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Non-normal elements in Banach ∗-algebras

by

B. Yood (Eugene, OR)

Abstract. Let A be a Banach ∗-algebra with an identity, continuous involution,
center Z and set of self-adjoint elements Σ. Let h ∈ Σ. The set of v ∈ Σ such that
(h + iv)n is normal for no positive integer n is dense in Σ if and only if h 6∈ Z. The case
where A has no identity is also treated.

1. Introduction. Normal operators are important in the theory of
bounded linear operators on a Hilbert space. For the more general situation
of a Banach ∗-algebra A it is then natural to consider its normal elements,
those x ∈ A for which xx∗ = x∗x. Suppose that A has an identity, a con-
tinuous involution and is not commutative. It was shown in [10, Cor. 3.5]
that the set of x ∈ A such that xn is normal for no positive integer n is
dense in A. This investigation started with a desire to be more specific in
important cases.

Throughout this paper A is a Banach ∗-algebra with a continuous invo-
lution x 7→ x∗, center Z and set of self-adjoint elements Σ. Suppose first
that A has an identity. Let h ∈ Σ. We show that the set of v ∈ Σ such
that (h+ iv)n is normal for no positive integer n is dense in Σ if and only
if h 6∈ Z. This has the following consequence.

Proposition 1.1. Let A be the algebra of all bounded linear operators
on a Hilbert space. Let T ∈ Σ. Then if T is not a scalar multiple of the
identity the set of V ∈ Σ such that (T + iV )n is normal for no positive
integer n is dense in Σ.

The argument used here makes use of the identity. A separate argument
is needed to show the following result.

Proposition 1.2. Let A be the algebra of all compact linear operators
on an infinite-dimensional Hilbert space. Let T 6= 0, T ∈ Σ. Then the set
of V ∈ Σ such that (T + iV )n is normal for no positive integer n is dense
in Σ.

2000 Mathematics Subject Classification: Primary 46L05.

[201]



202 B. Yood

2. On non-normal elements. As usual we set [x, y] = xy − yx. We
say that x is normal modulo Z if [x, x∗] ∈ Z. Let p(t) =

∑n
j=0 bjt

j be a

polynomial in the real variable t with coefficients in A. If p(t) ∈ Z for an
infinite subset of the reals then each bj ∈ Z.

Theorem 2.1. Suppose that A has an identity e and that n is a positive
integer. Let h ∈ Σ. Let ∆ (resp. ∆1) be the set of k ∈ Σ such that (h+ ik)n

is not normal (resp. not normal modulo Z). If h 6∈ Z then ∆ dense in Σ. If
h 6∈ Z and A is semi-prime then ∆1 is dense in Σ.

Proof. Let E be the closed linear subspace of A which will be successively
(0) and Z in the arguments to follow.

Suppose that ∆ or ∆1 is not dense in Σ. Then there is a non-void open
set Ω in Σ such that, for each k ∈ Ω, (h + ik)n is normal modulo E. Let
a ∈ Ω and v ∈ Σ. For some ε > 0 we have

[(h+ i(a+ tv))n, (h− i(a+ tv))n] ∈ E
for all t, 0 ≤ t ≤ ε. Hence this relation holds for all real t. It follows that
(h+ iv)n is normal modulo E for all v ∈ Σ.

From this it follows that (v + ith)n is normal modulo E for all v ∈ Σ
and real values of t. As shown in [11, Lemma 3.1] we have

[
vn,

n−1∑

j=0

vjhvn−1−j
]
∈ E

for all v ∈ Σ. Suppose that t 6= 0. Set

w1 = t−1{(e+ tv)n − e}, w2 =
n−1∑

j=0

(e+ tv)jh(e+ tv)n−1−j.

Then [w1, w2] ∈ E. Let t → 0 to see that [v, h] ∈ E for all v ∈ Σ. Hence
[h, x] ∈ E for all x ∈ A.

Now consider the above analysis for ∆ and E = (0). We then have h ∈ Z.
Next suppose that A is semi-prime and we are treating∆1 with E = Z. Then
[h, x] ∈ Z for all x ∈ A. It follows from [12, Th. 3.1] that h ∈ Z in this case
also.

Theorem 2.2. Suppose that A has an identity. Let h ∈ Σ, h 6∈ Z. Then
the set of v ∈ Σ such that (h + iv)n is normal for no positive integer n
is dense in Σ. If A is semi-prime the set of v ∈ Σ such that (h + iv)n is
normal modulo Z for no positive integer n is dense in Σ.

Proof. The set of v ∈ Σ such that (h+ iv)n is not normal modulo E is
an open set which is dense by Theorem 2.1. The conclusion follows from the
Baire Category Theorem.
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We let Γ denote the set of h ∈ Σ such that hn ∈ Z for no positive
integer n.

Lemma 2.3. Suppose that A is semi-prime and is not commutative. Then
Γ is dense in Σ.

Proof. Let Wm = {h ∈ Σ : hm /∈ Z}. Then Γ =
⋂
mWm. By the Baire

Category Theorem it is sufficient to show that each Wm is dense in Σ.
Suppose that, for some positive integer r, Wr is not dense. Then there is a
non-empty open subset Ω of Σ in the complement of Wr.

Let a ∈ Ω and let h ∈ Σ. For all real t, the element (a+ th)r lies in Z so
hr ∈ Z. By [10, Lemma 3.1] we see that xr ∈ Z for all x ∈ A. By standard
ring theory [5, Th. 3.22], A is commutative. This contradiction shows that
Γ is dense in Σ.

Theorem 2.4. Suppose that A is semi-prime and is not commutative.
For each h in the dense subset Γ of Σ the set of v ∈ Σ such that (h+ iv)n

is normal modulo Z for no positive integer n is dense in Σ.

Proof. By the arguments used for Theorems 2.1 and 2.2 it is sufficient
to show that, for each positive integer n, the set of v ∈ Σ such that (h+ iv)n

is not normal modulo Z is dense in Σ.
Suppose otherwise. As shown in the proof of Theorem 2.1 the element

(h+ iv)n is normal modulo Z for each v ∈ Σ. As shown in [11, Lemma 3.1]
this implies that [hn, [hn, v]] = 0 for all v ∈ Σ. But then [hn, [hn, x]] = 0
for all x ∈ A. By a result of Herstein [6, p. 5] we see that hn ∈ Z. But this
contradicts h ∈ Γ .

Corollary 2.5. Let A be a C∗-algebra with Z = (0). Then for any
h 6= 0, h ∈ Σ, the set of v ∈ Σ such that (h+ iv)n is normal for no positive
integer n is dense in Σ.

Proof. Let h ∈ Σ with hn = 0 for a positive integer n. Then ‖hn‖ = ‖h‖n
so that h = 0. Thus if h 6= 0 then h ∈ Γ . We apply Theorem 2.4.

Proposition 1.2 is a special case of Corollary 2.5.
For each x ∈ A let r(x) = lim ‖xn‖1/n. In [4, p. 420] the involution in A

is said to be regular if r(h) = 0, h ∈ Σ, imply that h = 0. In that case it is
readily seen that A is semisimple and so x 7→ x∗ is continuous in virtue of
the uniqueness of norm theorem [3, p. 130].

If A has a regular involution and hn = 0 for h ∈ Σ then r(h) = 0 so that
h = 0.

Theorem 2.6. Let A be a semisimple topologically simple infinite-dim-
ensional annihilator Banach ∗-algebra. Suppose that x∗x = 0 implies that
x = 0. Then the conclusion of Corollary 2.5 holds.
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Proof. AsA is semisimple the involution is continuous. By [9, Th. 4.10.16],
A has a faithful ∗-representation x 7→ T (x) as bounded linear operators on
a Hilbert space. This ∗-representation is continuous ([3, p. 196, Th. 3]). For
each h ∈ Σ we have r(T (h)) ≤ r(h). Thus whenever r(h) = 0 we have
T (h) = 0 and also h = 0 so that the involution is regular.

Now (0) is the only primitive ideal of A so that A is a primitive Banach
algebra. By [9, Cor. 2.4.5] either Z = (0) or Z is the set of all scalar multiples
of a non-zero idempotent e. We rule out the latter possibility. First of all
e cannot be an identity element for A, since otherwise A would be finite-
dimensional by [2, Prop. 6.3]. If e 6= 0 and e is not the identity we would
have A = Ae⊕A(1− e) contrary to the fact that A is topologically simple.
Therefore Z = (0). Again we apply Theorem 2.4.

Proposition 1.2 is a special case of Theorem 2.6; the latter also applies to
some H∗-algebras of [1] such as a full matrix algebra [9, Theorem 4.10.32].
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