj=1) and a = min1≤i≤k q((δij)kj=1). Note
that for each x = (x1, . . . , xk) ∈ Xk one has the estimate

h(x) = q(‖x1‖, . . . , ‖xk‖) ≤ b
k∑

i=1

‖xi‖,

which implies that ϕ̃<q,k( ~E, Y ) ≥ 1/b for ~E ∈ Gfin(X)k and Y ∈ G∞(X).
Fix a Y ∈ G∞(X) and put Ψ( ~E) := 1/ϕ̃<q,k( ~E, Y ). We shall verify that

the function Ψ satisfies the condition

|Ψ( ~E)− Ψ( ~E′)| ≤ L
k∑

i=1

%(Ei, E′i)

for ~E = (E1, . . . , Ek), ~E′ = (E′1, . . . , E
′
k) in Gfin(X)k, where L = b(1 + b/a).

Clearly, this will imply the uniform continuity of Ψ on Gfin(X)k.
From now on, ~E and ~E′ are fixed. It suffices to consider the case where

Ψ( ~E) > Ψ( ~E′). Put for brevity s = Ψ( ~E) and r =
∑n

i=1 %(Ei, E′i). We need
to verify that s− Ψ( ~E′) ≤ Lr. Observe that we already know that s ≤ b.

Recall that if ~U = (U1, . . . , Uk) ∈ G∞(X)k, we put

h↓(~U)−1 = inf{h(u) : u ∈ U},
and if ~E = (E1, . . . , Ek) ∈ Gfin(X)k and Y ∈ G∞(X), we put

Ψ( ~E) = (ϕ̃<q,k( ~E, Y ))−1 = sup{h↓( ~E + ~U)−1 : ~U ∈ G∞(Y )k}.
Now we fix a positive number s′ < s. Since dim(E′1 + . . .+E′k) <∞, for

any fixed η > 1 we can find a linear subspace Xη of finite codimension in X
such that if x ∈ Xη and e′ ∈ E′i for some i, then ‖e′‖ ≤ η‖e′ + x‖.

Since Ψ( ~E) > s′, one can find ~U = (U1, . . . , Uk) ∈ G∞(Y )k such that
h↓( ~E + ~U)−1 > s′. Replacing each Ui by Ui ∩ Xη, we may assume that in
addition Ui ⊆ Y ∩Xη for each i.

Now we fix any vectors e′1, . . . , e
′
k and u1, . . . , uk with e′i ∈ E′i and ui ∈ Ui

such that Q′ := h((e′i + ui)) > 0. Then we fix for each i an element ei ∈ Ei
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such that ‖ei − e′i‖ ≤ %(Ei, E′i)‖e′i‖. We put Q = h((ei + ui)) and also

S′ =
∥∥∥

k∑

i=1

(e′i + ui)
∥∥∥, S =

∥∥∥
k∑

i=1

(ei + ui)
∥∥∥.

Since h↓( ~E + ~U)−1 > s′, we have s′S ≤ Q.
Using well known properties of the norms h and q, we get

Q−Q′ ≤ h((ei − e′i)) ≤ q(r(‖e′i‖)) ≤ rq(η(‖e′i + ui‖)) = rηQ′

and hence Q ≤ (1 + rη)Q′. Similarly, one obtains

S′ − S ≤
k∑

i=1

‖ei − e′i‖ ≤
k∑

i=1

%(Ei, E′i)‖e′i‖ ≤ rη max
1≤i≤k

‖e′i + ui‖ ≤ a−1rηQ′.

By combining the latter three estimates we obtain easily

s′(S′ − a−1rηQ′) ≤ s′S ≤ Q ≤ (1 + rη)Q′.

This shows that s′S′ ≤ (1 + rη + a−1s′rη)Q′. Thus all ratios of the form
Q′/S′ are bounded from below by the number s′/(1 + rη + a−1s′rη). This
shows that

Ψ( ~E′) ≥ s′/(1 + rη + ηa−1s′r).

Since η can be any number > 1 and then s′ can be any number < s, it
follows that Ψ( ~E′) ≥ s/(1 + r+ a−1sr). Using this and the inequality s ≤ b,
we get the estimate

Ψ( ~E)− Ψ( ~E′) ≤ s− s/(1 + r + a−1sr) ≤ rs(1 + s/a) ≤ b(1 + b/a)r = Lr.

This completes the proof.
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