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Strichartz inequalities for the Schrödinger equation
with the full Laplacian on the Heisenberg group

by

Giulia Furioli and Alessandro Veneruso (Genova)

Abstract. We prove Strichartz inequalities for the solution of the Schrödinger equa-
tion related to the full Laplacian on the Heisenberg group. A key point consists in es-
timating the decay in time of the L∞ norm of the free solution; this requires a careful
analysis due also to the non-homogeneous nature of the full Laplacian.

1. Introduction. In a recent paper ([BGX]), H. Bahouri, P. Gérard
and C.-J. Xu studied the following Cauchy problem for the wave equation on
the Heisenberg group Hn of topological dimension 2n+ 1 and homogeneous
dimension N = 2n+ 2:





∂2
t u(x, t)−∆u(x, t) = f(x, t) ∈ L1((0, T ), L2(Hn)), t > 0,

u(x, 0) = u0(x) ∈ Ḣ1(Hn),

∂tu(x, 0) = u1(x) ∈ L2(Hn),

(1)

where ∆ is the sub-Laplacian on Hn (to be defined in Section 2) and Ḣ1(Hn)
is the Sobolev space in Hn which is related to the sub-Laplacian operator.
Their main aim was to establish a sort of Strichartz inequalities for the solu-
tion (u, ∂tu) ∈ C([0, T ], Ḣ1(Hn)×L2(Hn)) of (1); the results they obtained
are the following (the Besov spaces Ḃ%,q

r (Hn) will be defined in Section 4):

Theorem 1 ([BGX], Théorème 1.2). Let u0 ∈ Ḃ
N−1/2,1
1 (Hn), u1 ∈

Ḃ
N−1/2−1,1
1 (Hn) (for example u0, u1 ∈ S(Hn)), f = 0 in (1) and let u

be a solution of (1). Then, for every t > 0,

‖u(t)‖L∞(Hn) ≤ Ct−1/2(‖u0‖ḂN−1/2,1
1 (Hn)

+ ‖u1‖ḂN−1/2−1,1
1 (Hn)

).

Moreover , there exist u0, u1 ∈ S(Hn) such that the corresponding solution
of (1) with f = 0 satisfies
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‖u(t)‖L∞(Hn) ≥ C ′t−1/2 for t ≥ 1

with C ′ > 0.

Theorem 2 ([BGX], Théorème 4.1). Let r1, r2 ∈ [2,∞]; suppose more-
over that %1, %2 ∈ R, p1, p2 ∈ [1,∞] satisfy :

(i) 2/pi + 1/ri ≤ 1/2 for i = 1, 2;
(ii) 1/p1 +N/r1 − %1 = N/2− 1;

(iii) 1/p2 +N/r2 − %2 = N/2.

Let r′i, p
′
i be such that 1/r′i + 1/ri = 1 and 1/p′i + 1/pi = 1 for i = 1, 2.

Finally let u = v + w be the solution of the Cauchy problem (1) where v
is the solution corresponding to f = 0 and w is the solution corresponding
to u0 = u1 = 0. Then, for every real interval I containing 0, the following
estimates hold :

‖v‖
L
p1
R (Ḃ%1,2r1 (Hn)) + ‖∂tv‖Lp1R (Ḃ%1−1,2

r1 (Hn)) ≤ C(‖u0‖Ḣ1(Hn) + ‖u1‖L2(Hn)),

‖w‖
L
p1
I (Ḃ%1,2r1 (Hn)) + ‖∂tw‖Lp1I (Ḃ%1−1,2

r1 (Hn)) ≤ C‖f‖Lp′2I (Ḃ−%2,2
r′2

(Hn))
,

the constant C being independent of the interval I.

Strichartz inequalities in the real setting have been proved for many dis-
persive equations (for the Schrödinger and wave equations, see for example
[Str], [GV1], [GV2] and the more recent [KT], [Tao], [Vil]); the key point for
proving them is to estimate the L∞ norm of the solution of the free equation
(that is, with f = 0) at a fixed time t. In particular, Strichartz inequalities
are quite easy to prove for the Schrödinger equation in Rn (here L is the
Laplacian on Rn):

{
∂tu(x, t)− iLu(x, t) = f(x, t) ∈ L1((0, T ), L2(Rn)), t > 0,

u(x, 0) = u0(x) ∈ L2(Rn).
(2)

In fact, the kernel of the Schrödinger operator can be written explicitly and
the solution of (2) for f = 0 is

u(x, t) = (4πit)−n/2 ei|·|
2/(4t) ∗ u0(x), x ∈ Rn, t > 0.

Thus, it is natural to wonder whether such a generalization for Strichartz
inequalities, obtained for the wave equation on Hn (with the sub-Laplacian),
remains true also for the corresponding Schrödinger equation:

{
∂tu(x, t)− i∆u(x, t) = f(x, t) ∈ L1((0, T ), L2(Hn)), t > 0,

u(x, 0) = u0(x) ∈ L2(Hn).
(3)

The answer is, surprisingly, no and an interesting counterexample was given
by H. Bahouri, P. Gérard and C.-J. Xu in [BGX] (see Section 3 below).
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Moreover, it has recently been proved by A. Sikora and J. Zienkiewicz
([SZ]) that the convolution kernel of the Schrödinger operator related to the
sub-Laplacian is not even in L∞(Hn), because at every fixed time t it has
a Calderón–Zygmund type singularity localized at a particular point in Hn

(depending on t). In the same paper, the authors have found an explicit for-
mulation also for the convolution kernel related to the full Laplacian on Hn

and they have showed that the latter is indeed smooth at every time t even
though it is not bounded. Another interesting difference in the behavior
of the sub-Laplacian and the full Laplacian may be found in a paper by
J. Zienkiewicz ([Zie1]) dealing with the Carleson problem about pointwise
convergence to its initial data of the solution of the free Schrödinger equa-
tion. This result has recently been improved in [Zie2].

One of the reasons why the sub-Laplacian is considered a good general-
ization to Hn for the Laplacian in Rn, more than the full Laplacian, is its
homogeneity property as a differential operator, namely:

∆(f(rz, r2s)) = r2∆f(rz, r2s), r > 0, (z, s) ∈ Hn.

This is not true any more for the full Laplacian and this lack of homogeneity
involves some technical difficulties.

Nevertheless, in this paper we will prove that, for the Schrödinger equa-
tion related to the full Laplacian L, which reads:

{
∂tu(x, t)− iLu(x, t) = f(x, t) ∈ L1((0, T ), L2(Hn)), t > 0,

u(x, 0) = u0(x) ∈ L2(Hn),
(4)

a decay in time for the solution of the free equation is still true, even if the
convolution kernel is not bounded (Proposition 9 and Corollary 10); we will
prove moreover that such a decay is sharp (Proposition 9 and Corollary 10)
and, as a consequence of the decay in time, we will establish new Strichartz
inequalities for the solution of the equation with external term (Theorem 11).

We would like to thank Giancarlo Mauceri for his precious help and
encouragement.

2. Notation and preliminaries. In this paper N denotes the set of
non-negative integers, Z+ the set of positive integers and R∗ the set of
non-zero real numbers.

In this section we recall some basic facts about harmonic analysis on the
Heisenberg group. For the proofs and further information, see e.g. [BJRW],
[Far], [Gel], [Nac].

Fix n ∈ Z+; the (2n+ 1)-dimensional Heisenberg group Hn is the nilpo-
tent Lie group whose underlying manifold is Cn × R, with the following
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non-commutative multiplication law:

(z, s)(z′, s′) = (z + z′, s+ s′ + 2 Im〈z, z′〉)
where 〈z, z′〉 =

∑n
j=1 zjz

′
j . The Lie algebra of Hn is generated by the left-

invariant vector fields Z1, . . . , Zn, Z1, . . . , Zn, S, where

Zj =
∂

∂zj
+ izj

∂

∂s
, Zj =

∂

∂zj
− izj

∂

∂s
, S =

∂

∂s
.

Hn is a stratified group endowed with a family of dilations {δr : r > 0}
defined by

δr(z, s) = (rz, r2s).

The homogeneous dimension of Hn is therefore N = 2n + 2. The sub-
Laplacian on Hn is

∆ = 2
n∑

j=1

(ZjZj + ZjZj).

The full Laplacian is
L = ∆+ S2.

The bi-invariant Haar measure on Hn coincides with the Lebesgue mea-
sure on R2n+1. The convolution f ∗ g of two functions f, g ∈ L1(Hn) is
defined by

(f ∗ g)(x) =
�

Hn

f(xy−1)g(y) dy, x ∈ Hn.

As usual, we denote by S(Hn) the Schwartz space of rapidly decreasing
smooth functions on Hn and by S ′(Hn) the dual space of S(Hn), i.e. the
space of tempered distributions on Hn. A function f on Hn is said to
be radial if the value of f(z, s) depends only on |z| and s, where |z| =
(
∑n

j=1 |zj|2)1/2. We denote by Srad(Hn) and by Lprad(Hn), 1 ≤ p ≤ ∞, the
spaces of radial functions in S(Hn) and in Lp(Hn), respectively. The space
L1

rad(Hn) is a commutative, closed ∗-subalgebra of L1(Hn). The Gelfand
spectrum Σ of L1

rad(Hn) can be identified, as a measure space, with the
space N×R∗ equipped with the Godement–Plancherel measure µ defined by

�

Σ

F (ψ) dµ(ψ) =
2n−1

πn+1

∞∑

m=0

(
m+ n− 1

m

) �

R∗
F (m,λ)|λ|n dλ.

Let L(α)
m be the Laguerre polynomial of type α ∈ N and degree m ∈ N,

given by

L(α)
m (τ) =

m∑

k=0

(−1)k

k!

(
m+ α

k + α

)
τk, τ ∈ R.
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The Gelfand transform of a function f ∈ L1
rad(Hn) is given by

f̂(m,λ) =
�

Hn

f(x)ωm,λ(x) dx, (m,λ) ∈ N× R∗,

where ωm,λ is the spherical function on Hn defined by

ωm,λ(z, s) =
(
m+ n− 1

m

)−1

eiλs e−|λ||z|
2
L(n−1)
m (2|λ| |z|2).(5)

By the classical properties of spherical functions

‖ωm,λ‖L∞(Hn) = ωm,λ(0, 0) = 1.

Moreover, if f ∈ Srad(Hn), then ∆f and Lf are in Srad(Hn) and

∆̂f(m,λ) = −4(2m+ n)|λ|f̂(m,λ)(6)

and

L̂f(m,λ) = −(4(2m+ n)|λ|+ λ2)f̂(m,λ).(7)

By the Godement–Plancherel theory, the Gelfand transform extends unique-
ly to a unitary operator G : L2

rad(Hn)→ L2(Σ). We will write again f̂ instead
of Gf . If f ∈ L2

rad(Hn) and f̂ ∈ L1(Σ), then the following inversion formula
holds:

(8) f(x) =
2n−1

πn+1

∞∑

m=0

(
m+ n− 1

m

) �

R∗
f̂(m,λ)ωm,−λ(x)|λ|n dλ,

x ∈ Hn.

By the spectral theorem the multiplier operators eit∆ and eitL are bounded
on L2(Hn) for every t ∈ R. Moreover, if f ∈ L2

rad(Hn), by (6) and (7) we
have

̂eit∆f(m,λ) = e−4it(2m+n)|λ|f̂(m,λ)(9)

and

êitLf(m,λ) = e−it(4(2m+n)|λ|+λ2)f̂(m,λ).(10)

The operators eit∆ and eitL commute with left translations, so by Schwartz’s
kernel theorem for homogeneous groups ([KVW, Theorem 3.2]) they are
given by right convolution with tempered distributions, which are called the
kernels of eit∆ and eitL, respectively.

The space G(Srad(Hn)) has been completely characterized in [BJR]. For
our purposes, it is sufficient to remark that if f ∈ Srad(Hn) then f̂ ∈ L1(Σ),
so f can be recovered by the inversion formula (8). Moreover, for any R ∈
S(R) the function

F (m,λ) = R((2m+ n)|λ|)
is in G(Srad(Hn)) (see [Hul], [Mau]).
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3. The counterexample in the sub-Laplacian case. In this section,
we would like to comment on the counterexample given in [BGX]. Let us fix
a function Q ∈ C∞c ((1, 2)) and consider the Schrödinger equation (3) with
f = 0 and

u0(z, s) =
2n−1

πn+1

2�

1

e−iλsQ(λ)e−λ|z|
2
λn dλ.(11)

Thus, the initial data u0 ∈ Srad(Hn) satisfy

û0(m,λ) =
{

0 if m 6= 0, λ ∈ R∗,
Q(λ) if m = 0, λ ∈ R∗,

as is possible to check by comparing (11) with the inversion formula (8). The
solution of the Cauchy problem can therefore be written explicitly thanks
to (8) and (9):

u(z, s, t) = (eit∆u0)(z, s) =
2n−1

πn+1

2�

1

e−iλ(s+4nt)Q(λ)e−λ|z|
2
λn dλ

= u0(z, s+ 4nt).

Thus, for all p ∈ [1,∞] and t ∈ R, we have ‖u(t)‖Lp(Hn) = ‖u0‖Lp(Hn). In
particular, we have no decay in time for ‖u(t)‖L∞(Hn). The key point in this
counterexample is that the Gelfand transform of the sub-Laplacian is indeed
linear in λ. On the contrary, the Gelfand transform of the full Laplacian is
not and this will be crucial in what follows.

4. Littlewood–Paley decomposition and Besov spaces. Let R be
a non-negative, even function in C∞c ((−4,−1/2) ∪ (1/2, 4)) such that

∑

j∈Z
R(2−2jτ) = 1, τ 6= 0.

As in [BGX], for any j ∈ Z we define on Hn the function ϕj ∈ Srad(Hn)
such that

ϕ̂j(m,λ) = R((2m+ n)2−2jλ).(12)

The fact that ϕj ∈ Srad(Hn) is guaranteed by the remarks at the end of
Section 2. Moreover, a direct application of the inversion formula (8) gives
the following homogeneity property:

ϕj(z, s) = 2Njϕ0(2jz, 22js).(13)

Since ̂ϕj ∗ ϕj′ = ϕ̂jϕ̂j′ , the support properties of the functions ϕ̂j also imply

ϕj ∗ ϕj′ = 0 if |j − j′| ≥ 2.(14)

We will write
∆jf = f ∗ ϕj .
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In [BGX] it is proved that for any f ∈ L2(Hn) we have

f =
∑

j∈Z
∆jf in L2(Hn).(15)

This decomposition is called a homogeneous Littlewood–Paley decomposition
of f (more generally, the setting where this decomposition holds is actually
the space S ′(Hn) modulo polynomials, but we slide over this detail). More-
over, the Littlewood–Paley theory applies to this decomposition and we have
the following characterization of the Lp(Hn) spaces for f =

∑
j∈Z∆jf in

S ′(Hn):

f ∈ Lp(Hn) ⇔
(∑

j∈Z
|∆jf |2

)1/2
∈ Lp(Hn), 1 < p <∞,

with equivalence between the two Lp norms. We stress the inequality

‖f‖L∞(Hn) ≤
∑

j∈Z
‖∆jf‖L∞(Hn), f ∈ L2(Hn),(16)

which is an immediate consequence of (15). Both sides of (16) are allowed
to be infinite.

As in [BGX], we will also consider the functions

ϕ̃j = ϕj−1 + ϕj + ϕj+1, j ∈ Z,(17)

which satisfy the identity

ϕj = ϕj ∗ ϕ̃j , j ∈ Z.(18)

We now recall the definition of a homogeneous Besov space on Hn.

Definition 3. Let % ∈ R and q, r ∈ [1,∞]. The homogeneous Besov
space on Hn, denoted by Ḃ%,q

r (Hn), is defined as follows:

Ḃ%,q
r (Hn) = {f ∈ S ′(Hn)/P : {2j%‖∆jf‖Lr(Hn)}j∈Z ∈ lq(Z)}

where P is the space of polynomials on Hn.

A careful introduction to these spaces and their inhomogeneous version
may be found in [BGX] and [BG]. For our purposes, it will be enough to
recall the properties contained in the following proposition.

Proposition 4 ([BGX], [Bou], [Tri]). (i) Ḃ%,q
r (Hn), endowed with the

norm
‖f‖Ḃ%,qr (Hn) =

∥∥{2j%‖∆jf‖Lr(Hn)}j∈Z
∥∥
lq(Z),

is a Banach space of equivalence classes of tempered distributions; more-
over , for % < N/r it is possible to realize this space as a space of tempered
distributions by choosing the element

∑
j∈Z∆jf in each class [f ];
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(ii) the definition of Ḃ%,q
r (Hn) does not depend on the choice of the

function R in the Littlewood–Paley decomposition;
(iii) for all % ∈ R and q, r ∈ (1,∞], Ḃ%,q

r (Hn) is the dual space of

Ḃ−%,q
′

r′ (Hn) where 1/q′ + 1/q = 1 and 1/r′ + 1/r = 1;
(iv) for all q ∈ [1,∞] we have

Ḃ%1,q
r1 (Hn) ⊂ Ḃ%2,q

r2 (Hn),
1
r1
− %1

N
=

1
r2
− %2

N
, %1 ≥ %2;

(v) Ḃ0,2
2 (Hn) = L2(Hn);

(vi) S(Hn) ⊂ Ḃ%,q
r (Hn) if % > −N/r′;

(vii) for all θ, %1, %2, q1, q2, r1, r2 satisfying θ ∈ (0, 1), %i ∈ R, qi, ri ∈
(1,∞), we have

[Ḃ%1,q1
r1 (Hn), Ḃ%2,q2

r2 (Hn)]θ = Ḃ%,q
r (Hn)

with

% = (1− θ)%1 + θ%2,
1
q

=
1− θ
q1

+
θ

q2
,

1
r

=
1− θ
r1

+
θ

r2
.

5. A dispersive inequality. Our main aim, which we will achieve in
Section 6, is to establish Strichartz inequalities for the solution of the Cauchy
problem (4). From now on, we will denote by St the operator eitL, t ∈ R.
As for the classical Schrödinger equation (2) in Rn, also in this case there
exists a unique solution u ∈ C([0, T ], L2(Hn)) of (4), which is given by the
sum u = v + w where

v(t) = Stu0(19)

is the solution of (4) with f = 0 and

w(t) =
t�

0

St−σf(σ) dσ(20)

is the solution of (4) with u0 = 0.
In this section we will prove a dispersive inequality for v, i.e. an estimate

for the decay in time of ‖v(t)‖L∞(Hn), which we will use in Section 6 to prove
our Strichartz inequalities. Moreover, we will prove that such an estimate is
sharp.

Let us begin by introducing the tools of our method; first of all, we recall
the stationary phase lemma (see e.g. [Ste, pages 332–334]) that will be the
central argument:

Lemma 5. Suppose g ∈ C∞([a, b]) and h ∈ C∞c ((a, b)), with g real-
valued. Suppose also |g(k)(x)| ≥ δ for any x ∈ [a, b], with k ∈ Z+ and δ > 0.
If k = 1, we also require that g′ is monotonic in [a, b]. Then there exists a
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constant C > 0, which depends only on k but not on a, b, g, h, δ, such that
for every σ ∈ R∗,

∣∣∣
b�

a

e−iσg(x)h(x) dx
∣∣∣ ≤ C|σ|−1/kδ−1/k

b�

a

|h′(x)| dx.

In order to show the sharpness of our estimate, we will also need the
following

Lemma 6. Suppose 0 < a < α < β < b and n ∈ Z+. Suppose also
h ∈ C∞c (R) such that h(x) = 1 for any x ∈ [a, b]. Then there exist two
positive constants C and L such that for any σ ≥ L and γ ∈ [α, β] we have

∣∣∣
�

R
e−iσ(x2−2γx)h(x)xn dx

∣∣∣ ≥ C√
σ
.

Proof. Observe that
�

R
e−iσ(x2−2γx)h(x)xn dx = eiσγ

2
(Jσ,γ +Kσ,γ)(21)

where

Jσ,γ = γn
�

R
e−(1+iσ)t2 dt = γn

√
π

|1 + iσ| e
− i

2 arctanσ(22)

(see e.g. [Ste, page 335]) and

Kσ,γ =
�

R
e−iσ(x−γ)2

(h(x)xn − γne−(x−γ)2
) dx.(23)

By (22) there exist two positive constants C0 and L0 such that for any
σ ≥ L0 and γ ∈ [α, β] we have

|Jσ,γ| ≥
C0√
σ
.(24)

On the other hand, for σ > 0, an integration by parts in (23) gives

Kσ,γ =
1

2iσ

�

R
e−iσ(x−γ)2

F ′γ(x) dx(25)

where

Fγ(x) =




h(x)xn − γne−(x−γ)2

x− γ if x 6= γ,

nγn−1 if x = γ.

It is straightforward to verify that Fγ ∈ C1(R). Moreover, one can prove
that there exists δ > 0 such that for any γ ∈ [α, β] we have F ′γ ≥ 0 in
[γ − δ, γ + δ] and so
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�

|x−γ|≤δ
|F ′γ(x)| dx = Fγ(γ + δ)− Fγ(γ − δ) ≤ C1(26)

where C1 is independent of γ. On the other hand, for γ ∈ [α, β] it is easy to
see that

�

|x−γ|>δ
|F ′γ(x)| dx ≤ C2(27)

where C2 is independent of γ. By (25)–(27) there exists C3 > 0 such that
for any σ > 0 and γ ∈ [α, β] we have

|Kσ,γ| ≤
C3

σ
.(28)

The conclusion follows from (21), (24) and (28).

Moreover, we will use the following properties of the Laguerre polyno-
mials (see [BGX], [EMOT]):

Lemma 7. For any α ∈ N there exists Cα > 0 such that for every τ ≥ 0
and m ∈ N the following inequalities hold :

|L(α)
m (τ)e−τ/2| ≤ Cα(m+ 1)α,

∣∣∣∣τ
d

dτ
(L(α)

m (τ)e−τ/2)
∣∣∣∣ ≤ Cα(m+ 1)α.

Finally, we will exploit the following estimates, which can be easily
proved by comparing the sums with the corresponding integrals:

Lemma 8. Fix n ∈ Z+. There exists a constant C > 0 such that for
0 < a < b we have:

∑

m∈N
2m+n≥a

(2m+ n)−2 ≤ C

a
,(29)

∑

m∈N
2m+n≤b

(2m+ n)−1/2 ≤ Cb1/2,(30)

∑

m∈N
a≤2m+n≤b

(2m+ n)−1 ≤ log(Cb/a).(31)

Now we can state our main proposition which concerns the Littlewood–
Paley functions ϕj defined in Section 4.

Proposition 9. There exists a constant C > 0, which depends only on
n, such that for any t > 0 and j ∈ Z,

‖Stϕj‖L∞(Hn) ≤ C 2(N−2)jt−1/2.(32)

Moreover , there exist C ′ > 0, t0 ≥ 1 and j0 ∈ Z+, which depend only on n,
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such that for any t ≥ t0 and j ≥ j0,
∣∣∣∣(Stϕj)

(
0,−23+2jt

n+ 1

)∣∣∣∣ ≥ C ′2(N−2)jt−1/2.(33)

Proof. In this proof we will denote by C a positive constant which will
not necessarily be the same at each occurrence, with the convention that C
can depend only on n.

First we prove (32). Fix t > 0 and j ∈ Z. By (10) and (12) we have

Ŝtϕj(m,λ) = e−it(4(2m+n)|λ|+λ2)R((2m+ n)2−2jλ).

So, for (z, s) ∈ Hn fixed, by (8) and (5) we have

(Stϕj)(z, s) =
2n−1

πn+1

∞∑

m=0

�

R∗
e−iλse−it(4(2m+n)|λ|+λ2)R((2m+ n)2−2jλ)

× e−|λ| |z|2L(n−1)
m (2|λ| |z|2)|λ|n dλ.

Put s′ = s/t and perform the change of variable x = (2m+ n)2−2jλ. Then

(Stϕj)(z, s) =
2n−1

πn+1 2Nj
∞∑

m=0

�

1/2<|x|<4

e−i2
2jtgs′,m(x)hz,m(x) dx(34)

where

gs′,m(x) =
22jx2

(2m+ n)2 + 4|x|+ s′x
2m+ n

(35)

and

hz,m(x) = R(x)e−
22j |x||z|2

2m+n L(n−1)
m

(
21+2j|x| |z|2

2m+ n

) |x|n
(2m+ n)n+1 .(36)

So gs′,m(−x) = g−s′,m(x) and hz,m(−x) = hz,m(x). Therefore, by symmetry
we can consider only the integral

Im =
4�

1/2

e−i2
2jtgs′,m(x)hz,m(x) dx

and our assertion simply reads:
∞∑

m=0

|Im| ≤ C 2−2jt−1/2.(37)

For the sake of simplicity, from now on we will write gm and hm instead of
gs′,m and hz,m, respectively. Moreover, we put M = 2m+n. For 1/2 ≤ x ≤ 4
we have

g′m(x) =
21+2j

M2 x+ 4 +
s′

M
(38)
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and

g′′m(x) =
21+2j

M2 .(39)

Furthermore, by Lemma 7 one can verify (see also [BGX]) that

‖hm‖L∞([1/2,4]) + ‖h′m‖L1([1/2,4]) ≤ CM−2.(40)

We now have three possible ways to estimate |Im|: the first and most
direct is

|Im| ≤ C‖hm‖L∞([1/2,4]) ≤ CM−2,(41)

which sums independently of j and t. The second, using Lemma 5 with the
second derivative (given by (39)) and estimate (40), is

|Im| ≤ C 2−2jt−1/2M−1,(42)

which does not sum. The third exploits Lemma 5 with the first derivative,
but only when this is possible, i.e. when there exists δm > 0 such that
|g′m(x)| ≥ δm for any x ∈ [1/2, 4], and in this case by (40) we have

|Im| ≤ C 2−2jt−1M−2δ−1
m .(43)

We are going to estimate
∑∞

m=0 |Im| by splitting it into the sum of three
terms and by applying to every term the most convenient among the three
estimates above, after choosing a suitable δm. More precisely,

∞∑

m=0

|Im| =
∑

m∈A1

|Im|+
∑

m∈A2

|Im|+
∑

m∈A3

|Im|

where

A1 = {m ∈ N : M ≥ 22jt1/2},
A2 = {m ∈ N : M < 22jt1/2

and |g′m(x)| ≥ 2j−1t−1/4M−3/2 for any x ∈ [1/2, 4]},
A3 = {m ∈ N : M < 22jt1/2

and |g′m(x)| < 2j−1t−1/4M−3/2 for some x ∈ [1/2, 4]}.
If m ∈ A1 then estimates (41) and (29) yield the desired estimate

∑

m∈A1

|Im| ≤ C 2−2jt−1/2.(44)

If m ∈ A2 then, by applying (43) with δm = 2j−1t−1/4M−3/2, we have

|Im| ≤ C 2−3jt−3/4M−1/2

and hence estimate (30) yields the desired estimate
∑

m∈A2

|Im| ≤ C 2−2jt−1/2.(45)



Strichartz inequalities for the Schrödinger equation 169

If m ∈ A3 then estimate (42) yields
∑

m∈A3

|Im| ≤ C 2−2jt−1/2
∑

m∈A3

M−1.(46)

So we only have to prove that
∑

m∈A3

M−1 ≤ C.(47)

In fact, once we prove (47), estimate (37) follows directly from (44)–(46).
It is not restrictive to suppose 22jt1/2 > n, otherwise A3 = ∅. By (38)

we can immediately verify that for 1/2 ≤ x ≤ 4 the inequality |g′m(x)| <
2j−1t−1/4M−3/2 is satisfied if and only if

−2j−1t−1/4M1/2 + 4M2 + s′M
21+2j < x <

2j−1t−1/4M1/2 − 4M2 − s′M
21+2j .

So m ∈ A3 if and only if M satisfies the following system of inequalities:



n ≤M < 22jt1/2,

−2−1−2j(2j−1t−1/4M1/2 + 4M2 + s′M) < 4,

2−1−2j(2j−1t−1/4M1/2 − 4M2 − s′M) > 1/2.

(48)

By multiplying the last two inequalities by 22+2j and isolating the term with
fractional exponent, we rewrite (48) in the following form:





n ≤M < 22jt1/2,

2jt−1/4M1/2 > −8M2 − 2s′M − 24+2j,

2jt−1/4M1/2 > 8M2 + 2s′M + 21+2j.

(49)

But the first inequality implies

2jt−1/4M1/2 < 22j

and hence the solutions of (49) are also solutions of the following system:




M > 0,

8M2 + 2s′M + 17 · 22j > 0,

8M2 + 2s′M + 22j < 0.

(50)

The solutions of (50) can be found by a direct calculation. If

s′ ≥ −23/2+j

the system (50) does not have solutions, so A3 = ∅. If

−
√

17 · 23/2+j < s′ < −23/2+j

the solutions of (50) are given by

−s′ −
√
s′2 − 23+2j

8
< M <

−s′ +
√
s′2 − 23+2j

8
.
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In this case, since

−s′ +
√
s′2 − 23+2j

−s′ −
√
s′2 − 23+2j

≤ 33 + 8
√

17,

by (31) we get (47). Finally, if

s′ ≤ −
√

17 · 23/2+j

the solutions of (50) are given by

−s′ −
√
s′2 − 23+2j

8
< M <

−s′ −
√
s′2 − 17 · 23+2j

8
and by

−s′ +
√
s′2 − 17 · 23+2j

8
< M <

−s′ +
√
s′2 − 23+2j

8
.

Also in this case, since

−s′ −
√
s′2 − 17 · 23+2j

−s′ −
√
s′2 − 23+2j

≤ 17 + 4
√

17

and
−s′ +

√
s′2 − 23+2j

−s′ +
√
s′2 − 17 · 23+2j

≤ 1 +
4√
17
,

by (31) we get (47). This concludes the argument.
Now we prove (33). From now on, we suppose t ≥ 1 and j ∈ Z+. By

(34)–(36) we have

(Stϕj)
(

0,−23+2jt

n+ 1

)
=

2n−1

πn+1 2Nj
∞∑

m=0

�

1/2<|x|<4

e−i2
2jtGm(x)Hm(x) dx

where

Gm(x) =
22jx2

(2m+ n)2 + 4|x| − 23+2jx

(n+ 1)(2m+ n)
and

Hm(x) =
(
m+ n− 1

m

)
R(x)

|x|n
(2m+ n)n+1 .

For any m ∈ N we put

Jm =
4�

1/2

e−i2
2jtGm(x)Hm(x) dx, Km =

−1/2�

−4

e−i2
2jtGm(x)Hm(x) dx.

Thus

(51)

∣∣∣∣(Stϕj)
(

0,−23+2jt

n+ 1

)∣∣∣∣

≥ C 2Nj
(
|J0| −

∞∑

m=0

|Km| −
∑

m∈B1

|Jm| −
∑

m∈B2

|Jm|
)
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where

B1 = {m ∈ Z+ : |G′m(x)| ≥ t−1/4 for any x ∈ [1/2, 4]},
B2 = {m ∈ Z+ : |G′m(x)| < t−1/4 for some x ∈ [1/2, 4]}.

We will estimate separately the four terms on the right-hand side of (51).
We put again M = 2m+ n.

In order to estimate |J0| from below, we need one more hypothesis about
the function R, besides the assumptions made at the beginning of Section 4:

R(τ) = 1 if
4n+ 3

4(n+ 1)
≤ |τ | ≤ 4n+ 2

n+ 1
.

This is possible by taking for example

R(τ) =
{

1− χ(4|τ |) if |τ | ≤ (4n+ 3)/(4(n+ 1)),

χ(|τ |) if |τ | > (4n+ 3)/(4(n+ 1))

where χ is a function in C∞(R) such that χ(τ) = 1 if τ ≤ (4n+ 2)/(n+ 1)
and χ(τ) = 0 if τ ≥ (4n+ 3)/(n+ 1). In this way, if we suppose j ≥ j1 large
enough, we can apply Lemma 6 with σ = 24jt/n2 and γ = 4n/(n+ 1) −
n221−2j and we obtain

|J0| ≥ C12−2jt−1/2.(52)

In order to estimate
∑∞

m=0 |Km| from above we first observe that

G′m(x) < −4 for x < 0.

Thus Lemma 5 applied with k = 1 and estimate (40) yield

|Km| ≤ C 2−2jt−1M−2.

So
∞∑

m=0

|Km| ≤ C2 2−2jt−1.(53)

If m ∈ B1 then Lemma 5 applied again with k = 1 and estimate (40)
yield

|Jm| ≤ C 2−2jt−3/4M−2.

So ∑

m∈B1

|Jm| ≤ C3 2−2jt−3/4.(54)

If m ∈ B2 then Lemma 5 applied with k = 2 and estimate (40) yield

|Jm| ≤ C 2−2jt−1/2M−1.(55)

We now want to estimate
∑

m∈B2
M−1. As in the first part of the proof, it is

straightforward to verify that m ∈ B2 if and only if M satisfies the following
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system of inequalities:




M ≥ n+ 2,

(n+ 1)(4 + t−1/4)M2 − 23+2jM + (n+ 1)23+2j > 0,

(n+ 1)(4− t−1/4)M2 − 23+2jM + (n+ 1)22j < 0.
(56)

If we consider only the system of the last two inequalities of (56), we find by
a direct calculation that the set of solutions may be the union of two distinct
intervals. But if we take j ≥ j2 large enough, the solutions M belonging to
one of the two intervals do not satisfy the condition M ≥ n+ 2. So the only
solutions of (56) are given by

α(j, t) < M < β(j, t)

where

α(j, t) =
22+2j(1 +

√
1− (n+ 1)2(4 + t−1/4)2−1−2j)
(n+ 1)(4 + t−1/4)

,

β(j, t) =
22+2j(1 +

√
1− (n+ 1)2(4− t−1/4)2−4−2j)
(n+ 1)(4− t−1/4)

.

We get

β(j, t)− α(j, t) =
22+2j

(n+ 1)(16− t−1/2)

× (2t−1/4 + (4 + t−1/4)
√

1− (n+ 1)2(4− t−1/4)2−4−2j

− (4− t−1/4)
√

1− (n+ 1)2(4 + t−1/4)2−1−2j)

≤ C 22j(t−1/4 +
√

1− (n+ 1)2(4− t−1/4)2−4−2j

−
√

1− (n+ 1)2(4 + t−1/4)2−1−2j)

≤ C(1 + 22jt−1/4)

since for j ≥ j2 we have
√

1− (n+ 1)2(4− t−1/4)2−4−2j−
√

1− (n+ 1)2(4 + t−1/4)2−1−2j ≤ C 2−2j

as is easy to verify by multiplying and dividing by
√

1− (n+ 1)2(4− t−1/4)2−4−2j +
√

1− (n+ 1)2(4 + t−1/4)2−1−2j.

On the other hand
M > α(j, t) ≥ C 22j

and hence, using the fact that the number of integer points in an interval
(α, β) is smaller than 1 + β − α, we obtain

∑

m∈B2

M−1 ≤ C
∑

m∈B2

2−2j ≤ C(2−2j + t−1/4).(57)
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Then, for j ≥ j2 and t ≥ 1, (55) and (57) yield
∑

m∈B2

|Jm| ≤ C4(2−4jt−1/2 + 2−2jt−3/4).(58)

The constants C1, C2, C3, C4 in (52), (53), (54) and (58) depend only
on n, as well as the integers j1 and j2. Take t0 ≥ 1 such that

C2t
−1/2
0 + (C3 + C4)t−1/4

0 ≤ C1/2(59)

and j0 ≥ max{j1, j2} such that

C42−2j0 ≤ C1/4.(60)

Then, putting together (52), (53), (54) and (58) and using (59) and (60),
for any t ≥ t0 and j ≥ j0 we obtain

|J0| −
∞∑

m=0

|Km| −
∑

m∈B1

|Jm| −
∑

m∈B2

|Jm| ≥
C1

4
2−2jt−1/2.(61)

So (33) follows directly from (51) and (61).

From Proposition 9 it is easy to obtain our sharp dispersive inequality:

Corollary 10. There exists a constant C > 0, which depends only
on n, such that for any t > 0 and u0 ∈ S(Hn),

‖Stu0‖L∞(Hn) ≤ Ct−1/2‖u0‖ḂN−2,1
1 (Hn).(62)

Moreover , there exist C ′ > 0, t0 ≥ 1 and j0 ∈ Z+, which depend only on n,
such that for any t ≥ t0 and j ≥ j0,

‖Stϕj‖L∞(Hn) ≥ C ′t−1/2‖ϕj‖ḂN−2,1
1 (Hn).(63)

Proof. In order to obtain (62), we apply (16), (18) and then Young’s
inequality and estimate (32) for the functions ϕ̃j ; we get

‖Stu0‖L∞(Hn) ≤
∑

j∈Z
‖∆jStu0‖L∞(Hn)

=
∑

j∈Z
‖(∆jStu0) ∗ ϕ̃j‖L∞(Hn)

=
∑

j∈Z
‖(∆ju0) ∗ (Stϕ̃j)‖L∞(Hn)

≤
∑

j∈Z
‖∆ju0‖L1(Hn)‖Stϕ̃j‖L∞(Hn)

≤ Ct−1/2
∑

j∈Z
2(N−2)j‖∆ju0‖L1(Hn)

= Ct−1/2‖u0‖ḂN−2,1
1 (Hn).
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In order to obtain (63), we observe that the homogeneity property (13)
implies that the L1 norm of ϕj is invariant with respect to j. So by (14) we
have

‖ϕj‖ḂN−2,1
1 (Hn) ≤ C 2(N−2)j .(64)

Then estimate (63) is a straightforward consequence of (33) and (64).

6. Strichartz inequalities. We are now in a position to prove our
Strichartz inequalities. We will denote by LpT (X) the space Lp((0, T ),X)
and by LpI(X) the space Lp(I,X) for I ⊆ R.

Theorem 11. Let r1, r2 ∈ [2,∞]. Let %1, %2 ∈ R and p1, p2 ∈ [1,∞]
such that :

(a) 2/pi = 1/2− 1/ri for i = 1, 2,
(b) %i = −(N − 2)(1/2− 1/ri) for i = 1, 2.

Let r′i, p
′
i be such that 1/r′i+1/ri = 1 and 1/p′i+1/pi = 1 for i = 1, 2. Then

‖Stu0‖Lp1R (Ḃ%1,2r1 (Hn)) ≤ C‖u0‖L2(Hn),(65)

∥∥∥
t�

0

St−σf(σ) dσ
∥∥∥
L
p1
T (Ḃ%1,2r1 (Hn))

≤ C‖f‖
L
p′2
T (Ḃ−%2,2

r′2
(Hn))

(66)

where the constant C > 0 depends neither on u0, f nor on T .

Proof. Once we have obtained (32), the procedure is classical and a good
reference is, for example, the papers by Ginibre and Velo ([GV2]) or by
Ginibre ([Gin]). We will recall the main steps for the reader’s convenience.

Step 1. As in (17), let ϕ̃j = ϕj−1+ϕj+ϕj+1 such that ∆ju0 = ∆ju0∗ϕ̃j
for all j ∈ Z. The operator St being unitary on L2(Hn), we have

‖∆jStu0‖L2(Hn) = ‖∆ju0‖L2(Hn), t > 0, j ∈ Z.(67)

Moreover, in the proof of Corollary 10 we have shown that

‖∆jStu0‖L∞(Hn) ≤ C 2(N−2)jt−1/2‖∆ju0‖L1(Hn), t > 0, j ∈ Z.(68)

By interpolating (67) and (68), for r ≥ 2 and 1/r + 1/r′ = 1 we get

‖∆jStu0‖Lr(Hn) ≤ C
22(N−2)(1/2−1/r)j

t1/2−1/r
‖∆ju0‖Lr′ (Hn), t > 0, j ∈ Z,

which for q ∈ [1,∞] yields

‖Stu0‖Ḃ−(N−2)(1/2−1/r),q
r (Hn)

≤ C

t1/2−1/r
‖u0‖Ḃ(N−2)(1/2−1/r),q

r′ (Hn)
.
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Step 2. We prove (66) in the particular case r1 = r2 = r, p1 = p2 = p
such that r ≥ 2, 2/p = 1/2− 1/r and %1 = %2 = −(N − 2)(1/2− 1/r). From
the Minkowski inequality and, for r > 2, the Hardy–Littlewood–Sobolev
theorem (see e.g. [Ste, page 354]), for every q ∈ [1,∞] we obtain

(69)
∥∥∥
t�

0

St−σf(σ) dσ
∥∥∥
LpT (Ḃ−(N−2)(1/2−1/r),q

r (Hn))

≤ C
∥∥∥∥
t�

0

1
(t− σ)1/2−1/r

‖f(σ)‖
Ḃ

(N−2)(1/2−1/r),q
r′ (Hn)

dσ

∥∥∥∥
Lp([0,T ])

≤ C‖f‖
Lp
′
T (Ḃ(N−2)(1/2−1/r),q

r′ (Hn))
.

Step 3. With the same procedure as in Step 2, we also prove that for
any interval I ⊆ R one has

(70)
∥∥∥

�

I

St−σf(σ) dσ
∥∥∥
LpI (Ḃ−(N−2)(1/2−1/r),q

r (Hn))

≤ C‖f‖
Lp
′
I (Ḃ(N−2)(1/2−1/r),q

r′ (Hn))
.

By a standard duality argument (see for example [BGX] or [GV2]) and for
the only case q = 2 as the second index in the Besov space, from (70) we
get (65) for the particular case I = R.

Step 4. We consider for any interval I ⊆ R the bounded operator

A : L1
I(L

2(Hn))→ L2(Hn), f(z, s, σ) 7→
�

I

S−σf(z, s, σ) dσ,

whose adjoint (with duality in L2(Hn) defined by the scalar product) is

A∗ : L2(Hn)→ L∞I (L2(Hn)), u0(z, s) 7→ Stu0(z, s).

The composition of these two operators gives

A∗A : L1
I(L

2(Hn))→ L∞I (L2(Hn)), f(z, s, σ) 7→
�

I

St−σf(z, s, σ) dσ,

and by the factorization of A∗A, using the result obtained in Step 3, we
obtain the result in (66) for this operator. Unfortunately, this is not actually
the integral operator appearing in Theorem 11 because of the “retardation”
in time, following Ginibre’s notation. We can write explicitly, for f defined
on [0, T ]×Hn,

t�

0

St−σf(σ) dσ =
�

I

χR+(t− σ)St−σf̃(σ) dσ, t ∈ [0, T ],

where I is any interval containing [0, T ], χ is the characteristic function
and f̃ is the continuation of f by zero over R × Hn. Thanks to the fact
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that the spaces LpI(Ḃ
%,q
r (Hn)) are stable under restriction in time (which

means that the multiplication by the characteristic function of an interval
in time is a bounded operator with norm uniformly bounded with respect
to the interval), it is possible to overcome this technical complication and
to proceed as follows.

Step 5. Following Lemma 2.3 in [GV2], we get
t�

0

St−σf(σ) dσ : Lp
′
T (Ḃ(N−2)(1/2−1/r),2

r′ (Hn))→ L∞T (L2(Hn))(71)

with norm independent of T . Therefore, by duality we also have
t�

0

St−σf(σ) dσ : L1
T (L2(Hn))→ LpT (Ḃ−(N−2)(1/2−1/r),2

r (Hn))(72)

with norm independent of T .

Step 6. Finally, remembering the “diagonal” case (69) and interpolating
in every possible way with (71) and (72) we obtain (66).

Going back to (19) and (20), by Theorem 11 we have the following

Corollary 12. Under the same hypotheses as in Theorem 11, the so-
lution u of the Cauchy problem (4) satisfies the estimate

‖u‖
L
p1
T (Ḃ%1,2r1 (Hn)) ≤ C(‖u0‖L2(Hn) + ‖f‖

L
p′2
T (Ḃ−%2,2

r′2
(Hn))

)

where the constant C > 0 does not depend on T .

To conclude our paper, we would like to make some remarks, especially
in comparison with the real setting.

Remarks. 1. In the Heisenberg case, we are not faced with any limiting
case as it happens on the contrary in the real framework. This is due to
the structure of the Gelfand transform of a radial function in Hn which
involves only a one-dimensional oscillating integral and, as a consequence,
the Hardy–Littlewood–Sobolev theorem always applies.

2. Unlike the real case, the Schrödinger operator (for the full Lapla-
cian) always determines a loss of regularity, except in the L1

T (L2(Hn)) →
L∞T (L2(Hn)) case. However, the singular Besov spaces involved in Theo-
rem 11 are not in the scale of the Sobolev embedding for the L2(Hn) space
and therefore the result might not be simply obtained by inclusions. For the
wave operator (with the sub-Laplacian) in Hn, the analogy with the real
setting is much closer, as pointed out in [BGX]. One might wonder if the
full Laplacian wave operator in Hn would behave differently; in our opinion,
that is not the case and it will be the object of further investigation.
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harmonique, Progr. Math. 69, Birkhäuser, Boston, 1987, 1–151.
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