STUDIA MATHEMATICA 160 (2) (2004)

Duality of matrix-weighted Besov spaces
by

SVETLANA ROUDENKO (Durham, NC)

~ Abstract. We determine the duals of the homogeneous matrix-weighted Besov spaces
Bp?(W) and b, (W) which were previously defined in [5]. If W is a matrix Ay weight, then
the dual of By?(W) can be identified with Bp_/aql (Wﬁpl/p) and, similarly, [bgq(W)]* ~
l.);,aq (w—P /p). Moreover, for certain W which may not be in the A, class, the du-
als of By?(W) and bp?(W) are determined and expressed in terms of the Besov spaces
B;aq ({Aél}) and Z'J;,O‘q ({Aél}), which we define in terms of reducing operators {Ag} ¢

associated with W. We also develop the basic theory of these reducing operator Besov
spaces. Similar results are shown for inhomogeneous spaces.

1. Introduction. The aim of this paper is to determine the duals of
the Besov function spaces B,?(W) and the corresponding sequence spaces

B;q(W) fora € R,0< g < ooand 1 <p < oo. Here, W is a matrix weight,
namely, an a.e. invertible map from R™ to the cone M of non-negative
definite operators on a Hilbert space H of dimension m (e.g. H = C™ or
R™), i.e., for a.e. t € R™, (W (t)x,x)y > 0 for all z € H.

To understand what properties of W are needed to identify dual spaces,
we will heavily use the technique of reducing operators (for definitions refer
to Section 2 or [5], [10]). Namely, instead of dealing with matrix weights, we
consider a sequence of matrices enumerated by dyadic cubes and establish
properties of Besov spaces with such sequences of matrix weights. Then,
given a matrix W, its reducing operators constitute such a sequence.

Denote by D the collection of dyadic cubes in R™ and for each Q € D
let Ag be a positive-definite (thus, self-adjoint) operator on H. Also denote
by RSp (reducing sequences) the collection of all sequences {Ag}gep of
positive-definite operators on H. An admissible kernel ¢ € A is a function
v € S(R™) such that suppp C{{ € R":1/2 < [¢| < 2} and |p(§)| > ¢ >0
if 3/5 < [£] <5/3. Set ¢, (x) = 2""¢(2"x) for v € Z.
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In [5] we introduced the following:

DEFINITION 1.1 (Matrix-weighted Besov space Bp?(W)). For a € R,
1<p<oo,0<qg< oo pe Aand W a matrix weight, the Besov space
B’;‘q(W) is the collection of all vector-valued distributions f = (fioo s )T
with f; € 8'/P(R™) (the space of tempered distributions modulo polyno-
mials), 1 <4 < m, such that

Hﬂ\BgQ(W) = [{2"*ll¢w * JFHLP(W)}VHIQ

= [P (1) - (0o F)O)lLogan o lig < o0,

where Py * f: (501/ *fla"' y P X fm)T

Suppose W satisfies any of the three conditions:
(Al) WeA,withl <p< oo,
(A2) W is adoubling matrix of order p with p > 3, where (3 is the doubling

exponent of W,
(A3) W is a diagonal doubling matrix of order p with 1 <p < co.

(For definitions refer to Section 2.) Then Bg?(W) is independent of the
choice of ¢ € A ([5, Theorem 1.8]). If a matrix weight W satisfies none of
(A1)—(A3), then there may be a dependence on ¢ (i.e., Bf,‘q(W, ©)), never-
theless, all results will hold up to a choice of an admissible kernel .

Here, as a main tool and a useful object by itself, we define the space
Bg‘q({AQ}) with a sequence of discrete weights {Ag}q:

DEFINITION 1.2 (Averaging matrix-weighted Besov space Bp?({Ag})).
Fora e R, 1 < p < o0, 0<gq < o0, {Agtg € RSp and ¢ € A, the
Besov space ByY({Aq}) is the collection of all vector-valued distributions

—

f=(f1,-- s fm)" with f; € 8'/P(R"), 1 <i < m, such that
{27 3 oo P allie} |, <
I v

where [(Q) is the side length of Q.

This space is well defined (i.e., independent of ¢ € A), see Corollary 4.9,
if {Ag}q is a doubling matrix sequence defined as follows.

1l 20 gag) =

DEFINITION 1.3 (Doubling sequence). We say {Ag}g € RSp is a (dya-
dic) doubling sequence (of order p, 1 < p < o) if there exists 3 > n and
¢ > 1 such that for all P, Q) dyadic

0 Toat <efgims (1 [i5] ) (4 i )

where |Q)] is the Lebesgue measure of () and the norm on the left side is the
operator (matrix) norm.
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Observe that if (1) holds for some p, then it holds for 1 < ¢ < p, since
the right-hand side is > 1.

Our main goal is to identify the dual space of By?(W). For W € A,
the result can be expressed in terms of matrix weights. However, even for
W & A, but satisfying (A2) or (A3), we are able to characterize [Bg‘q(W)]*
in terms of reducing operators. Set 1/p+1/p’ =1if 1 < p < oo and p' = oo
ifp=1;1/¢+1/¢d =1if1 <g<ooand ¢ =00 if 0 < ¢ < 1. It is important
to emphasize our convention for the duality pairing. In what follows, we say
that a function space Y is a dual of a function space X, and write X* ~ Y,
in the sense that each y € Y defines an element [, of X* via the pairing
ly(x) = (z,y) = §ga(®(t),y(t)) dt and every element of X* is of the kind I,
for some y € Y with ||I,|| & ||ylly. (For example, [LP(W)]* ~ L' (W~7'/P),
1 < p < oo, with the pairing (f,7) = SRn<f(t),§’(t))H dt; refer to Section 3
for more details.)

THEOREM Al. Let « € R, 1 < p < 00, 0 < ¢ < oo and let {Ag}g be
reducing operators of a matriz weight W .

(2) If WeApl<p<oo, then [BSQ(W)]* ~ B;aq'(W—p’/p).
(3) If W satisfies any of (A1)—(A3), then [B;“‘I(W)]* ~ B};O‘q/({Aél}).

(For the proof refer to Section 5.)

Our next result identifies the dual space of the sequence (discrete) Besov
space bp?(W). The connection between 054 (W) and By?(W) is that fe
B;‘q(W) if and onmly if the appropriate wavelet coefficient sequence of f
belongs to by?(W) (see [5] for details). Recall the definitions of b,?(1W) and
by?({Aq}) from [5]:

DEFINITION 1.4 (Matrix-weighted sequence Besov space b5?(W)). For
a€ R 1 <p<oo 0<qg< ocoand W a matrix weight, the space
bp (W) consists of all vector-valued sequences § = {5 }gep, where 5o =

(sg), ce S(Qm))T, such that

I{5@}ellsge oy

=tz

~ DEFINITION 1.5 (Averaging matrix-weighted discrete Besov space
bpl({Ag})). For a € R, 1 < p < o0, 0 < ¢ < oo and {Ag}g € RSp,
the space bp?({Ag}) consists of all vector-valued sequences {5g}gep such
that

< 0.
la

> QI W P nsalrxe(|,,

nQ)=2-
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> QI (I 4g3allnxa()|
Q=2

= [{A@q}elljee < oo

I{8atallisatagy = H{Ta Lp(dt)},,

1q

If {Ag}q is a sequence of reducing operators for a matrix weight W,
then the norm equivalence

(4) ||§Hi,g<1(w) ~ ||§Hi,g‘1({AQ})
holds for any matrix weight W, « € R, 0 < ¢ < o0 and 1 < p < oo ([5,

Lemma 7.1]). To make notation short, we will write by?(W) ~ bp?({Ag})
for the norm equivalence.

THEOREM A2. Let « € R, 0 < g < 00, 1 < p < oo and let {Ag}g be
reducing operators of a matrixz weight W. Then

(5) 39 (W)]* =~ b, ({A5' ).
Moreover, if W € Ap, 1 < p < oo, then
(6) [3a (W) & b, (WP7P).

The paper is organized as follows. In Section 3 we discuss the discrete
Besov space b,?(W). We use a “one at a time reduction” approach meaning
we reduce the space by?(W) in the following order:

bpl(W) — bp?({Ag}) — bp?(R™) — by7(RY),
where the last two spaces are unweighted vector-valued and scalar-valued
discrete Besov spaces, and then identify the duals in the opposite order.
A similar approach is used for Bg?(W).

The fact that each Ag is constant on each dyadic cube @ allows us to
establish

(7) bt ({AQN]* = b, ({Ag'})
for any {Ag}g € RSp, a € R, 0 < ¢ < 00, 1 < p < o0. If the Ag’s are
generated by a matrix weight W, then combining (4) and (7), we get (5) of
Theorem A2. o o, o

In order to connect b, ({Aél}) with b ({Ag}) ~ b, (WP /Py
(for the definition of Ag refer to Section 2) the matrix A, condition is

needed, though only for one direction of the embedding; the other direction
is automatic. Thus, the following chain of the equivalences holds for by (WW):

Bt ({AQ}))* ~ b, ({Ag'})
S (g R e v,

This completes the proof of Theorem A2.

any W

(8) (gt (W)]*

BN

Q
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In Section 4 we prove the norm equivalence between Bp?({Ag}) and
by?({Ag}) for any doubling sequence {Ag}g. Note that if the Ag’s are
generated by a matrix weight W, then all that is required from the weight
is the doubling condition. (Compare this with conditions (A1)—(A3) from
[5] for the norm equivalence between the original matrix-weighted Besov
spaces.)

For

Q:ka:]‘_[l|:2_’/? oV :|7
v eZand k € Z", define pg(z) = |Q| 722"z — k) = |Q|Y 2, (x — xq),
where zg = 27"k is the lower left corner of Q.

THEOREM 1.6. Let o € R, 0 < ¢ < 00, 1 < p < o0 and {Ag}g be a

—

doubling sequence (of order p). Then for 5o(f) = (f, ¢q),

1 1 gacta0h = {5 )} ellizegagy):

In Section 5 we establish the correspondence between the continuous
Besov spaces Bp (W) and Bp?({Aq}).

LEMMA 1.7. Let « € R, 0 < g < o0 and 1 < p < oo. If W satisfies
any of (A1)—(A3) and {Ag}q is a sequence of reducing operators generated
by W, then

By{(W) ~ By*({Aq}).

For one direction of the above equivalence it suffices to have W doubling.
In Section 6 it is shown that if {Ag}g is a doubling sequence of order p,
1 <p < oo, then

(9) [By({AQN]" =~ B, ({A5').
Using the above duality and equivalence, we get the following chain:

(10) (Bt (w))* . By'({AQh)]" = B, ({4g'})

2 BBy R B (v,
where the equivalence (1) holds if W satisfies any of (Al)-(A3) and (4)
holds if W~P'/P satisfies any of (A1)-(A3) properly adjusted (see Section 2).
The third equivalence holds under the A, condition. However, the A, con-
dition is only needed for one direction of the embedding. This proves The-
orem Al.

In the last section we consider inhomogeneous function spaces and trans-
fer all the above theory to the inhomogeneous case.
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2. Definitions and notation. Given a matrix weight W, for each
dyadic cube @ in R" consider a reducing operator Ag corresponding to the
LP average over @ of the norm |[W? . |3, i.e.,

1/p
|Agz|n ~ (]Q\ S WP (t)z||B, dt> for all z € H.

Thus, we are dealing with a family of norms g;(z) = |[W'/?(t) z||3;. By def-
inition, the dual norms are ¢ (z) = ||[W~'/?(t) z||3; and reducing operators
for their LP" averages over a cube Q are

, 1/p
A :crH~( [ 1/p<>xu%dt) |

Q15
In other words, {Ag}Q is a reducing sequence for the “dual” matrix weight
W—'/P (for more details refer to [10], [5]).

Recall that the matrix A, condition is ||Ag Agll < c¢ for every cube

Q@ C R", and the opposite inequality ||(A£ Ag) Y| < ¢ always holds as a
simple consequence of Hélder’s inequality: for any z, y € H we have

T Up()xllP dt —1/p P dt v
( ,y>\§<§2!W (t)a] |Q,) (guw (1) |Q,)

~ Az I1AG .

which implies ||Ag z| > cH(Ag)*le for any z € H and, thus, the above
statement follows.

A condition which is weaker than A, for a matrix weight W is the doub-
ling condition:

DEFINITION 2.1 (Doubling matrix). A matrix weight W : R" — M is
called a doubling matriz (of order p, 1 < p < 00), if there exists a constant
¢ = ¢p,n such that for any € H, any 0 > 0 and any z € R",

(11) VW@l dt <c | [WYR@)]y, dt,
Bas(2) Bs(z)
i.e., the scalar measure w,(t) = |[W/P(t )x||%, is uniformly doubling and not

identically zero (a.e.). If ¢ = 27 is the smallest constant for which (11) holds,
then [ is called the doubling exponent of W.

Observe that if W is a doubling matrix weight (of order p), then {Ag}q
is a doubling sequence (of order p). The fact that A, implies doubling in
the scalar case is quite straightforward and can be found in [7]. The vector
case can be found in [6]. Also note that 5 > n and for the Lebesgue measure

0 =n.
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By saying W~P'/? satisfies any of (A1)~(A3), we mean either WP'/? ¢
Ay with 1 < p/ < oo (which is equivalent to W € A,, 1 < p < 00),
or W~P/P is a doubling matrix of order p’ with p’ > 3*, where 5* is the
doubling exponent of WP/ or WP/P is a diagonal doubling matrix of
order p’ with 1 < p’ < 0.

In order to establish the connection between matrix weighted Besov
spaces and averaging Besov spaces, we use an auxiliary L? space:

DEFINITION 2.2 (Averaging space LP({Ag},v)). Forv e Z,1 <p < c
and {Ag}g € RSp, the space LP({Ag},v) consists of all vector-valued
locally integrable functions f such that

1P heragin = | > xelbAef ®)
uQ)=2-

< oo.
Lr(dt)

Note that HfHng({AQ}) = l{2"%||¢v * JFHLP({AQ},V)}VHZ‘Z' To make nota-
tion short, define @, = {Q € D : [(Q) = 27"}.

3. Duality of sequence Besov spaces. An important tool that we
need is the duality on [9(X) with X being a Banach space. By definition
19(X), 0 < g < o0, is the set of all sequences {f,} ez with f, € X, v € Z
such that (3", [|£o]|%) "7 < 00. If 1 < g < o0, then (19(X))* = 19(X*) (see
[1, Chapter 8]), and if ¢ is a continuous linear functional on {%(X) identified
with {g, }uez € 19 (X*), then the duality is represented as

9(f) = (£,9) =Y (fvr90)x,

VEZ
where (f,, g,)x = g,(f,) is the pairing between X and X*. We will mainly
be concerned with X = LP, 1 < p < oo, or LP(W), 1 < p < o0, and,
thus, X* = L? or Lp/(W*p//p), respectively, with the pairing (f,g)x =
§(f(2),9(z))p da.
Ifo<g<1,and X = LP, 1 < p < oo, then (I9(LP))" = l‘x’(Lp/) (see [9,
p. 177]) and the pairing is defined as above.

THEOREM 3.1. Let W be a matrix weight, « € R, 0 < g < o0, 1 < p
< 00. Then

(i) b2 (WP'/7) € [BeU(W))* always,

(ii) [Bp?(W)]* C b, (W P/P) if W € A,

We will prove this theorem, which implies (6) of Theorem A2, in several

steps. The use of reducing operators is essential and helps to understand
why certain conditions on the weight W are necessary.
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Proof of (i) of Theorem 3.1. For each i € l');,aq/(W*p//p) define a func-
tional [ on by (W) by
I7(5) = (5,8) =) (8o, tQ)n for any §={g}q € b3I(W).
Q

The calculations below show that this sum converges and [ € (D59 (W)]*:
(12) } Z(%f@n}
Q

<V DRI W (@) WP (2) 3, To) 1 xo(7) da.

VEZ R"™ QEQV

Using the self-adjointness of W and the Cauchy—Schwarz inequality, we
bound (12) by

S eI Pxq @) WP ()50 1)
VEZR™ QEQ, .
x (1QI" 1P xq (@) |W P (a)Egllr) da.

Applying Holder’s inequality several times, we estimate [7(5") by

13 3§ (X tal oo @) W @sol)

VEZR™  QeQ.

- N 1/
< (3 (@I @)W @l ) d

QEQy
< ZH > |Q|_a/n_1/2XQ§Q‘ ; H > ’Q|a/”_1/2XQfQ(Lp, —
vEZ  QEQ, Le(w) QEQy ( )
< 115 llgga ) lI Hb;aq/(w_p//p),

for 1 < g < co. In the case of 0 < ¢ < 1, we bound (13) by
15 gy JE et

Since 19 is embedded into ' when 0 < ¢ < 1, we estimate the previous
product by ||§||I~)gq(w)||t ||l-);,ao<>(w,p//p). .

In terms of reducing operators (or using (4)) the previous lemma states
(14) by T ({AD}) < B ({A})]"

If we follow along the lines of the proof again but instead of W~1/?(t)W/P(t)
in (12) use AélAQ, then we obtain the following statement.
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LEMMA 3.2. Let « € R, 0 < g < 00,1 < p < oo and {Ag}g € RSp.
Then

(15) b, (1A' C 157 ({AQ))]™
In fact, if only we have proven (15), then (14) (and equivalently part (i)

of Theorem 3.1) could have been obtained as a consequence of (15) and [5,
Corollary 7.4], i.e

(16) by ({AD)) € b, ({Ag')) € [y ({AQ]"
Observe that (15) holds for any {Ag}g € RSp, not necessarily generated
by W.

Now we will study the opposite embeddings. By Lemma 3.3 below, we
will get

(17) Bt ({AQ]" € b," ({Ag'})
without any additional assumptions on the sequence {Ag}¢. Note that com-
bining (15) and (17), we obtain (7). If we apply [5, Corollary 7.4] again, (17)
is continued as
. % s g’ _ AP-_a/ s g’ o
B ({AQ]™ € b ({AG')) € b, ({ADY) ~ b, (WP/P)
with the second embedding being held under the A, condition. Thus, the
embedding (ii) of Theorem 3.1 holds if W € A,.
LEMMA 3.3. Let {Ag}g € RSp, a € R, 0 < ¢ <o00,1<p<oo. Then
(17) holds.
Proof. Let 1 € [bp?({Ag})]*. We show that there exists t € l};aql({Aél})
such that for any § € bp?({Ag}),

I(s) = (5 {) = Z<§QJ{Q>H and H{”b*MI'({A—l}) < HZH
Q v

Let é’}k) denote a vector-valued sequence enumerated by dyadic cubes such
that in the kth component (kth row) of this vector the Jth entry (corre-
sponding to the dyadic cube J) is equal to 1 and all other entries are zero:

=(..,{0}q,.- -, {---0... Lithentry - --0...}¢o (kthrow), {O}Q,...) .
Now if § has only finitely many non-zero entries, i.e.,

{Q} finite k=1
then by linearity

= Y Y= Y3 s

{Q} finite k=1 {Q} finite k=1
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By continuity, since finitely non-zero sequences are dense (p, ¢ < 00), we get
m
" k), (k L p o
= SN st = S (5, fghw  for any 5 € 039({Ag)).
QeD k=1 Q€D
Now everything is set up to show that ¢ := ({t(Ql)}Q, . .,{t(Qm)}Q)T
b;aq/({Aél}). For 5 € Bg‘q(Rm), set §g = AC}l? and define

1(5) =1{A5'50}e) = I{50}a) = > (50, to)n
Q

= (Agiq, Ag'To)n =Y (g, to)n
Q Q

where ?Q = AélfQ. By the above,
1(3)] < cl{8e}alligaagy = cliselallige@my:

i.e., I induces a continuous linear functional I on bJY(R™). By Lemma 3.4
below, {tg}q € l');,aq/ (R™). Since the inside L” -norm of the l};aq/ (R™)-norm

Of?is
| 3 10 ioxa|, = | PO dtaloxel|
QREQy QeEQy
= H >l ”%X@‘
0c0, L' ({Ag'’

te Blj,aq/({Aél}) and the lemma is proved. =
LEMMA 3.4. Leta e R, 0<g< o0, 1 <p<oo. Then
(18) [B29(R™))* = b7 (R™).

Proof. It only suffices to show the scalar case (m = 1) of (18), since
§ € by?(R™) means that each component s® belongs to bp? and by making
zero all but one of the components of an arbitrary § we obtain (18).

The embedding [by9]* D Bl;aq/ is a trivial application of Holder’s inequal-
ity plus the embedding l')f;q — 6;‘1 for ¢ < 1, so we only concentrate on the
opposite embedding.

Suppose | € [by?]*. Using linearity and continuity, I can be represented
by some sequence {tg}q as I(s) = Y. sqlq for any s = {sq} € b,* and

(19) 1) = | 3 safe| < il 1slsga:
Q
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Case ¢ > 1. Foreachv € Zlet f,(s)(x) = > peq, Q=" 250xq(2).
Define amap 1657 — 14(L?) by I(s)={f(s)}vez. Observe that |1(s)]lu(zs)
= s Hbgq, in other words, by the natural construction I is a linear isometry
onto the subspace I(by?) of 19(LP). Then [ induces a continuous linear func-
tional [ on I(b39) C 19(LP) (continuous in 17(LP)-norm) by I(I(s)) = I(s).
Since [9(LP) is a Banach space, by the Hahn—Banach Theorem [ extends to
a continuous linear functional leg on all of 19(LP) with ||lexc|| = [|1]| < |17]I-
Since [l9(LP)]* = lq/(Lp,), loxt 18 represented by a sequence g = {g,}ez €
19 (1) with lgl| = {9}l iy < Nl and

> solo =Us) = U{ () = > | fuls)@)g, (@) dz  for any &€ by,
Q VEZ Rn

Zscm SN QI s (g, (2) da.

VEZ QEQV Q

Taking sg = 0 for all but one cube, we get tg = |Q|_a/”+1/2(g,,>Q. Using
Holder’s inequality, we have
Lp/}y lq

2]l ~aar = (9v)
b,
P QcQ.

CASE 0 < ¢ < 1. Suppose 1 < p < o0. Fix v € Z and let F,, denote a
finite collection of cubes from @Q,. Set 7, = ZQGFV(]Q\a/”_1/2+1/7’/\tQ\)p/.

Since the sum is finite, 7, < co. Let sqg = |Q](a/"_1/2+1/p/)p,|tQ|p/_2tQ if
Q € F, and tg # 0; otherwise let s = 0. Note that ||{8Q}Q||i)gq = /7
Observe that 3> sl = 7, and by (19), 7, < [I|| [slljge = [|i] 72" Since

< G ol oy < N1

7, is finite, we get /< Il]| and the estimate holds independently of the
collection F}, taken. Hence, we can pass to the limit from F,, to Q,. Then,

1/p
[tz = sup (37 (QI" 2 g )
vEL " QeqQ.

=sup7 /P < || or teb .
VEZL P

Now assume p = 1. Fix P € D and define s¥) = {S(P)}Q by s(P) =
1Q|*/"~1/2sgnt if Q = P and s( ) = 0 otherwise. Then H{s }QHbaq =1

and |P|*/"=12|tp| = ZQS g = 1sP)) < |1 II{S }Qllbaq = ||I]| for any
P € D. Hence,

[£[]j=a00 = sup [P|*/" 712 |tp| < [[U| or te€ b ™. m
it PeD
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4. Equivalence of sequence and discrete averaging Besov spaces.
In this section we discuss norm equivalence between Bj?({Aq}) and

by?({Ag}). We suppose a € R, 0 < ¢ < oo and 1 < p < oo for all statements
in this section. If ¢ = oo, then set ¢/ = 1.

DEFINITION 4.1. For v € Z let E, = {f : fi € ' with supp f; C {¢ €
R™: ¢l <2t i=1,...,m}.

The following decomposition of an exponential type function is a useful
tool in studying the norm equivalence (for the proof the reader is referred
to [3, p. 55)):

LEMMA 4.2. Suppose that g € S'(R™), h € S(R™) and suppg, Suppﬁ -
{|¢] < 2¥7} for some v € Z. Then

(20) (g*h)(z)= > 27 g(2 " k)h(z — 27 k).
kezn

Let ' ={ye€S:9=1o0n{ e R":|{ <2} and suppy C {{ €
R™ : €] < w}}. Define v, (xz) = 2""y(2"z) for v € Z. Since 7, = F(2"¢),
supp?, € {£ € R™ : ] < 2"7}.

LEMMA 4.3. Forv e Z let g € E, and fix x € Q,, where k € Z™. Then
foranyy e R" and v e I,
(21) Fy) = 2"F@ "+ a)(y— (271 + ).

lezn

Proof. Denote §*(y) = g(y + ). Trivially, g(y) = §*°(y — x). Note
that (§%)"(¢) = e"mfé\(g), and so supp (§%)" = supp g. Therefore, by (20)
applied to g%,

W) =g"(y—x) =Y 27" 2 " Dyly —z —27"0),
lezn

which is (21). »

LEMMA 4.4. If {Aq} is a doubling sequence of order p, then for 5g =
(f.9q),
(22) ||{§Q}Q||z;g‘1({,4@}) < C||JF||B;;‘1({AQ})-

Proof. Note that 5o = |Q|"/%(3, * F)(277k) for Q = Q,, where @(z) =
). Let 5o alignipagy) = 7)ol where
(23) To=> V 14g. (@ = 2 "k)|1P de.

kEZ™ Quy

Since @, * fe FE,, Lemma 4.3 implies

@+ )@k =Y (@ NI+ 2k —1—2"8), 2 € Qu,
lezn
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for some v € I'. Then

Jo< S8 (X e @ox e+ o)l k-1 - 20)]) da

kEZ™ Q) leZ™
1Ag,. (B * f)2 "1+ 2)|[\"
sy | (xR iz
o N (1+|k—1—2vz|)M
for some M > (34 n. Using the discrete Holder inequality and the fact that
M > n, we bring the pth power inside the sum on [ (for p > 1). Furthermore,
since {Ag}q is doubling, (1) implies
(24) 1AQ @7 < e(1+ )71 Ag, T | for any @ € H.
Thus,

J, <c Z S Z (1+ m)ﬁHAQV(kH)(@V * f)(z—ul +a)|P

xZ.
o i (1+|k—1—2vz|)M

Changing variable (t = x 4+ 277]) and reindexing the sum on [, we get

Jo<e S ST k- 1M Ag,, (B« Y0P di

kezZ™ Q. lez™
<> V140, (@0« F)OIP dt = cllBy * flloagym
lezm Qul

(the sum on k converges since M — 3 > n). Thus,

5@ elligaragy < el s ra0).0)-

Now we need the independence of the space By?({Ag}) of the choice of ¢
(or @). We apply the same strategy as in [5, Theorem 6.6], namely, we use
the proof of Corollary 4.9 below, which will imply that the last expression
is equivalent to chHng({AQ},(p) and, thus, (22) is proved. m

COROLLARY 4.5. If {Ag} is a doubling sequence of order p, then for
§Q = <f ) 90Q>7

(25) ItS@Yelligacagty = ellf lggacragty
and
(26) ”{SQ}Q”[);/MI’({Afl} CHfH aq ({A 1})

Proof. For (25) repeat the previous proof with each Ag replaced by Aél
and instead of the estimate (24) use

(27) HAkau P <e(@+|I)°|AE  @||P for any @ € H,

Qu (k1)
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which follows from the doubling property (1) and duality

L (@,7)|
JAGh e | = sup T
Q 1= [Ag7]

For (26) use the obvious replacements for a, p, ¢ and Ag. If 1 < p < oo,
choose M > (p’/p + n and replace (24) by

(28) HAél Hp <e(l+ ]l|)ﬂp PIAZ @ le for any u € 'H,

Qu(k+1)
which is obtained from (27) by raising to the power p'/p. If p =1 (p’ = 0),
then replace (23) with the L® norm:

Ty =sup > |[Ag (@0 * F)27E) X (%)
TER™ pezn

and use (27) instead of (24) to get
o < e sup 314G G s PO 00 =l Fllmaghy o o
lezn

Recall that for each admissible ¢ € A there exists ¢ € A (see [3, Lem-
ma 6.9]) such that

(29) D T32E) (278 =1 i E#0.
VEZ

A pair (¢, ) with ¢, 9 € A and the property (29) is referred to as a pair of
mutually admissible kernels.

LEMMA 4.6. Suppose {Ag}q is a doubling sequence of order p. Then

(30) 1 | sacragy < {5} alizaon:
Proof. Using f ZQ so(f )1/)@, we get
| ZSQ(”#’Q} Bg1({AQ))

<[{2 ( [ I4rsallten « vo)@)) ar) )

—2v P (Q)=2""

NS ( (3 vl e va))) ) m

pn=v—1 =2-vP (Q)=2

i

lc!

= II{J/p}qug7

since ¢, * g = 0 if | — v| > 1. Using the convolution estimates (16) and
(17) from [5], we get (for any M > 0)

(B1) (v *9Q)(@)| < enl @721+ 2z 2™ Hfp=v-Lyy+L
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If 1 < p < oo, choose M = M7+ Ms with My > 3/p+n/pand My > n/p';
ifp=1,let M = M; > B+n. Then applying the above estimate and Holder’s
inequality, we obtain

v+1
Jo<e Y 3 YT Apsg|PIPIIQI A1+ 2 ep — xgl) M.
p=r=1[(P)=2-v[(Q)=2—H
Shifting Ap to Ag by doubling, we get

v+1
To<e Yo Y 1QIPPIAgElPIQl YD ep(142%wp—agl) PP,
p=r—=11(Q)=2=+ I(P)=2""

Applying [5, Lemma 5.4] (Summation Lemma) to the sum on P, we have
v+1
Jo<e d o >, QA Q]
p=r=11(Q)=2"+
v+1
=c ), H > ler 1/23QXQ‘
p=r—1 (Q)=2—H
Combining the estimates for all J, and reindexing when necessary, we get

1P Uggoaon <3¢[{2)] 0 1@1250xq]
1(Q)=2-v

Lr({AQ}m)

Lr({Ag}w >} la

= CH{gQ}Hbg‘J({AQ})- u

REMARK 4.7. Theorem 1.6 is obtained by combining Lemmas 4.4
and 4.6.

COROLLARY 4.8. If {Ag}q is doubling (of order p), then

(32) HJFHBg‘I({Ag;}) < CH{§Q<JF)}QHbg‘1({A51})
and
(33) Hf” 0“1 {A }) CH{SQ(f)}QHb;aql({Aél})

Proof. For (32) use the previous proof with the following shifting of Ap
to Ag (similar to (27)):

(34) 1AR' 5 II” < enpp (1+2"|2p — 2q)? 145 50 |I7,

where [(P) =277 and [(Q) = 27# with p = v—1, v or v+1; for (33) use the
above proof with the indices —«, ¢/, p/; if 1 < p < 0o, take M > Bp'/p+n
and apply (34) raised to the power p'/p; if p’ = oo, then

v+1

Jy, < sup Z Z Z ||A 5QH| SDV*ZZ)Q)(QU)\XP(%)'

xeRnuull Y=2-"1(Q)=
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Using the convolution estimate (31) (with M = M; > 3+ n) and (34) for
shifting A;l to Aél, we get

J, < Z H l4g elxal|, .
p=rv—1 (Q)=2—#

which gives (33). =

COROLLARY 4.9. The spaces By?({Aq}), aq({A Y cmdB ad ({4, Y
are independent of the choice of the admissible k:ernel if {AQ}Q 18 doublmg
(of order p).

Proof. Repeat the proof of [5, Theorem 1.8] with W replaced by Ag and
use Lemmas 4.4 and 4.6 for the space B;?({Aq}); for the space Bg‘q({Aél})

apply (25) and (32), and for the space B;O‘q/({Aél}) use (26) and (33). =

5. Properties of averaging LP spaces. In this section we study the
connection between LP({Ag},v) and LP(W), the dual of LP({Ag},v) and
several convolution estimates on LP({Aq},v).

LEMMA 5.1. Let W be a doubling matriz weight of order p, 1 < p < 0.
Then for f € B, v € Z,
(35) £ zeowy < el f lle(agy )
where {AqQ}q is a sequence of reducing operators generated by W and c is
independent of v.

—

Proof. Using the notation W, (t) = W(27"t) and f,(t) = f(27"t), we
write

I oy = D § WY@ F 0P de =" 27 § WP (0) £ (2|17 dt.

kEZ™ Qui kezn Qok

Since ﬁ, € Ep, there exists v € I" such that ﬁ, = ﬁ, * . Using the decay of
~v and Holder’s inequality, we get

; - WAOTAOIG
1wy < D> 27" 8 > U dy dt
kezn Qor MEZ™ Qom (1 + ‘m N k‘)
for some M > (3+n. Observe that || Ag,, fi(y) ~ §0u, HWl/p ) fo(y)||P dt.

Using the doubling property of W to shift Aka to AQm (see (24)), we
obtain

I 1oy e Do D27 | (Lt m = k)M D) Aq,, fuly)IP dy

mezZ™ kezn Qom

<e > V. I dy,

meZ™ Qom
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where the sum on k converges since M > G+n. Changing variables x = 27y,
we get the desired inequality (35). m

COROLLARY 5.2. Leta e R, 0<¢g< oo and 1 <p < oo. If W is dou-

bling (of order p) and {Ag}q is a sequence of reducing operators generated
by W, then

Byi({Aq}) C BpU(W).
Proof. Since ¢, * f € E,, the previous lemma implies
1 ey = 1427 llew * fllogw boll
< el {2 lgw * Flliogaqrn ol = el F gsagagy- =

LEMMA 5.3. Let 1 < p < oo and W satisfy any of (A1)—(A3). Suppose
fE€E, veZ. Then

(36) ||f||Lp({AQ},V) < CH]FHLP(W)v

where {Ag}q is a sequence of reducing operators produced by W and c is
independent of v.

Proof. Using the definition of reducing operators, we write

- 1
£ ogagran = > S S WP () ()P dt da

kezn Q |Ql/k’|

=) S | HW”” () fo(W)IIP dt dy,

kEZ™ Qok Quk

by changing variables x = 27"y and denoting f,;(y) = f(2_”y). Note that
f,; € Ey. Applying the decomposition of an exponential type function (Lem-
ma 4.2) to f,; = ﬁ,*’y for v € I' and Hoélder’s inequality (choose M > 3+n),
the last expression is bounded by

Wl/p(t) P
> z”w_ o dvay

kEZ™ Qox Qur MEL™

sc Z Z (1+|k— m\ M—3 S S ”Wl/p(t)ﬁ/(m)”pdtdy7

mezr keZn Qor Qum

by applying the doubling property of W (any of (A1)—(A3) implies that W
is doubling). Integrating on y and summing on k (M > 4+ n), we bound
the previous line by

e > VW@ fmylPde =2 Yo § W) f(m)|P dt,

MEZ" Qum MEZ™ Qom
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again by changing variables. Now applying [5, Lemmas 6.3 and 6. 5] (this is
where (A1)—(A3) come into play), we bound the above by ¢2~ ””||f,,||Lp W)

= C||J?H1£p(w), which gives (36). =

COROLLARY 5.4. Let a e R, 0 < g < o0 and 1 < p < oo. If W satisfies
any of (A1)—(A3) and {Ag}q is a sequence of reducing operators generated
by W, then

BII(W) € BR({Ag}).

Proof. As in the proof of Corollary 5.2, use the fact that ¢, * f S
and Lemma 5.3. =

REMARK 5.5. Combining Corollaries 5.2 and 5.4, we have Lemma 1.7.

In order to establish the dual of LP({Ag},v), 1 < p < oo, we consider
the following idea:

s sy = D VlIAaf (@)l dx
QeQy Q

= | (3 14ef@lhxe(@)) dx

R™  QeQy

=7 > Am(a:)f(x)H:dx
R™  QeQy

= I/ @) F @) de = 1 170,
Rn
e., LP({Ag},v) = LP(U,), where U,(z) = ZQEQ,, A%XQ(.T})I is a ma-
trix weight. Since the dual [LP(U,)]" can be identified with LP (U}}) with
Uy/P(2) = (U) "7 () (e.g. see [4] or [10]), Le., U (2) = Y geq, 49" X (),

we obtain

171 0z = | H 2 Aélm(“’“)ﬂx)Hidﬂj

R™  QeQy
QEQy Q
or
(37) [LP({A} )" = L ({45} v).

If p =1, then the standard duality argument gives

[L'({AQ} )" =~ L=({Ag'}v).
The details are left to the reader.
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The boundedness of the convolution operator with a decaying kernel on
LP({Aq},v) will be helpful in the next section. We establish it here.

LEMMA 5.6. Let |0(t)| < ¢/(1+[t)™ for some M > B/p +n and for
v € 7 define D,(t) = 2""®(2"t). Let {Ag}qg be a doubling matriz sequence
of order p, 1 < p <oo. Fix A\, u,v € Z. Then

A—V(

() 119, [ llogagy < colen) ™ ()" I F lo(gag) o)

(ii) [|®,, = ]?HLP({A;},)\) < CD(CS))\_V(CQ)#_V||JFHLP({AZ21}’V))

where ¢ = 2"/px{,\>l,} + 2(”7*8)/7“)({)\9}, c2 = 2"Xqus0y + anMX{ugu}»
c3 = 2(5_”)/”x{,\>y} + 2_"/”X{/\§V}, and cq is independent of \, u and v.

Proof. Using the decay of @, namely,
|Pu(a = y)| < k227" /(142" |z — y )™,

where ko = 2(”*”)”)({,0,,} + 2(”*“)(M*”)X{M§,,}, we have

1205 1 acyy = 3§ 1AQ(@, 5 P)(@)|P da

QEQNQ
Y P
< 3 §( 1 1Hefwl i2utw — vl dy) dr
Qe Q R
ka2 | A f ()| P
<o > § (| eIVl )Y o,
5, 0\ T+ 27le —yl)
k22yn||AQAkf(y)H b
b O Nmczn @, (L 207 — 20, )

Since {Ag}q is doubling, we “shift” Ag,, to Ag,,.:

(38)  [Agu W) < cki(1+ 2|2 = 2q,,. )"/ | AQ,..fw)|l  forz € Qux,
where k1 = 2()‘_”)”/”X{>\>,,} + 2(1’—)\)(3—")/1’)({)\?,}. Substituting (38) into

the convolution estimate, we get

[Py * f ||€P({AQ},)\) <c S < Z

R™ “mEZ™ Qum

—

[ uk2"l40., W, )pd
(1+ (22 — m[)M=5/p |

Using the discrete Holder inequality on the sum inside and then Jensen’s
inequality to bring pth power inside the integral (if p > 1), the last line is
bounded above by
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. S 1 p/v

ckiky < - Y )

W2 T
2| Ag,.. f(w) P

vm d d

X(Z \ Gy ) &

MEZL™ Qum

ovn N
< ckVkb A Pdydx;
= CRy Qm%%nﬂén (1+]2V:U—m])M_ﬁ/p QS H Qu'mf(y)H Yy ax;

since M — (3/p > n, the sum on [ converges (independently of ). Changing
variables (t = 2¥x) and observing that the integral on ¢ converges (indepen-
dently of m), again since M — 3/p > n, we obtain

1By % F o agym < kiks D | 1Aqu. fW)I” dy.
mEL™ Qum
Put ¢; = k:i/o‘_'/) and cp = k;/(”_y). Then part (i) is proved.
For the second part observe that (1) (“shift” Ag,,, to Ag,,) together
with

I4g' 5 = sup [0
0 Agd

implies
(39)  [lAgh Sl < cka(1+2"|x — 2q,,.)*PIIAG) FW)l, = € Qi

where ks = Q(A_”)(B_")/px{)\>,,} + 22 )n/pX{)\Sl/}‘ Note that (39) is similar
to (38), so previous estimates with each Ag replaced by Aél prove (ii) with
2 — kl/(x\fu)

3 = R . m

REMARK 5.7. Recall that ||Aélz_[|| < c||Agz_[|| for any @ € H (since

H(AgAQ)_IH < ¢). Suppose that W~"/? is a doubling matrix of order p/,

1 < p/ < oo, with the doubling exponent $* (instead of the assumption that
W is doubling of order p). Then

14, fW < ellAd,, F)l < cki(1+ 2"z = 2q,,)" PI14G,, Fw)l,
(

(where k] = Z(A_”)"/plx{,\>y}—|—2( M) (B —n)/p! X{r<v}s 1-€., k1 with ( replaced
by * and p by p’) holds instead of (38). Choosing M > */p’ + n in the
previous lemma, we get

(31) (12 F | o gagtyny < co(eD(
({45"1)

)"V f HLP({AS},V)? I <p<oo.

REMARK 5.8. A similar convolution estimate can be proved for LP(W)
spaces, 1 < p < oo:

(40) | * JFHLP(W) < C||ﬂ|Lp(W)
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Recall that if ¢ were to be a Calderén-Zygmund singular kernel K, then
K * f lzrewy < cllf | Loqwy if W € A (see [4], [8], [10]). Conversely, if (40)
holds for every @ € S, then W € A, is necessary (see [6]).

6. Duality of continuous Besov spaces. Now we shift our attention
to continuous Besov spaces and our task is to construct [Bp?({Ag})]* and
eventually [Bp?(W)]*.

LEMMA 6.1. Let {AgQ}g be a doubling matriz sequence of order p, 1 <
p<oo. LetaeR and 0 < g < oo. Then

(41) BT ({Ag'}) C [B21({Ag)))".

Proof. Take ¢, € A with the mutual property (29). Let T,Z(:IT) = Y(—x).
Note that (&) = 9(€). Let f € Bp?({Ag}) and § € B,,*? ({Ag'}). First
consider Sp = {f € S : 0 & supp J?} a dense subspace of Bp?({Ag}) (see [6])
and take f with (f); € So, i =1,...,m (and § with (§); € S'). Then

G= G*(pyxth) since Y (p, %)) =1 by (29),
vEZL VEZ

and

G =D G * (=), f) =D (7 =), (f =)

VEZ VvEZ

=575 §AAZHT * @) (@), (% 1) () da
VEZ QEQyL Q

<SS T 1454 * 00) @)l 1 Ao(F * ) (@) lxo (@) da
VEZ QEQ, R™

by the self-adjointness of each Ag and the Cauchy—-Schwarz inequality. Using
Holder’s inequality several times, we obtain

(12) 1§ < 22N 90 lvagre 271G * 2l gzt

VEZ
< K27 1(F * ) | o ({ag o Yo s
X 272G * 20t gzt ol

if 1 <g<oo,andif 0 < g <1, webound (42) by
XN CF * )l ooy Yol 14277211 * 00)l o (gt vl
< {271 * D)l o (gagy.w o llia 277 N(F * @0) v (g ol
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Combining cases and using the fact that By?({Ag}) and B;aq/({Aél}) are
independent of the choice of the admissible kernel if {Ag}g is doubling
(Corollary 4.9), we get

51 < 1 g 19 oy
Since Sy is dense in B3Y({Ag}), we get the above inequality for any f €
By"({Aq})- Thus, 5 € B, ({A5'}) belongs to [By*({Ag})]* and ||7|oper
<191yt gy

LEMMA 6.2. Let « € R, 1 < p < 00, 0 < ¢ < o0 and {Ag}g be a
doubling sequence of order p. Then

(43) [BSU({AQ})]* € B,,* ({Ag'D).

Proof. Let1€[By({Ag})]*. We show that there exists §€ B;aq/({Aél})

—

such that I(f) = (f) = (f,g) for any f e Bi({Ag}).

CASE 1 < q < oo. Take f € Bg({Ag}), and for any v € Z write
fo = f *¢u. Set T by T({f,}») = I(f), so T is defined on a subspace of
lg (LP({Agq},v)). Since I is bounded, so is T":

T fo}) = 1) < CHfHng({AQ}) = CH{fTJ}szg(Lp({AQ},V))-

Extend T, denote by T the extension onto all of Ig(LP({Ag},v)) (note:
q > 1). Since [19(X)]* ~ 19(X*) (cf. Section 3 or [1, Chapter 8]), we have
g (LP({ A}, )" =~ 12 ([LP({Agh v)]) = I,%(L¥ ({Ag'},v)) by (37).
Thus, there exists a vector-valued sequence {g,}, ez EJ;%LP'({A;}, v))
such that ||{gy}yez||lq_/a(Lp/({AC_21}7y)) < ||l7]| and, for any f € By ({Ag}),

1) = ~({fu}) = ({fu}) = {G}{ /)
= Z S >H dx

VEZR™
= 37§ (U *0) (@), G () do
VEZR™
=57 [ (F @), G+ 3) @) da
VEZR™

Define §(z) = >, c7(Gv * ¥u)(x). Then I(f) = (f,d). Moreover, for any
1 € A (by Corollary 4.9),
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LY ({AG ) }u‘

lfa
q/

(S sagrob

vEZ

190 e (g agry) ™ {H D GuxBu ‘”“‘
P VEZ

IN

ptl
— { > Hgy*851/*W”Lp’({A(g,l},#)}Mqu,a’

v=p—1

since supp@u C{¢: 207 <J¢| < 2¢F1} and so @, * 4, = 0 if [|p—v| > 1.
Reindexing the inner sum, we get

1
”57||611'g*aq’({14—1}) < CZ 9—Haq Z | Gutj * Py * ¢u+j||qu/({A71}7M).
1% Q /JGZ J:—l @

Since {Ag}q is doubling and the sum on j is finite, we apply Lemma 5.6(ii)
to get

11 3 cagtyy < 2Nl gty o bl < L

CASE 0 < g < 1. Take fwith ﬁ € Sp (0 & supp (ﬁ)A) Since ¢ € Sy, for
v € Z by definition of convolution and then boundedness of I, we have

(44) ()P = 1 * 8 < IHIT * Boll oo g
Note that each component of [ x ¢, is a C°°-function and also
v+1
I Pullsgagagy) <27 S *@Blleagye < 2 e agy
p=v—1
by Lemma 5.6(i). Substituting this estimate into (44), we get |(1+p,)(f)] <
e2"||i|l HfHLP({AQ},y)- By duality,

—

—va —va [ % Pv f
2 ”l * SOVHLP/({AE;},V) =2 sup M

Sup —— < clllf],
Feso I e ({40} )

i.e., the functional I, can be associated with a function g, € L¥' ({Aél}, V)
such that 2_”"‘|]§‘,,HU,/({A51}’V) < clll|. Let § = ¥, ez Gv * 0, where 0 is as
in the atomic decomposition theorem [3, Lemma 5.12] or [2, p. 783], which
implies § = 3", [#,0, = -1 and so § = I. Observe that § € B,**({A'}):

q S — oo — = 2_Va / — < l .
g HBp' ({Ag'h ?}ég llg * vl ({Ag' ) = e[l

Thus, the functional | € [Bp?({Ag})]* can be associated with § €
B};aoo({Aél}) and l(f) = (f, g ). This completes the proof. =
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Summarizing the results of this and the previous section we get the
following embeddings of B-spaces:

COROLLARY 6.3. Let W be a matriz weight and {Aq}q its reducing op-
erators. Let « € R, 0 < g <00 and 1 < p < 0o. Then

(15) e € Bl ((AQh) © B ({Ag'))

® ., o
g Bp/ q({Aé}) g Bp’ q(W p/p)’

where
e (1) holds if W is doubling of order p,
e (2) holds if W is doubling of order p,
e (3) holds if W € A,, 1 < p < o0,
e (4) holds if W=P"/? is doubling of order p/, 1 < p < .
Also,
coqrro U)o L@
(46) (B W)™ 2 [By'({Agh]" 2 B,™ ({45'})
G . ) e
2 Bp/ q({AZE}) 2 Bp/ q(W p/p)’
where

o (1*) holds if W satisfies any of (A1)-(A3),

e (2%) holds if W is doubling of order p,

e (3%) holds for any matrixz weight W,

o (4*) holds if W=P'/? satisfies any of (A1)-(A3), 1 < p < .

In terms of a matrix weight W only, (45) and (46) are
[BSUW)]* C B, (W'/P) i W e A, 1<p< oo,
and
(B (W) 2 B, (W)
if W, WP'/? satisfy any of (A1)~(A3), 1 < p < oo.
In particular, if W € A, (and so WP/P € Ay), then [Bo‘q(W)] 2
B;aql(W_p//p), otherwise (W still satisfies any of (A1)—(A3), otherwise

there may be a dependence on ) [ng(W)] A B A 1}) which com-
pletes the proof of Theorem Al.

7. Duality of inhomogeneous Besov spaces b,?(W) and B, (W).
Recall that the main difference between homogeneous and inhomogeneous
spaces is that instead of considering all dyadic cubes, we only consider the
ones with side length I(Q) < 1 and the properties of functions corresponding
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to I[(Q) = 1 are slightly changed. We start with the sequence spaces. Recall
the definition of the space by ?(W).

DEFINITION 7.1 (Inhomogeneous matrix-weighted sequence Besov space
bpl(W)). For ae R, 0 < ¢ < o0, 1 < p < oo and W a matrix weight, the
space b,?(W) consists of all vector-valued sequences § = {5 };g)<1 such

that
> ’Q|_1/Q§QXQ’
I v

< 00.
19

15 lgeqwy = [ {2

LP(W) }uzo

Let RSU) be the collection of all sequences {Aq}iq)<1 of positive-
definite operators on H. Similar to the homogeneous case, we introduce
the averaging space bp?({Ag}).

DEFINITION 7.2 (Inhomogeneous averaging matrix-weighted sequence
Besov space bp?({Ag})). For ae R, 0<g<o0,1<p<ooand {Ag}ig)<1
e RSU), let

t1({Ae}) = {5 = {fohigy< -

15 lgeccaon = {22 0 1@ %50xq]
1 v

<o)
14

Let § € by?(W). Define 5§ = {$q}gep by setting §g = 3¢ if 1(Q) < 1 and
$o = 0if 1(Q) > 1. Note that & is the restriction of § on by?(W). Applying
(4), we get

Lr({Ag}v) }1/20

18 gy = 13 ligo = 13 ligrcgany = 15T gany
which proves the following proposition.

PROPOSITION 7.3. Let a € R, 1 <p < 00, 0< g <00 and let W be a
matriz weight with reducing operators {Ag}q. Then

by (W) = b ({Aq})
in the sense of the norm equivalence.

Note that it is enough to consider reducing operators Ag generated
by a matrix weight W only for dyadic cubes of side length [(Q) < 1, i.e.,

{Aqhig)<1-
Now we establish the duality.

THEOREM A3. Let a € R, 1 < p < 00,0 < g < o0 and let W be a
matriz weight with reducing operators {Aq}ig)<1- Then

1 (W]~ b, ({Ag' ).
Moreover, if W € Ap, 1 < p < o0, then
b9 (W)]* = b, (WF/P),
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To prove this theorem one can simply repeat the arguments from Sec-
tion 3 with proper adjustments (for example, consider sums on v taken only
over v > 0). However, we would like to give a simple proof for the embedding

bt ({AQh)* € b, ({Ag'}).
Proof. Let | € [bp?({Ag})]*. Let P be the projection from by?({Ag}) to

bp?({Aq}) defined by restricting a sequence {5g}qgep to {5g}i@)<1- Set I
by I(5) = I(P5) for each 5 € b3%({Ag}). Then I € [13%({Ag})]*, since

1(5) = 1P| < IUHIPF lygeragy < WHIE secagy)-

Then by Lemma 3.3 (or, equ1valently, by (17)), [ is represented by ¢ €

~o7 ({Ag"}) such that () = (5,1) and ||t||b;laq,(%1}) < |7l < [l Let

= Pt For§e bp?({Ag}) define §e bp9({Ag}) as above (thus, P$ = §).
Then
1(5) = 1(3) = Y Sqlg+ Z Solo= ) Sqlg=(51),
1(Q)<1 1(Q)<1

since 5o = 0 for 1(Q) > 1. Moreover, |||
2] m

Consider a class of functions AY) with properties similar to the ones of
an admissible kernel: & € AU) if & € S(R™), supp® C {¢€ € R" : |¢| < 2}
and |P(£)] > ¢ > 0 if |¢] < 5/3. Recall the inhomogeneous space By (W)
from [5].

DEFINITION 7.4 (Inhomogeneous matrix-weighted Besov space By 4(W)).

ForaeR,1<p< o0,0<q< oo, W amatrix weight, ¢ € Aand ¢ € AU,
we define the Besov space B,?(W) to be the collection of all vector-valued

distributions f: (fi,-. ., fm)® with f; € S'(R™),1 <4 < m, such that

< Ht |

gt <
b7 ({Ag')) b, ({Ag'h) —

1 Bgaqwy = 19 % flloowy + 827 Npw * Flloqwy bozallia < oo
Analogously, we introduce the averaging space Bp?({Ag}).

DEFINITION 7.5 (Averaging matrix-weighted Besov space Bp?({Ag})).
Fora €R,0<qg<o0,1<p<oo,pcA dec Al and {Ag}ig)<1 €
RSD | let
Byt({Ag}) = {f = (fi,--. fu)" with fi € S(R"), 1 <i <m:

1 | sacragy = 12 Fllzocagyo) + 142 e * Fllo(tagyw bzt lin < oo}

Now the remaining results of Sections 4-6 transfer easily to the inho-
mogeneous Besov spaces by using the properties established in Section 12
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of [5], such as replacing a family {y, },ez with {¢,},en U@, observing that
& * f € Ey and summing over v > 0 (or I(Q) < 1) in all sums. In particular,
we get

THEOREM 7.6. Let @ € R, 0 < ¢ < o0, 1 < p < oo and let {Ag}ig)<1
be a doubling sequence (of order p). Then for §’Q(f) = <f, ©Q),

1F 52 ao)) = {5 () hi@ <t (an))-

COROLLARY 7.7. The spaces By?({Aq}), ng({Aél}) and B};aq({Aél})
are independent of the choice of the pair of admissible kernels (p,®) if
{Ag}ig)<1 is doubling (of order p), 1 <p < oo, a €R, 0 < g < oo.

LEMMA 7.8. Leta e R, 0 < g < o0 and 1 <p < oco. If W satisfies any
of (A1)-(A3) and {Ag}i)<1 is a sequence of reducing operators generated
by W, then

BoI(W) ~ B2({Aqg)).

THEOREM Ad. Leta € R, 0 < g < oo, 1 <p<ooandlet {Ag}ig)<1 be
reducing operators of a matriz weight W. If W satisfies any of (A1)—(A3),
then /

[Bpa(W)]* = B,* ({Ag'}).
If WeAy,1<p<oo, then
[Byd(W)]* ~ B, (WP/P).
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