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On the compact approximation property

by

Vegard Lima, Åsvald Lima and Olav Nygaard (Kristiansand)

Abstract. We show that a Banach space X has the compact approximation property
if and only if for every Banach space Y and every weakly compact operator T : Y → X,
the space

E = {S ◦ T : S compact operator on X}
is an ideal in F = span(E, {T}) if and only if for every Banach space Y and every weakly
compact operator T : Y → X, there is a net (Sγ) of compact operators on X such that
supγ ‖SγT‖ ≤ ‖T‖ and Sγ → IX in the strong operator topology. Similar results for dual
spaces are also proved.

1. Introduction. A Banach space X is said to have the compact ap-
proximation property if for every compact set K in X and every ε > 0, there
is a compact operator S : X → X such that ‖Sx − x‖ ≤ ε for all x ∈ K.
If these approximating compact operators can be chosen with ‖S‖ ≤ 1, we
say that X has the metric compact approximation property . If the approxi-
mating operators can be chosen to have finite rank, then we say that X has
the approximation property .

Formally the approximation property is stronger than the compact ap-
proximation property, but it was only recently, in 1992, that Willis [19]
showed that there is a separable reflexive Banach space with the compact
approximation property but failing the approximation property.

Let E be a closed subspace of a Banach space F. Then E is an ideal in
F if its annihilator, E⊥ ⊆ F∗, is the kernel of a norm one projection on F∗.
A linear operator φ : E∗ → F∗ is called a Hahn–Banach extension operator
if (φe∗)(e) = e∗(e) and ‖φe∗‖ = ‖e∗‖ for all e ∈ E and e∗ ∈ E∗. Denote
the set of all Hahn–Banach extension operators φ : E∗ → F∗ by HB(E,F).
Clearly, HB(E,F) 6= ∅ if and only if E is an ideal in F. If E is a subspace
of a normed space F, then we say that E is an ideal in F if E is an ideal
in F.
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Let X and Y be Banach spaces. We denote by L(Y,X) the Banach space
of all bounded linear operators from Y to X, and F(Y,X), K(Y,X), and
W(Y,X) denote the subspaces of finite rank, compact, and weakly compact
operators respectively.

In [11, Theorem 5.1] Lima and Oja proved that a Banach space X has the
approximation property if and only if F(Y,X) is an ideal in K(Y,X) for all
Banach spaces Y . Lima, Nygaard, and Oja extended this result in [10, The-
orem 3.3] when they proved that X has the approximation property if and
only if F(Y,X) is an ideal inW(Y,X) for all Banach spaces Y . There exists
a closed subspace X of `1 without the compact approximation property (cf.
[18] or e.g. [16, p. 107]). For this space X we have K(Y,X) =W(Y,X) for all
Banach spaces Y . This follows from the Schur property of `1. In this paper we
show that there is a result (see Theorem 2.2), somewhat analogous to The-
orem 3.3 in [10], which characterizes the compact approximation property.

In Section 2, we show (see Theorem 2.2) that a Banach space has the
compact approximation property if and only if for all Banach spaces Y and
all T ∈ W(Y,X), the space

E = {S ◦ T : S ∈ K(X,X)}
is an ideal in F = span(E, {T}). This result is applied in Theorem 2.3 to show
that a Banach space X has the compact approximation property if and only
if for every Banach space Y and every weakly compact operator T : Y → X,
there is a net (Sγ) of compact operators on X such that supγ ‖SγT‖ ≤ ‖T‖
and Sγ → IX in the strong operator topology.

In Section 3, we show that Theorems 2.2 and 2.3 can be used to give
similar characterizations of the compact approximation property for dual
spaces. In this case (see Theorem 3.2), X is the domain space and not the
range space as in Section 2. Moreover, in Section 3 we give a characteriza-
tion of the compact approximation property with conjugate operators for
the dual of a Banach space X in terms of the approximability of weakly com-
pact operators into X∗∗ in the strong operator topology by certain compact
operators.

In Theorem 3.8 we show that X∗ has the compact approximation prop-
erty with conjugate operators if and only if X∗ has the compact approxi-
mation property and K(X, X̂) is an ideal in K(X, X̂∗∗) for every equivalent
renorming X̂ of X.

Let us fix some notation. In a normed linear space X, we denote the
closed unit ball by BX . If A is a subset of X, then A denotes the closure
of A, span(A) denotes the linear span of A, and conv(A) is the convex hull
of A. The identity operator on X is denoted by IX .

A left approximate identity in a normed algebra A is a net (ei)i∈I in
A such that limi ‖eix − x‖ = 0 for all x ∈ A. In [4] Dixon showed that
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if a Banach space X has the approximation property (resp. the compact
approximation property), then F(X,X) (resp. K(X,X)) has a left approx-
imate identity. If every compact subset of X is contained in the closed unit
range of some operator in F(X,X) (resp. K(X,X)), then the converse is
true (see [4, Theorem 2.7]). In this note we repeatedly use a construction
by Davis–Figiel–Johnson–Pełczyński [3] which enables us, for every com-
pact subset K of X, to find a reflexive Banach space Z and an operator
J ∈ K(Z,X) such that K ⊆ J(BZ).

2. The compact approximation property. In [15, Theorem 1.e.4]
Lindenstrauss and Tzafriri give a list of five equivalent formulations of the
approximation property for Banach spaces. We start by stating the analo-
gous theorem characterizing spaces with the compact approximation prop-
erty.

Theorem 2.1. Let X be a Banach space. The following statements are
equivalent :

(i) X has the compact approximation property.
(ii) For every Banach space Y , the space of compact operators K(Y,X)

is dense in L(Y,X), in the topology τ of uniform convergence on compact
sets.

(iii) For every Banach space Y , the space of compact operators K(X,Y )
is dense in L(X,Y ), in the topology τ of uniform convergence on compact
sets.

(iv) For every choice of {xn}∞n=1 ⊆ X, {x∗n}∞n=1 ⊆ X∗ such that
∞∑

n=1

‖x∗n‖ ‖xn‖ <∞ and
∞∑

n=1

x∗n(Sxn) = 0

for all S ∈ K(X,X), we have
∑∞

n=1 x
∗
n(xn) = 0.

(v) For every Banach space Y , every compact operator T ∈ K(Y,X), and
every ε > 0, there is a compact operator S ∈ K(X,X) with ‖T − ST‖ < ε.

(vi) For every Banach space Y , every finite-dimensional subspace G ⊆
K(Y,X), and every ε > 0, there is a compact operator S ∈ K(X,X) with
‖T − ST‖ < ε‖T‖ for all T ∈ G.

Proof. For the equivalence of (i) through (iv), see the proof of Theo-
rem 1.e.4 in [15].

(i)⇒(vi). Let K = conv{Ty : y ∈ BY , T ∈ BG} and let ε > 0. Since K
is compact, by (i) there is an operator S ∈ K(X,X) with ‖Sx− x‖ < ε for
all x ∈ K. From this it follows that ‖ST − T‖ < ε‖T‖ for all T ∈ G.

(vi)⇒(v) is trivial.
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(v)⇒(iv). Let {xn}∞n=1 ⊆ X and {x∗n}∞n=1 ⊆ X∗ with
∑∞

n=1 ‖x∗n‖ ‖xn‖
< ∞ and

∑∞
n=1 x

∗
n(Sxn) = 0 for all S ∈ K(X,X). We may assume that∑∞

n=1 ‖x∗n‖ < ∞ and 1 ≥ ‖xn‖ → 0. Let K = conv(±xn). Then K is a
compact subset of BX .

By the Davis–Figiel–Johnson-Pełczyński factorization procedure [3],
there is a reflexive Banach space Z, a compact operator J ∈ K(Z,X), and
a sequence {zn}∞n=1 ⊆ BZ such that Jzn = xn. For S ∈ K(X,X) we get

0 =
∞∑

n=1

x∗n(Sxn) =
( ∞∑

n=1

x∗n ⊗ zn
)

(SJ).

The functional φ =
∑∞

n=1 x
∗
n ⊗ zn ∈ K(Z,X)∗ therefore annihilates the

subspace E = {S ◦ J : S ∈ K(X,X)} of K(Z,X). By (v) we have J ∈ E, so
from the continuity of φ it follows that 0 = φ(J) =

∑∞
n=1 x

∗
n(xn).

When we compare Theorem 2.1 with Theorem 1.e.4 in [15], we see that
they are almost identical. There is only a “minor” difference in statement (v).
Namely, ST in (v) above is written as T1 ∈ F(Y,X) in (v) of Theorem 1.e.4.
This apparently minor difference turns out to be very important.

In [10, Theorem 3.3] Lima, Nygaard, and Oja proved that a Banach
space X has the approximation property if and only if F(Y,X) is an ideal
in W(Y,X) for all Banach spaces Y . They also showed that K(Y,X) being
an ideal in W(Y,X) for all Banach spaces Y is a weaker property than the
compact approximation property. The next theorem gives a characterization
of the compact approximation property by ideals.

Theorem 2.2. Let X be a Banach space. The following statements are
equivalent :

(i) X has the compact approximation property.
(ii) For every Banach space Y and every T ∈ W(Y,X),

E = {S ◦ T : S ∈ K(X,X)}
is an ideal in F = span(E, {T}).

(iii) Same as (ii), but with T ∈ K(Y,X).

Proof. (i)⇒(ii). Assume first that Y is reflexive, and let T ∈ W(Y,X).
Let (Sγ) be a net in K(X,X) such that Sγ → IX uniformly on compact

sets. Let v ∈ E∗ and ε > 0. Since E ⊆ K(Y,X), by a theorem of Feder and
Saphar [6, Theorem 1], we can write v =

∑∞
n=1 x

∗
n⊗yn where {x∗n}∞n=1 ⊆ X∗,

{yn}∞n=1 ⊆ Y , and
∑∞

n=1 ‖x∗n‖ ‖yn‖ < ‖v‖ + ε. We may assume
∑∞

n=1 ‖x∗n‖
< ∞ and ‖yn‖ → 0. Then {Tyn}∞n=1 is a relatively compact subset of X,
and hence
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∣∣∣
∞∑

n=1

x∗n(Tyn)−
∞∑

n=1

x∗n(SγTyn)
∣∣∣

≤
( ∞∑

n=1

‖x∗n‖
)

(sup
n
‖(IX − Sγ)Tyn‖)→

γ
0.

Thus we can define a linear operator Φ : E∗ → F∗ by

(Φv)(T ) =
∞∑

n=1

x∗n(Tyn).

(Note that this definition of Φv is independent of the particular represen-
tation

∑∞
n=1 x

∗
n ⊗ yn of v.) Since

∑∞
n=1 ‖x∗n‖ ‖yn‖ < ‖v‖ + ε and ε > 0 is

arbitrary, Φ must have norm one, which is to say that Φ is a Hahn–Banach
extension operator.

Now let Y be an arbitrary Banach space and let T ∈ W(Y,X). We may
assume that ‖T‖ = 1. By [10, Theorem 2.3] there is a reflexive Banach space
Z and a norm one operator J : Z → X with Z ⊆ X (as sets) such that T
can be factorized through Z with J . That is, we can write T = J ◦ T̂ , where
T̂ : Y → Z is defined by T̂ y = Ty ∈ Z ⊆ X.

By the first part of the proof EJ = {S ◦ J : S ∈ K(X,X)} is an ideal in
FJ = span(EJ , {J}). Let E = {S ◦T : S ∈ K(X,X)}, F = span(E, {T}), and
let G ⊆ F be finite-dimensional. There is a finite-dimensional subspace H ⊆
FJ such that G = {U ◦ T̂ : U ∈ H}. Let ε > 0. By the local characterization
of ideals (see e.g. [5], [8], or [9]), there is a linear operator VH : H → EJ
such that ‖VH‖ ≤ 1 + ε and such that VH(S ◦ J) = S ◦ J when S ◦ J ∈ H
and S ∈ K(X,X).

Define VG : G→ E by

VG(U) = VH(U) ◦ T̂ .
Then ‖VG‖ ≤ ‖VH‖ ≤ 1 + ε and if S ∈ K(X,X) with S ◦ T ∈ G, then
S ◦ J ∈ H and VG(S ◦ J) = S ◦ T . From the local characterization of ideals
it follows that E is an ideal in F.

(ii)⇒(iii) is trivial; let us prove (iii)⇒(i). Let K ⊆ BX be compact and
let ε > 0. Using Lemma 1.1 in [10] we find a separable reflexive Banach
space Z and a compact operator J : Z → X with ‖J‖ ≤ 1 such that
K ⊆ J(BZ) ⊆ BX . Note that since J∗X∗ is norm-dense in Z∗ we have

F(Z,X) ⊆ {S ◦ J : S ∈ F(X,X)}.

Letting Z be the Banach space and J be the operator in (iii) we use
Lemma 1.4 in [10] to find a net (SγJ) such that supγ ‖SγJ‖ ≤ ‖J‖ ≤ 1 and
SγJ → J in the strong operator topology.
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By construction K is also compact in Z (see [10, Lemma 2.1]). Thus
SγJ → J uniformly on K, so for large γ,

sup
x∈K
‖x− Sγx‖ = sup

z∈K
‖Jz − SγJz‖ < ε.

Note that we cannot control the norms of the Sγ ’s.

Lima and Oja have given a characterization of the approximation prop-
erty [13, Theorem 3.1] in terms of approximability of operators in the strong
operator topology. The next result is a similar theorem characterizing the
compact approximation property.

Theorem 2.3. Let X be a Banach space. The following statements are
equivalent :

(i) X has the compact approximation property.
(ii) For every Banach space Y , and every finite-dimensional subspace

G ⊆ W(Y,X), there is a net (Sγ) ⊆ K(X,X) with supγ ‖SγT‖ ≤ ‖T‖ for
all T ∈ G, and such that Sγ → IX in the strong operator topology.

(iii) For every Banach space Y , and every finite-dimensional subspace
G ⊆ W(Y,X), there is a net (Sγ) ⊆ K(X,X) such that for all T ∈ G,
supγ ‖SγT‖ ≤ ‖T‖ and T ∗S∗γ → T ∗ in the strong operator topology.

(iv) For every separable reflexive Banach space Y and every T ∈K(Y,X),
there is a net (Sγ) ⊆ K(X,X) with supγ ‖SγT‖ ≤ ‖T‖ such that SγT → T
in the strong operator topology.

Proof. (i)⇒(ii) and (i)⇒(iii). Let Y be a Banach space, and let G ⊆
W(Y,X) be a finite-dimensional subspace. Let

K = conv{Ty : y ∈ BY , T ∈ BG}.
Then K is a weakly compact subset of X. In order to find a net that con-
verges strongly to the identity on all of X we will work with weakly compact
sets larger than K. Let

Γ = {(E,F ) : E ⊆ X, dimE <∞, F ⊆ X∗, dimF <∞}
and order Γ by inclusion. For each γ = (E,F ) ∈ Γ , we define

Kγ = conv(K ∪BE).

Since Kγ is convex and weakly compact, there exist, by Lemma 1.1 in [10]
(see also Theorem 2.3 in [10]), a reflexive Banach space Zγ , a weakly compact
norm one operator Jγ:Zγ → X, and a linear isometry Ψγ :G → W(Y,Zγ)
such that T = Jγ ◦ Ψγ(T ) for all T ∈ G.

Let Eγ = {S ◦ Jγ : S ∈ K(X,X)} and let Fγ = span(Eγ, Jγ). Since J∗∗γ
is injective (see [3, Lemma 1]), so that J∗γX

∗ is norm dense in Z∗γ , it follows
that

F(Z,X) ⊆ Eγ ⊆ K(Z,X).
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By Theorem 2.2, Eγ is an ideal in Fγ . By Lemma 1.4 in [10], for each γ,
there is a net (Sα) in K(X,X) such that supα ‖SαJγ‖ ≤ ‖Jγ‖ ≤ 1 and
SαJγ →α Jγ in the strong operator topology. It follows that

x∗(SαJγz)→
α
x∗(Jγz)

for all z ∈ Zγ and all x∗ ∈ X∗.
For each γ = (E,F ), we have BZγ ⊆ Kγ . Since SE and SF are compact,

we can choose α such that

|x∗(Sαx)− x∗(x)| ≤ ‖x‖ ‖x∗‖
dimE + dimF

for all x ∈ E and all x∗ ∈ F . Let us denote this Sα by Sγ . Then (Sγ)γ∈Γ
is a net in K(X,X) and Sγ → IX in the weak operator topology. By taking
convex combinations, if necessary, we may assume that Sγ → IX in the
strong operator topology. By construction

sup
γ
‖SγT‖ = sup

γ
‖SγJγΨγ(T )‖ ≤ ‖Ψγ(T )‖ = ‖T‖

for all T ∈ G. Hence (ii) is proved.
To finish the proof of (iii), note that Ψγ(T )(y) = Ty for all γ and all

T ∈ G. If T ∈ G, x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗, then z = T ∗∗y∗∗ = Ψγ(T )∗∗y∗∗

∈ Zγ , and

y∗∗(T ∗x∗)− y∗∗(T ∗S∗γx∗) = x∗(Jγz)− x∗(SγJγz).

With γ = (E,F ), x∗ ∈ F , and T ∗∗y∗∗ ∈ E, we get T ∗∗y∗∗ = z = Jγz and

|y∗∗(T ∗x∗)− y∗∗(T ∗S∗γx∗)| = |x∗(z)− x∗(Sγz)| ≤ ‖T
∗∗y∗∗‖ ‖x∗‖

dimE + dimF
.

Thus T ∗S∗γ → T ∗ in the weak operator topology. By taking convex combi-
nations we may assume that T ∗S∗γ → T ∗ in the strong operator topology.

The implications (iii)⇒(ii)⇒(iv) are easy, and (iv)⇒(i) follows as in
(iii)⇒(i) of Theorem 2.2.

Remark 2.1. Cho and Johnson proved in [2] that if X is a reflexive
Banach space with the compact approximation property, then X has the
metric compact approximation property. This result easily follows from The-
orem 2.3. Just take T = IX , which is weakly compact, and use (ii) of Theo-
rem 2.3 to produce norm one approximating compact operators.

Remark 2.2. Let KX be the family of all compact absolutely convex
subsets of BX . For each K ∈ KX , let ZK be the reflexive space constructed
from K by the isometric version of the Davis–Figiel–Johnson–Pełczyński
procedure in [10], and let JK : ZK → X be the associated compact norm
one inclusion map. Let
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FK = {S ◦ JK : S ∈ F(X,X)} and KK = {S ◦ JK : S ∈ K(X,X)}.
The following are equivalent (see [10, Theorem 1.2]):

(1) X has the approximation property.
(2) JK ∈ FK for every K ∈ KX .

From Theorem 2.3 we see that the following are equivalent:

(1) X has the compact approximation property.
(2) JK ∈ KK for every K ∈ KX .

We have already noted that J∗KX
∗ is norm dense in Z∗K , so FK is always

norm dense in F(ZK ,X). However, since JK is a compact operator, it follows
that if X does not have the compact approximation property, then, for some
K ∈ KX , KK is not norm dense in K(ZK ,X).

3. The compact approximation property for dual spaces. In this
section we start by considering the compact approximation property for dual
spaces and state theorems similar to Theorems 2.1–2.3. Recall that if X is
a Banach space such that X∗ has the approximation property then X must
also have the approximation property (see [15, Theorem 1.e.7]). The key
to the proof of this theorem is that the principle of local reflexivity entails
that the approximating operators can be chosen to be weak∗-continuous.
With the compact approximation property we are not so lucky, and it is
unknown whether or not the compact approximation property for X∗ im-
plies the compact approximation property for X. We also study a special
version of the compact approximation property for dual spaces called the
compact approximation property with conjugate operators, and we conclude
this section with a comparison of these two approximation properties.

Theorem 3.1. Let X be a Banach space. The following statements are
equivalent :

(i) X∗ has the compact approximation property.
(ii) For every choice of {x∗n}∞n=1 ⊆ X∗, {x∗∗n }∞n=1 ⊆ X∗∗ such that

∞∑

n=1

‖x∗∗n ‖ ‖x∗n‖ <∞ and
∞∑

n=1

x∗∗n (Sx∗n) = 0

for all S ∈ K(X∗,X∗), we have
∑∞

n=1 x
∗∗
n (x∗n) = 0.

(iii) For every Banach space Y , for every operator T ∈ K(X,Y ), and for
every ε > 0 there is a compact operator S ∈ K(X,X∗∗) with ‖T−T ∗∗S‖ < ε.

Proof. (i)⇔(ii) and (i)⇒(iii) follow from Theorem 2.1.
(iii)⇒(ii). Recall that K(X,Z) is isometrically isomorphic to K(Z∗,X∗)

for Z reflexive, and then argue as in (v)⇒(iv) of Theorem 2.1.

Theorems 2.2 and 2.3 for dual spaces give the following result.
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Theorem 3.2. Let X be a Banach space. The following statements are
equivalent :

(i) X∗ has the compact approximation property.
(ii) For every Banach space Y and every T ∈ W(X,Y ),

E = {T ∗∗ ◦ S : S ∈ K(X,X∗∗)}
is an ideal in F = span(E, {T}).

(iii) Same as (ii), but with T ∈ K(X,Y ).
(iv) For every Banach space Y , and every finite-dimensional subspace

G ⊆ W(X,Y ), there is a net (Sγ) ⊆ K(X∗,X∗) such that for all T ∈ G,
supγ ‖T ∗∗S∗γ‖ ≤ ‖T‖ and T ∗∗S∗γ → T ∗∗ in the strong operator topology.

(v) For every separable reflexive Banach space Y and every T ∈K(X,Y ),
there is a net (Sγ) ⊆ K(X∗,X∗) with supγ ‖T ∗∗S∗γ‖ ≤ ‖T‖ such that SγT ∗

→ T ∗ in the strong operator topology.

Proof. (i)⇒(ii) for reflexive Y follows from Theorem 2.2. For general Y
we use factorization through a reflexive Banach space as in Lemma 4.1 in
[12]. We omit the details.

(ii)⇒(iii) is trivial, and (iii)⇒(i) follows as in Theorem 2.2.
(i)⇒(iv) follows from (iii) of Theorem 2.3 by using the factorization in

Lemma 4.1 of [12].
(iv)⇒(v) is trivial, and (v)⇒(i) follows from the isometry K(Y,X∗) ∼=

K(X,Y ∗) and (iv)⇒(i) of Theorem 2.3.

We say that X∗ has the compact approximation property with conjugate
operators if for every compact set K in X∗ and every ε > 0, there is a
compact operator S ∈ K(X,X) such that ‖x∗ − S∗x∗‖ < ε for all x∗ ∈ K.

Theorem 3.3. Let X be a Banach space. The following statements are
equivalent :

(i) X∗ has the compact approximation property with conjugate opera-
tors.

(ii) For every choice {x∗n}∞n=1 ⊆ X∗, {x∗∗n }∞n=1 ⊆ X∗∗ such that
∞∑

n=1

‖x∗∗n ‖ ‖x∗n‖ <∞ and
∞∑

n=1

x∗∗n (S∗x∗n) = 0

for all S ∈ K(X,X), we have
∑∞

n=1 x
∗∗
n (x∗n) = 0.

(iii) For every Banach space Y , for every operator T ∈ K(X,Y ), and for
every ε > 0 there is a compact operator S ∈ K(X,X) with ‖T − TS‖ < ε.

We omit the proof since it is similar to that of Theorem 3.1.
Theorems 2.2 and 2.3 have versions characterizing the compact approx-

imation property with conjugate operators.
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Theorem 3.4. Let X be a Banach space. The following statements are
equivalent :

(i) X∗ has the compact approximation property with conjugate opera-
tors.

(ii) For every Banach space Y and every T ∈ W(X,Y ),

E = {T ◦ S : S ∈ K(X,X)}
is an ideal in F = span(E, {T}).

(iii) Same as (ii), but with T ∈ K(X,Y ).
(iv) For every Banach space Y , and every finite-dimensional subspace

G ⊆ W(X,Y ), there is a net (Sγ) ⊆ K(X,X) such that for all T ∈ G,
supγ ‖TSγ‖ ≤ ‖T‖ and S∗γT

∗ → T ∗ in the strong operator topology.
(v) For every separable reflexive Banach space Y and every T ∈K(X,Y ),

there is a net (Sγ) ⊆ K(X,X) with supγ ‖TSγ‖ ≤ ‖T‖ such that S∗γT
∗ → T ∗

in the strong operator topology.

We omit the proof since it is similar to the proof of Theorem 3.2.
In Section 2 we looked at operators with range in X, and in the first

part of this section we have looked at operators with domain space X. We
shall now look at operators with range in X∗∗.

Lemma 3.5. Let X and Y be Banach spaces, and let T ∈ W(Y,X∗∗).
Let

E = {S∗∗ ◦ T : S ∈ K(X,X)}
and F = span(E, {T}). If X∗ has the compact approximation property with
conjugate operators, then E is an ideal in F. Moreover , if Y is reflexive,
then there is a Hahn–Banach extension operator Φ : E∗ → F∗ such that
Φ(x∗ ⊗ y) = x∗ ⊗ y for all x∗ ∈ X∗ and all y ∈ Y .

Proof. The proof is similar to that of (i)⇒(ii) in Theorem 2.2. Here we
start with Y reflexive and with a net (Sγ) ⊆ K(X,X) such that S∗γ → IX∗

uniformly on compact sets. Note that E ⊆ K(Y,X) and that F ⊆ K(Y,X∗∗).
The proof for general Y is then as in Theorem 2.2.

Remark 3.1. In Lemma 3.5 we showed that if X∗ has the compact
approximation property with conjugate operators, then for all Banach spaces
Y and all operators T ∈ K(Y,X∗∗),

E = {S∗∗ ◦ T : S ∈ K(X,X)}
is an ideal in F = span(E, {T}).

We have not been able to show that this ideal property characterizes the
compact approximation property with conjugate operators for dual spaces
X∗.
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However, we are able to show the following. Let us assume that

Ê = {S∗∗ ◦ T : S ∈ K(X̂, X̂)}
is an ideal in F̂ = span(Ê, {T}), for all Banach spaces Y , all operators
T ∈ K(Y, X̂∗∗), and all equivalent renormings X̂ of X. (Note that from
Lemma 3.5 this is true whenever X∗ has the compact approximation prop-
erty with conjugate operators.) Using the results of Section 4 in [14] we find
a Hahn–Banach extension operator Ψ : E∗ → F∗ such that

Ψ(x∗ ⊗ y∗∗)(U) = (x∗ ⊗ y∗∗)(U)

for all U ∈ F whenever E contains the finite rank operators. In particular,
E contains the finite rank operators whenever T ∗∗ is injective.

Using the weak∗ topology in F∗∗, as in Lemma 1.4 of [10], we find a
net (S∗∗γ T ) in E with supγ ‖S∗∗γ T‖ ≤ ‖T‖ such that T ∗S∗γ → T ∗|X∗ in the
strong operator topology. Theorem 3.6 below will show that this implies the
compact approximation property with conjugate operators for X∗.

In [14, Theorem 4.5] Lima proved that X∗ has the approximation prop-
erty if and only if F(Y, X̂) is an ideal in K(Y, X̂∗∗) for all Banach spaces Y
and all equivalent renormings X̂ of X.

In [13, Theorem 3.2] Lima and Oja gave a characterization of dual spaces
with the approximation property by approximation of weakly compact op-
erators by finite rank operators in the strong operator topology. Our next
result shows that there is a similar characterization of the compact approx-
imation property with compact operators, where we approximate weakly
compact operators with certain composite compact operators in the strong
operator topology.

Theorem 3.6. Let X be a Banach space. The following statements are
equivalent :

(i) X∗ has the compact approximation property with conjugate opera-
tors.

(ii) For every Banach space Y , and every finite-dimensional subspace
G ⊆ W(Y,X∗∗), there is a net (Sγ) ⊆ K(X,X) such that supγ ‖S∗∗γ T‖ ≤ ‖T‖
for all T ∈ G and S∗γ → IX∗ in the strong operator topology.

(iii) For every Banach space Y , and every finite-dimensional subspace
G ⊆ W(Y,X∗∗), there is a net (Sγ) ⊆ K(X,X) such that for all T ∈ G,
supγ ‖S∗∗γ T‖ ≤ ‖T‖ and T ∗S∗γ → T ∗|X∗ in the strong operator topology.

(iv) For every separable reflexive Banach space Y , and every operator
T ∈ K(Y,X∗∗), there is a net (Sγ) ⊆ K(X,X) such that supγ ‖S∗∗γ T‖ ≤ ‖T‖
and T ∗S∗γ → T ∗|X∗ in the strong operator topology.

Proof. (ii)⇒(iii)⇒(iv) are easy.
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(i)⇒(ii). Let Y be a Banach space and let G ⊆ W(Y,X∗∗) be a finite-
dimensional subspace. As in the proof of Theorem 2.3 let

K = conv{Ty : y ∈ BY , T ∈ BG}.
Let

Γ = {(E,F ) : E ⊆ X∗∗, dimE <∞, F ⊆ X∗, dimF <∞},
and order Γ by inclusion. For γ = (E,F ) ∈ Γ , let

Kγ = conv(K ∪BE) ⊆ BX∗∗ .
Then Kγ is convex and weakly compact. As in the proof of (i)⇒(ii) of
Theorem 2.3, we find a reflexive Banach space Zγ , a weakly compact norm
one operator Jγ : Zγ → X∗∗, and a linear isometry Ψγ : G→W(Y,Z) such
that T = Jγ ◦ Ψγ(T ) for all T ∈ G.

Let
Eγ = {S∗∗ ◦ Jγ : S ∈ K(X,X)} ⊆ K(Zγ,X),

and let Fγ = span(Eγ, Jγ). Then we have

F(Zγ,X) ⊆ Eγ ⊆ K(Zγ,X).

Lemma 3.5 tells us that Eγ is an ideal in Fγ with a Hahn–Banach extension
operator Φ : E∗γ → F∗γ satisfying Φ(x∗ ⊗ z) = x∗ ⊗ z.

By Lemma 1.4 in [10], there is a net (Sα) ⊆ K(X,X) with supα ‖S∗∗α Jγ‖
≤ 1 and x∗(S∗∗α Jγz)→ x∗(Jγz) for all x∗ ∈ X∗ and all z ∈ Zγ .

With γ = (E,F ) ∈ Γ , let x∗ ∈ F and x∗∗ ∈ E. Then x∗∗ = Jγz for some
z ∈ Zγ . Thus

x∗(SαJγz)→ x∗(Jγz),

which means that
x∗∗(S∗αx

∗)→ x∗∗(x∗).

Using the compactness of SE and SF , choose α such that

|x∗∗(x∗)− x∗∗(S∗αx∗)| ≤
‖x∗‖ ‖x∗∗‖

dimE + dimF

for all x∗ ∈ F and all x∗∗ ∈ E, and let Sγ = Sα. Then we get a net (Sγ)γ∈Γ
such that supγ ‖S∗∗γ T‖ ≤ ‖T‖ for all T ∈ G, and S∗γ → IX∗ in the weak
operator topology. By taking a new net, also denoted (Sγ), from conv(Sγ),
we may assume that supγ ‖S∗∗γ T‖ ≤ ‖T‖ for all T ∈ G, and S∗γ → IX∗ in
the strong operator topology.

(iv)⇒(i). Let {x∗n}∞n=1 ⊆ X∗, {x∗∗n }∞n=1 ⊆ X∗∗ with
∑∞

n=1 ‖x∗∗n ‖ ‖x∗n‖
< ∞ and

∑∞
n=1 x

∗∗
n (T ∗x∗n) = 0 for all T ∈ K(X,X). We may assume that

1 ≥ ‖x∗∗n ‖ → 0 and
∑∞

n=1 ‖x∗n‖ <∞.
Let K = conv(±x∗∗n ) ⊆ BX∗∗ . We construct a reflexive Banach space Z

and a compact operator J ∈ K(Z,X∗∗) with ‖J‖ ≤ 1 as in Lemma 1.1 of [10].
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Let (Sγ) be a net in K(X,X) such that supγ ‖S∗∗γ J‖ ≤ 1 and J∗S∗γ → J∗|X∗
in the strong operator topology.

Choose positive numbers {an}∞n=1 such that

M =
∞∑

n=1

an <∞ and ‖x∗n‖/an → 0.

Let zn ∈ BZ be such that x∗∗n = Jzn. For every S ∈ K(X,X), we have

0 =
∞∑

n=1

x∗∗n (S∗x∗n) =
∞∑

n=1

zn(J∗S∗x∗n).

The set {x∗n/an}∞n=1 is relatively compact, so for every ε > 0, there is some
Sγ such that

‖J∗S∗γx∗n − J∗x∗n‖ < εan/M

for all n. Thus we get
∣∣∣
∞∑

n=1

x∗∗n (x∗n)
∣∣∣ =

∣∣∣
∞∑

n=1

zn(J∗x∗n − J∗S∗γx∗n)
∣∣∣ ≤

∞∑

n=1

‖zn‖anε/M

≤ ε

M

∞∑

n=1

an = ε.

Thus
∑∞

n=1 x
∗∗
n (x∗n) = 0, and X∗ has the compact approximation property

with conjugate operators.

Corollary 3.7. Let X be a Banach space. The following statements
are equivalent :

(i) X∗ has the compact approximation property with conjugate operators.
(ii) For every Banach space Y and every T ∈ W(X∗, Y ), there is a net

(Sγ) ⊆ K(X,X) with supγ ‖TS∗γ‖ ≤ ‖T‖ such that TS∗γ → T in the strong
operator topology.

Proof. This follows from (i)⇔(iii) of Theorem 3.6.

Remark 3.2. Corollary 3.7 generalizes Corollary 3.3 of [13]. Grothen-
dieck [7, proof of Theorem 15 on pp. 183–184] proved the implication (i)⇒(ii)
of Corollary 3.7 for the approximation property. This was made explicit by
Rĕınov: see [17, Corollary 2 of Theorem 4].

In [1, Theorem 1] Casazza and Jarchow gave an example of a sepa-
rable Banach space X such that X∗ has the metric compact approximation
property, while X fails the metric compact approximation property.

From Corollary 4.7 and Example 1.2 in [12] it follows that the dual of
Casazza and Jarchow’s X does not have the compact approximation prop-
erty with conjugate operators. The next theorem gives a necessary and suf-
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ficient condition for the compact approximation property and the compact
approximation property with conjugate operators to coincide.

Theorem 3.8. Let X be a Banach space. The following statements are
equivalent.

(i) X∗ has the compact approximation property with conjugate opera-
tors.

(ii) X̂∗ has the compact approximation property with conjugate operators
for every equivalent renorming X̂ of X.

(iii) X∗ has the compact approximation property and K(X, X̂) is an ideal
in K(X, X̂∗∗) for every equivalent renorming X̂ of X.

Proof. (i)⇒(ii) is trivial, and (ii)⇒(iii) is proved in [12, Corollary 4.7].
(iii)⇒(i). Let {x∗n} ⊆ X∗, {x∗∗n } ⊆ X∗∗ such that

∑∞
n=1 ‖x∗n‖ ‖x∗∗n ‖ <∞

and
∑∞

n=1 x
∗∗
n (S∗x∗n) = 0 for all S ∈ K(X,X). Without loss of generality,

we may assume that
∑∞

n=1 ‖x∗∗n ‖ <∞ and ‖x∗n‖ → 0.
We shall show that

∑∞
n=1 x

∗∗
n (Tx∗n) = 0 for all T ∈ K(X∗,X∗), which

by assumption, and Theorem 3.1, implies that
∑∞

n=1 x
∗∗
n (x∗n) = 0. A quick

look at Theorem 3.3 then reveals that X∗ has the compact approximation
property with conjugate operators.

By Theorem 4.4 in [14], there is a Hahn–Banach extension operator

Φ : K(X,X)∗ → K(X,X∗∗)∗

such that Φ(x∗ ⊗ x∗∗) = x∗ ⊗ x∗∗ for all x∗ ∈ X∗ and all x∗∗ ∈ X∗∗. Let P
be the associated ideal projection.

Let T ∈ K(X∗,X∗) and let U = T ∗|X ∈ K(X,X∗∗). By Lemma 1.4 in
[10], there is a net (Sγ) ⊆ K(X,X) such that

sup
γ
‖Sγ‖ ≤ ‖P ∗U‖ ≤ ‖U‖ ≤ ‖T‖

and
x∗∗(S∗γx

∗)→
γ

(P (x∗ ⊗ x∗∗))(U) = x∗∗(Tx∗)

for all x∗ ∈ X∗ and all x∗∗ ∈ X∗∗. By a well known convexity argument, we
may assume that S∗γ → T in the strong operator topology. Then S∗γ → T
uniformly on the relatively compact set {x∗n}∞n=1. Now it follows that

∞∑

n=1

x∗∗n (Tx∗n) = 0,

as desired.

We shall say that a Banach space X has the unique extension property if
HB(X,X∗∗) consists of a single element (the natural embedding of X∗ into
X∗∗∗).
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Theorem 3.9. Let X be a Banach space. If X has the unique extension
property , then the following statements are equivalent :

(i) X∗ has the compact approximation property with conjugate operators.
(ii) X∗ has the compact approximation property , and K(Z,X) is an ideal

in K(Z,X∗∗) for all Banach spaces Z.

Proof. The proof is similar to that of Theorem 3.8. Note that if T ∈
K(X∗,X∗), then by Theorem 2.3 in [13] there is a net (Sγ) ⊆ K(X,X), with
supγ ‖Sγ‖ ≤ ‖T‖, such that

S∗γx
∗ → (T ∗|X)∗x∗ = Tx∗

for all x∗ ∈ X∗. (We have T ∗|X ∈ K(X,X∗∗).)
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[11] Å. Lima and E. Oja, Ideals of finite rank operators, intersection properties of balls,
and the approximation property, Studia Math. 133 (1999), 175–186.

[12] —, —, Ideals of compact operators, J. Austral. Math. Soc., to appear.
[13] —, —, Ideals of operators, approximability in the strong operator topology , and the

approximation property, submitted.
[14] V. Lima, Approximation properties for dual spaces, Math. Scand., to appear.
[15] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I , Springer, Berlin, 1977.
[16] —, —, Classical Banach Spaces II , Springer, Berlin, 1979.
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