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Restriction theorems for the Fourier transform
to homogeneous polynomial surfaces in R3

by

E. FERREYRA, T. Gopoy and M. UrciuoLo (Cérdoba)

Abstract. Let ¢ : R?> — R be a homogeneous polynomial function of degree m > 2,
let ¥ = {(z,¢(z)) : |x|] < 1} and let o be the Borel measure on X defined by o(A) =
SB x4 (2, o(x)) dz where B is the unit open ball in R? and da denotes the Lebesgue measure

on R2. We show that the composition of the Fourier transform in R? followed by restriction
to X defines a bounded operator from L?(R?) to LY(X, do) for certain p,q. For m > 6 the
results are sharp except for some border points.

1. Introduction. Let ¢ : R® — R be a smooth enough function, let
B be the open unit ball in R™ and let ¥ = {(x,¢(z)) : © € B}. For
f € S(R™1), let Rf : ¥ — C be defined by (Rf)(z, () = f(z,¢(x)),
x € B, where fdenotes the usual Fourier transform of f defined by f({ )=
{ f(u)e "€ du. Let ¢ be the Borel measure on X defined by o(A4) =
{pxa(z,¢(x))de and let E be the type set for the operator R, i.e. the
set of pairs (1/p,1/q) € [0,1] x [0, 1] such that || f|[za(xy < cl| fl|Lp@mn+1y for
some ¢ > 0 and all f € S(R"™!), where the spaces LP(R"*1) and LI(X)
are taken with respect to the Lebesgue measure in R"*! and the measure o
respectively.

The LP(R"*1)-L9(X) boundedness properties of the restriction opera-
tor R have been widely studied. It is well known that for X' as above, if
(1/p,1/q) € E then

1 n+21 n+2

-2 - -+ .

q n p n
In [10], it is proved, for the case where ¢ is a nondegenerate quadratic form
in R*"1 that (1/p,1/2) € E if (n+4)/(2n +4) <1/p < 1, and the method
given there provides a general tool to obtain, from suitable estimates for o,
LP(R™1)-L2(X) estimates for R. Moreover, a general theorem, due to Stein,
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holds for smooth enough hypersurfaces with never vanishing Gaussian curva-
ture (see e.g. [8, p. 386]). There it is shown that, in this case, (1/p,1/q) € E
if

1 n+21 n n 4+ 2 n+4

- > and <

1o
q n o op n 2n+4 " p

For the case n = 1 a restriction theorem (also under the assumption of
nonvanishing curvature) is given in [3] where it is proved that, in this case,
(1/p,1/q) e Eif3/4 < 1/p<1land1/q> —3/p+3, and this result is sharp,
i.e. the conditions on p and ¢ are also necessary. Also in [1], [5], [4] and [6]
restriction theorems for curves of finite type are obtained. Concerning the
homogeneous case, the type set £ is studied in [2] for p(z) = (327_ [=;|")*.
The main tools used in [2] are a dyadic decomposition of X' combined with
Strichartz’s method applied to the these dyadic pieces and interpolation
techniques.

In this paper we consider the case n = 2 and ¢ : R? — R a homogeneous
polynomial function. We study the type set E following in part the approach
in [2].

Let us describe our results. Let E£° denote the relative interior of E in
[0,1] x [0, 1].

If det ¢”(x) = 0 we characterize E° (see Theorem 3.3).

If det () is not identically zero and if it vanishes somewhere on R? —

{0}, since ¢ is a homogeneous polynomial function, the set of the points
x where det ¢ (z) vanishes is a finite union of lines Ly, ..., Lg through the
origin. For a point z; € Lj — {0}, j = 1,...,k, we consider the vanishing
order o of det¢”(z) at x; along a transversal direction to L;. A simple
computation using the homogeneity of det ¢’ shows that «; is independent
of the point z; and of the transversal direction chosen. Let
(1.1) m = max{m,a; +2,..., 0 + 2}.
In this case, for m > 6 we characterize E°, and for m < 6 we characterize
E° N ((3/4,1] x [0,1]) and we prove that (3/4,1/q) € E for (m+2)/8 <
1/q <1 (see Theorem 3.4). These results still hold if det ¢”(z) never van-
ishes on R? — {0} provided that we define /m = m in this case.

Finally, for every case, we give (see Theorems 4.2 and 4.4) a sharp
LP(R3)-L?(X) estimate for the restriction operator R.

Acknowledgements. The authors are deeply indebted to Prof. F. Ricci
for his invaluable suggestions.

2. Preliminaries

REMARK 2.1. Let us introduce some additional notation and state some
general facts concerning restriction operators. If V' C R? is a measurable set
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and if ¢ : V. — R is a continuous function, let Xy, ovy, Ry, be the
surface, the measure and the restriction operator defined as X, o and R
at the beginning of the introduction, with n = 2, but taking now V and ¢
instead of B and ¢ respectively. Finally, let Ey,,, be the type set for Ry .
Let us recall some well known facts about the operators Ry,y.

(a) The Riesz-Thorin theorem implies that 'y, is a convex set. More-
over, for f € S(R?), we have

IRVl sy, ooz <1 and  [[Rvyplliws),ci(zy.,) < V]
where |V| denotes the Lebesgue measure of V. So, by the Riesz-Thorin the-
orem, if |V| < oo the closed segment with endpoints (1,0) and (1,1) is
contained in Ey . In particular we get the estimate
IRv,pll ey, 225y, < V]2
(b) If T € GL(R?) a computation shows that Erw)por—1 = Evy. Also,
EV,aw = Ev’q/} fora e R — {O}
(c) Let us recall the well known homogeneity argument (see e.g. [10],
[11]). If ¢ : R? — R is a continuous and homogeneous function of degree m

then Ky, = Ey,, for all £ > 0. Indeed, a computation gives, for f € § (R3)
and ¢t > 0,

(2.1) £ La(sy) = /TN (=) Ly
where fi(v1,ve,v3) = f(tvy, tvg, t™vs). From (2.1) it easily follows that
(2.2) HRW#} ‘LP(RB)’L[I(&W) — t2/q+(m+2)/p—(m+2)‘
for all t > 0 and so Eiv,, = Evy,,.

(d) Let ¢ be as in (c), let W = Uenugoy 27%V and suppose that
(1/p,1/q) € Ev,, and

IRv,pllLr(®3),La(5y..,)

1 1
—>—<@+1>1—9+@+1.

q 2 2
Then (1/p,1/q) € Ew,,. Indeed, since
q q
||RW,<pHLp(R3)7Lq(2WM) < Z ||R2*kV,go||LP(R3)7Lq(227kV¢)
keNU{0} ’

the statement follows from (2.2).
(e) Another consequence of the homogeneity argument is the following.
For ¢ and W as in (d), since
Rw.pllLe®3),L0(5w.) = IRe-rvpllLe®s) Loz
for all k € N, from (2.2) it follows that
1 m 1 m
> () 2y
q- <2 i )p T2
is a necessary condition in order to have (1/p,1/q) € E

Z*kV,so)

W ®



252 E. Ferreyra et al.

The following Lemmas 2.2 and 2.4 allow us to compute the vanishing
order of det ¢ () along the z1 axis for an arbitrary homogeneous polynomial
function ¢ : R? — R. Let « be the order of x5 = 0 as zero of the function
xo — det ¢ (1, z2), with the convention that a = 0 if det ¢”(1,0) # 0, and
a = oo if det ¢’ (1, x2) vanishes identically (i.e., by the homogeneity of ¢, if
det ¢” () vanishes identically on R?).

LEMMA 2.2. Let ¢ : R? — R be a homogeneous polynomial function of
degree m > 2 of the form

(2.3) o(r1,72) = apzy" + Z ]
1<i<m
for some ag, ..., an, € R with ag # 0 and let o be defined as above.

(i) Suppose that

S
a m\ (a1
—£ = m | — fors=1,...,r
a S ag

with r < m and that
r—+1
LS (L )
ag r+1 ag '
Qs

S
m _ al
= m~ % — fors=1,...,m,
aq S a

Proof. To prove (i), without loss of generality we can assume that ag = 1.
Let 7 be as in (i), so 1 < r < m — 1. We have det ¢"(x1,22) = AB — C?
where

Then o« =1 — 1.
(i) If

then a = oo.

A= Z (m —1)(m —1—1)aa " 2ab,

0<I<m—2

» , i
B= > (j+2)(j+ajpea] 7,
0<j<m—2

m—2
C=> (+1)(m—1—Day 2" b,
1=0
A computation of AB — C? gives

(2.4)  det (w1, x2)
= Y N m-)m—1-1)G+2)( + Daaje

0<i<2m—41+j=i

— I+ D) (m—=1=1)(m—j = 1)+ Darpraj]ai™ " b,
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For 0 <i < 2m — 4, let cix%m_‘l_i be the coefficient of z% in det (21, z2).
For s=1,...,r —1 we have

cs= Y (m=D(m—1-1)G+2)(j+Daa;s
l+j=s
= S )m— = 1)(m— j— 1) + Darazr.
l+j=s
Thus (recalling that ag = 1) the hypothesis of (i) gives
cs=m(m—1)(s+2)(s+ 1)ast2

+ > (m=I)( —l—l)(j+2)(j+1)<77) (jT2>m—5—2a§+2

I+j=s,1#£0
_ lﬂz;u +1m—1=1)(m—j -1 +1) (z Tl) <jT1>m_s_2“i+2'
Since
(+1)(m—1-1)(m—j— 1)(j+1)<lT1> (jT1>
= (m—D)(m—1 -1 +2)(j +1) (77) (jfz)
we get

¢ = m(m —1)(s + 1)(s +2) [a5+2 - (ST2> 52 iﬂ

andsocyp=...=c¢—2=0and ¢._1 #0, hence « =1 — 1.
To see (ii) observe that if

S
a m —_sf[ M
== m | — fors=1,....,m
ag s ag

then p(z1,x2) = ag(x1+bxe)™ for some b € R and that in this case det ¢” ()
is identically zero. =

REMARK 2.3. Let ¢, be as in Lemma 2.2. Observe that this lemma
implies that a < m — 2 except in the cases where ¢ is either of the form
o(x1,22) = ap(z1 + bxa)™ or (a1, x2) = ap(z1 + bra)™ + bzl for some
ag, b, € R with ag # 0, b’ # 0, and that in these exceptional cases we have
a = oo and a = m — 2 respectively.

LEMMA 2.4. Let ¢ : R? — R be a homogeneous polynomial function of
degree m > 2 given by

(2.5) o(z1,x2) Z apr b

k<i<m
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for some ag,...,am € Rwith 1 <k <m, and ax # 0. Let « be as in Lemma
22. Then a=2k—2if k<m, and a = if k=m

Proof. If k = m, then ¢(z1,z2) = amzh’, so det ¢ (1, z2) vanishes iden-
tically and then o = oo.

If k < m, then p(z1,z2) = apz"™ kx§ + x2+ ¥ (x1,xz2) for some polyno-
mial function v satisfying 1(1,0) # 0, and so

det " (z1,12) = —k(m — 1)(m — k:)an%m 2k=2 Qk 24 m%kil@(xl,wg)

where ©(z1,z2) is a polynomial function. Since k(m — 1)(m — k) # 0 and
ap #0, we get « =2k — 2. m

REMARK 2.5. For an arbitrary homogeneous polynomial ¢ of degree
m > 2, from Lemmas 2.2 and 2.4 it follows that det ¢”(z1,22) = 0 if and
only if ¢(x1,z2) = (ax1 + bwa)™ for some a,b € R and all (z1,22) € R%. =

REMARK 2.6. We will need the following Strichartz theorem (see [10])
whose proof relies on Stein’s complex interpolation theorem which gives
LP(R3)-L%*(Xy,;) estimates for the operator Ry,y. Since we will need infor-
mation about the size of the constants we give a sketch of its proof.

Let V be a measurable subset of R? such that |[V'| > 0 and let ¢ : R? — R
be a continuous function. Suppose that (o) (§)] < A(1+4|€3]) 7™ for some
7> 0 and for all £ = (£1,&2,&3) € R3. Then

HRV”Z’HLP(RS%LZ(EV,M < CTAI/(2(1+T))

for p = (24 27)/(2+ 7) where ¢, is a positive constant depending only
on 7. Indeed, as in [8, p. 381] we define the analytic family of distributions
I, given, for Re(z) > 0, by

t*~1¢(t) for t >0,

L(t) =4 T'(2)
0 for t <0,
where ¢ € C¢° and ¢(t) = 1 for |t| < 1. Also we define J, = § ® 6 ® I,. For
—7 <Re(z) <1land f € S(R?), let T.f = (J, x oyy)" * f. A computation
shows that if Re(z) = 1, then ||J; * oy Loo(rs) < ¢ < 00, s0
T fll2@sy = 1T ) Mlz2sy < ell Fllz@s) = cll fll2ges)-

Also since |(J,)"(€)| < er(1+1&3])7 for Re(z) = —7, Young’s inequality gives
||TZfHL°°(R3) = ||((UV,w) (Jz)A) * fHLoo(RS) < CTA”fHLl(RS)

and so Stein’s complex interpolation theorem (as stated e.g. in [9, Ch. V])
entails that the operator Ty f = (ov,y)" * f satisfies

I Toll Lo (re), v (m2) < o AM(+7)



Restriction theorems for the Fourier transform 255

for p = (24 27)/(2+ 7). This implies (see e.g. [8, p. 253]) that

IRVl 1o (R3), p2(5y,) < LAV U g

LEMMA 2.7. Let o(x1,72) = Y pejcp @2l 'ah where 0 <k <m and
ag, .., am € R with a, # 0, and let X and E be defined as in the introduc-
tion. If (1/p,1/q) € E then

1
=
Proof. If k = 0 the lemma follows from Remark 2.1(e). Suppose k # 0.
For 0 < ¢ < 1, let f. be the characteristic function of the set [0, 1] X
0,67 /#] x [0,e7]. Then for z = (1, z2),
1e1/k g1

felw.p@) = S ¢ fnsrtnttelnen®) i dg, déy
0 0

— —1/k —1
(1+1/k S e —i(z1uite zouzte tp(z1,z2)us) dul dUQ d’LL3
Q

1
—(k+1)5+k+1.

where @ = [0,1] x [0,1] x [0,1]. Let ¢ = min(1, ( > k<i<m ]al|) ) and
D. = [0,1/3] x [0, (¢/3)e"/*). So Tp, , € £ and || fellpas) = I fellpacsp, -
Now

Ry

-

D: Q

S 6—2(m1u1+5_l/krgug—s—s_l@(xl,xz)ug)

duq dug dus ‘qdasl dxo

q
> S ‘ S cos(ziug + e YEgouy + 6_1g0(a:1, x9)us) duy dug du;),‘ dx1 dzo
D: Q
For (z1, 22, ¢(z1,22)) € Xp_, we have

e p(z1, )] < e (lagzy™” -+ lama2™])

< Flag| + \akﬂ\ck“el/k + ot lag e RE <173
and so for (ul,u2,u;>,) € Q we get |zu; +e~ Vkgoug+e~t o(z1,z2)uz| <1<
7/3. Thus 5q+Q/k||f€|| B /% with ¢’ independent of € and f. Now,

[ fellLrrsy = € (1“/’“)/” So from the inequality ||f2]lacm) < el felloes),
applied With € small enough, we get

AT S P AAY
k kq— k)p

and the lemma follows. =
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REMARK 2.8. It is known that if (§ [h(x2, 23)|? da2)"/? < c||h]| g2y for
some ¢ > 0 and all h € S(R?) then 1/p > 3/4 (see [4, Theorem 2]). This
result implies the following.

Let ¢ : R? — R be a quadratic homogeneous polynomial function such
that det ¢”(z) = 0, and let X' and E be defined as in the introduction. If
1 < p,q < oo and there exists ¢ > 0 such that

(2.6) £l zagsy < el fll oo

for all f € S(R3), then 1/p > 3/4. Indeed, from Remark 2.5 we have
o(x1,72) = (awy + bra)? for some a,b € R and all (z1,72) € R2. So, from
Remark 2.1(b) the problem reduces (after composing with a suitable rota-
tion followed by a dilation) to the case ¢(z1,72) = 2. Let g € S(R) be such
that g > 0 on [0, 1]. For h € S(R?) we take f(x1,z2,73) = g(z1)h(z2,73) in
(2.6) to obtain

N ~ 1/q
10l 0.0 ( § (2, 23)|7 darz) " < cllglloge 1Al o)
0

and so (§y [h(x2,23)|?dx2)/? < c||hl|1pge) for some ¢ > 0 and all h €
S(R?). =

3. LP(R?)-L4(X)) estimates for R. For § > 0 we set

(3.1) Vs = {(113‘1,:172) S R2 : |33‘1| <1, |l‘2| < 5‘$1|}

LEMMA 3.1. Let ¢ : R?> — R be a homogeneous polynomial function
such that det ¢”(x) does not vanish identically, let o be defined as in the
preliminaries and let m* = max(m, «a + 2). Let Vg be defined by (3.1). Then
for § positive and small enough:

(i) if m* <6,
3 1 * 1 * 1
S<Z<1 and —(m +1)—+m +1< =<1,
47 p 2 p 2 q

then (1/p,1/q) € Evy; ,
(ii) if m* > 6 and

. 1 m 1
() e <<,
2 p 2 q

then (1/p,1/q) € By 4.
Proof. From Remark 2.1(a), to prove the lemma it suffices to show that,

for § positive and small enough, the following assertions hold:
() Ifm—-2<a<4and (a¢+4)/8<1/q<1then (3/4,1/q) € E,

5"
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{)Ifm—-2<ao a>4and (a+2)/(a+4) < 1/p <1 then (1/p,1)
S EV(s,Lp-

(i) H0<a<m-—2 m>6,and m/(m+2) <1/p <1 then (1/p,1)
S EV5,<p~

(ivV)If0<a<m—2,m<6and (m+2)/8<1/q<1then (3/4,1/q)
S EVg,Lp-

Let 69 > 0 be such that det ¢”(z) # 0 for all x = (x1,22) € Vj, with
xo # 0. Our assumptions imply that there exist positive constants ci, co
such that, if (z1,22) € V5, and 1/2 < |z1| < 1, then

(3.2) c1lxe|® < |det @ (z1, 22)| < ea|xa]®.
For k € NU {0}, let
33)  Qr={(z1,22) €R?:1/2< |z| <1, 271 < |z <277},

let @) : Qo — R be defined by (1, 22) = @(x1,2 %x5) and let TQu,e D€

defined as at the beginning of the preliminaries. A change of variable gives

(34) (004.0)"(8) = 27M(0qo 1) " (61,272, ).
Pick k(do) € N such that Qps5,) C Vs,. Since
|det o} (21, 22)| = 272%|det " (21,2 % zy)],
from (3.2) it follows that there exists ¢; > 0 such that |det ¢} (z1,22)] >

c127Kk@+2) for all k > k(d0), (x1,x2) € Qp. Then Proposition 6 on p. 344 of
[8] implies that there exists a positive constant c3 such that

|(0Qu i) (61,2760, &3)| < ca2MOTD/2|(61, 2706y, 63) 7! < a2 T2 g 7
for all k > k(dp) and £ € R3. For these k, from (3.4) we obtain |(0g, )" (£)] <
c32%e/2|¢5]7 1. So, Remark 2.6 implies that
(3.5) 1llz2(z, ) < a2l fllpan@sy,  f € SR,

with ¢4 independent of k and f. From (3.5), Holder’s inequality gives, for
1<g<2and f € S(R?),

(3.6) 1l za(Za,.0) < 0(Zaue) >V N fll 12, )
< ¢42k(@/8=(2=0)/(2q)) HfHL4/3(R3)'

Suppose that « < 4. If (¢ +4)/8 <1/g < 1then a/8—(2—-1¢q)/(2¢9) <0
and so for some ¢ > 0 and all f € S(R?),
(3.7) S i, ) < ellf oo
k>k(d0)
For 6 > 0 and j € NU {0}, let
(3.8) Ajs = {(z1,22) €R*: 27971 <oy | <279, |mo| < 8|2},
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thus Vs = J;5 4j,s- For ¢ small enough, (3.7) gives

1Flzozag ;) < eIl Fllursgasy:

If m — 2 < a < 4 the condition 1/g > (o +4)/8 implies
1 m 3 m
§>_<§+1>Z+?+1
and so (i') follows from Remark 2.1(d).
For t € [0,1] let p; be defined by 1/p, = 3t/4 + 1 —t. For k > k(do)
and any «, from (3.6) we get Hﬂ’Ll(ZQk’v) < 042’“(0‘/8*1/2)HfHL4/3(R3). Also
Hﬂ\Ll(EQkW) < 042*k]\f]\L1(R3), so an application of the Riesz—Thorin theo-

rem gives
||f||L1(2Qk,¢) < C2k(((a+4)/8)t—1)||f||Lpt(R3)

for all f € S(R3). So, for § small enough,

(3.9) 1L (s 5.0 < > 1fllLr (s, o) < lfllirere)
' k>k(0)
for allt € [0,8/(a+4)) if @ > 4, and for all t € [0,1] if o < 4.
Suppose that m —2 < a < oo and a > 4. If (a +2)/(a+4) <1/p<1
then 1/p =3t/4+1—t for some t € [0,8/(a+ 4)). Also

m 1 m
1> (= 41)=+—+1.
> (2 + >p +5
So, Remark 2.1(d) and (3.9) imply (1/p,1) € Ey;,, and then (ii’) holds.

Consider now the case 0 < a < m —2, m > 6 and suppose m/(m + 2) <
1/p < 1. A computation shows that 1/p = 1/p; for some t € [0,8/(m + 2))
and so t < 8/(a+4). If & > 4 then (3.9) and Remark 2.1(d) imply (iii’) in
this case. If a < 4, observe that the assumption on p implies 3/4 < 1/p and
so (3.9) gives (1/p,1) € E4, 4,,- Since also

m 1 m
1>—(=+1|-4+—=+1
(2 i >p Tz
(iii") follows in this case from Remark 2.1(d).

Finally, assume that 0 < a <m —2, m <6 and (m+2)/8 < 1/q < 1.
Then (a +4)/8 < 1, thus (3.7) gives (3/4,1/q) € Ea, ;- Also (m +2)/8 <
1/q implies 1/q¢ > —(m/2+1)3/4 4+ m/2 + 1 and so Remark 2.1(d) gives
(iv'). m

REMARK 3.2. For § > 0 let

Ws = {z = (z1,22) € R? : |z| < 1, |x2| < 8|21}

and let Vs be defined by (3.1). Since Wy C Vj, it follows that Lemma 3.1
holds for W in place of V. =
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THEOREM 3.3. Let ¢ : R? — R be a homogeneous polynomial function
of degree m > 2 such that det ¢”(x) = 0. Then for m > 3,

E°={(1/p,1/q) €[0,1] x [0,1]: 1/g > —(m +1)/p+m + 1},
and for m = 2,
E° ={(1/p,1/q) € (3/4,1] x [0,1] : 1/¢ > =3/p + 3}.

Proof. From Remark 2.5 we have (1, 22) = (ax; + bxa)™ for some
a,b € R and all (z1,22) € R?, and so, by Remark 2.1(b), the problem
reduces (after composing with a suitable rotation followed by a dilation) to
the case ¢(x1,z2) = x5". From Remark 2.1(a), Lemma 2.7 and Remark 2.8,
it suffices to see that for m > 3, if m/(m+1) < 1/p <1 then (1/p,1) € E,

and for m = 2, if 3/4 < 1/p <1 and 1/q > —3/p + 3 then (1/p,1/q) € E.
For 3/4 < 1/p <1 we know that (see e.g. [3]) there exists ¢ > 0 such that

. m 1/p
(3.10) ( S |g(s,s™)[P ds) < cpllgllppmey  forall g € S(R?).
1/2<]s/<1
We claim that for such p there exists ¢’ > 0 such that
~ 1/p
1) (§§ e dendes) <l
|21|<1 1/2<|za|<1

for all f € S(R3). Indeed, for h: R — C and g : R? — C, let A1, g2 denote
their one-and two-dimensional Fourier transforms respectively. Now,

S S |f(:171, x9, x5 ) [P day dxg) Vv

|z1]<11/2<]22|<1

10T &) £ &) ) g )

1/2<|z2|<1
where X = LP((—1,1),dx1). From (3.10) we get
~ 1/p
(3.12) ( S S |f(z1, 22, 25") [P day dm)

lz1]|<1 1/2<]z2|<1

<e( T ] 1668 @)lPda) dedes )

R2 |z1|<1

/p

Since p < 2,
1 (&2, 88) " | po(—1,1) < C”Hf(',ﬁz,fzs)m”Lp'(_l,l) <62, 83) ()

for some positive ¢’ and ¢”. So (3.11) follows.
For t > 0, x = (x1,22) € R?, £ = (£1,&9,63) € R3 let t.x = (21, txo) and
tof = (&,t&,tME3). For g : R3 - R, t >01let tog:R3 — R be defined by
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(tog)(&) =g(to&). Finally, for k € NU {0} let
Ry = {(331,332) : |331’ <1, 9kl < ’562| < 2_k}.

So Ry =2 ¥Ry and from (3.11) a standard homogeneity argument gives
(3.13) 1Fllzo(sn, o) < 2 PHhme) o o f s

= Q—k/p+k(m+1)(l—1/p)HfHLp(Rg)
and so, by Hoélder’s inequality,
(3'14) Hf”Ll(ERkW) < 2_k/p+k(m+1)(1_1/p)’Rk|1_1/p”fHLP(]R3)

— ok(m—(m+1)/p) HfHLp(Rg)_
In particular, if m > 3 and m/(m+1) < 1/p <1 then 3/4 < 1/p <1 and
so from (3.14) we obtain
£z < Z HfHLl(ZRW) < || fllzr(m3)

k>0

and the theorem follows for the case m > 3.

Consider now the case m = 2. Suppose that 3/4 < 1/p < 1; then —1/p+
3(1—-1/p) < 0 and so from (3.13),

1 les) < 12, ) < clfllzes)-
k>0
Also, Holder’s inequality gives Hﬂ|Lq(2) < || fllLpmsy for 1/p <1/q¢ < 1. So
the theorem follows from Remark 2.1(a). m

THEOREM 3.4. Let ¢ : R? — R be a homogeneous polynomial function
of degree m > 2 such that det ¢"(x) does not vanish identically, and let m
be defined by (1.1) if det¢”(x) vanishes somewhere in R* — {0}, and by
m = m if not. Then

(i) for m > 6,

Eoz{(l/p,l/q)e[(),l] < [0,1] : é >—<@+1>%+@+1},

(ii) for m < 6,
E°n((3/4,1] x [0,1])

{wpime@muxion: s (Te)i )
and also (3/4,1/q) € E for (m +2)/8 <1/¢ < 1.

Proof. To see that the stated conditions are sufficient, we consider first
the case det ¢”(z) # 0 for all z € R? — {0}. For j € NU {0} let

Aj={reR?*: 2777 <|z| <27}
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From [8, p. 386] we have (3/4,1/2) € E4,, and so in this case the lemma
follows from Remark 2.1(d).

Suppose now that det ¢”(x) = 0 for some € R? — {0}. Let Lq,..., Ly
be as in the introduction. For § > 0 let

O ={z € B:|rp1 ()| < blmr, ()]}
where 7, and 7, . denote the orthogonal projections from R? onto L; and
J

LjL respectively. Choose § small enough such that C’g N C’g = () for i # j. So
det () # 0 for z € Cg — Lj. Let T; € SO(2) be such that Tj(L;) is the
z1 axis, let ¢; = ¢ o Tj_l7 C = Tj(CY) and let &; be the vanishing order
of x9 — det w;-’ (1,z9). Since the curvature is invariant under rotations we
have a; = aj, j = 1,..., k. We also have Ecg,<p = ETj(Cé)’on]ﬂ (see Remark

2.1(b)). Let C5 = U <j<s. C{, s0 Ec;p = Mi<j<k ECg,so'

Suppose that (1/p, 1/q) belongs to the left side of the equality in either (i)
or (ii). If m = m, Remark 2.1(d) applies. If m = a;+2 for some j =1, ...k,
we apply Lemmas 2.4 and 2.7 to p o Tj_1 to deduce that (1/p,1/q) belongs
to the right side of the equality.

On the other hand, from Lemma 3.1 and Remark 3.2 it follows that, for
¢ positive and small enough, if m < 6,

3 1 m + 2 2 1
- <-<1 and _m= +m+ <-<1
47 p 2p 2 q
then (1/p,1/q) € Ec;.,, and if m > 6,
m 1 m+2 m+2 1
~m <-<1 and _mt +m—|— <-<1
m+2 p 2p 2 q

then (1/p,1/q) € Ec; . Finally, let Ds = B — Cs. So Ds is a union of a
finite number of angular sectors with vertices at the origin where det ¢” ()
never vanishes (except at the origin), and so we can proceed as in the first
part of the proof to get (1/p,1/q) € Ep;,, for

1 m+2 m+2 1
p 2p 2 q
Since F = E¢; , N Ep; , the theorem follows. m

<1

4. Sharp LP(R3)-L?(XY) estimates for R

REMARK 4.1. For our next results we will need to introduce two Little-
wood-Paley decompositions on S(R3). Let @ € C>°(R) be an even function
satisfying 0 < @ < 1, supp® C {t € R : 27! < |t| < 2} and such that
ez ®(27t) =1ift #0. For r € Z let ¥, : R — R be defined by ¥,(t) =
277d(27"t), and for f € S(R3) let T,.f be given by T,.f = (6 @ ¥, @ §) * f.
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Thus f = >, o5 Tr f with convergence in S’(R?). Moreover, it can be checked
that for e, = £1, the one-dimensional multiplier ), ,9(2"t) satisfies the
hypothesis of Theorem 3 on p. 96 of [7] with constants independent of the
choice of &,. Hence for f € S(R?), |3, ey fllpr@sy < cllfllrrsy with
¢ independent of f and of the choice of &,, so as in [7, p. 105] we have the
Littlewood—Paley inequality

o (Sme)

rez

Lo(®9) < ¢l fll o (r3)-

Similarly, if we start with an even function @ € C>(R?) with support
contained in the annulus {t € R?2: 270 < |t < 2} such that 0 < P <1,
Yoren P27t ) =1lforte R2 — {0}, and if we define () = 272 (D) (27"t),
r€Z, and T, f = (¥, ® §) * f, we now see that f = ZTesz,fES(R?’)

with convergence in §'(R3) and that (4.1) is also true for the family {T} },cz
in place of {1} },cz. m

THEOREM 4.2. Let ¢ : R?2 — R be a homogeneous polynomial function of
degree m > 2 such that det ¢"(x) = 0. Then ((2m +1)/(2m +2),1/2) € E.

Proof. As in Theorem 3.3 it is enough to prove the theorem for the case
w(x) = 4. In this case the van der Corput lemma applied with the mth

derivative gives
1

‘ S e WEHYTE) gy | < cfgq 7M™,
-1

so [o™(€)] < ¢(1 + |&3])~Y/™. Thus the theorem follows from Remark 2.6.

LEMMA 4.3. Let ¢ : R2 — R be a homogeneous polynomial function
such that det ¢"(x) is not identically zero, let m* be as in Lemma 3.1 and
for 6 > 0 let Vs be defined by (3.1). Then for 0 positive and small enough,
((m* +1)/(m* +2),1/2) € By, .

Proof. We first consider the case @ < m — 2. Then m* = m. Let §
and k(dp) be as in the proof of Lemma 3.1 and for k € Z U {0} let Q be
defined by (3.3). For 0 € [0,1] let pp be defined by 1/py = 36/4+ 1 — 6.
For f € S(R?), from (3.5) and HfHLQ(EQk,w) < 02_"“/2\|f\|L1(R3) (see Remark
2.1(a)), the Riesz—Thorin theorem gives

(4.2) 1Flza50, 0y < 2505 FOL £ 1y o).

Then for § positive and small enough we get

1254, 5.0 < Z 1fllL2(sq, o) < clflLm+a/mn (grs)
’ k>k(d0)
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with Ag s defined by (3.8). Thus, from Remark 2.1(c) we find
(4.3) HfHLQ(EAM,w) < |l fll pom2)/oman) (msy

for some ¢ > 0 and all j € Z, f € S(R3).
For r € Z let T,, ¥, be as in Remark 4.1. Then for f € S(R?) and
¢ = (&1,&2,&3) such that (&1,&2) # 0 we have

76 = S0, &) f©) = ST H @)
rez reZ

with convergence in LQ(R?). Also, (T, f)(€) = (27 (€1, £)) f(€) and so, for
each &, the set {r € Z : (T, f)"(£) # 0} has at most three elements. Then

S @D @) <33 [Eh e

re’l reZ

Let Al ; = Ugi},_l A;s. From (4.3) we have

S ’(Trf)/\(xa 90($))|2 dx < C||Tvrf||i(m+2)/(m+1>(R3)

’
7,6

with ¢ independent of f and 7. Also, if 0 < § < 1 then
{:C eVs: (Trf)/\(l‘a gp(l‘)) 7& O} - A;‘,é'

From these facts we deduce that there exist positive constants ¢, ¢’ and ¢”’
independent of f such that

17132y, ) = §| ST @ ol

Vs rez

A

< 32 S ](Trf)/\(x, (p(m))lzdxgcz Hfrfui(mww(mﬂ)(m)

= rez
N1)2
/ 2 /! 2
s (% I7:f] ) HL(m+2)/(m+1>(R3)§C I 2y om0 sy
T

where the last inequality follows from the Littlewood—Paley inequality and
the previous one from Minkowski’s inequality. Thus the lemma follows for
a<m-—2. N

If « > m—2 then m* = a+2 and so from (4.2) we obtain ”f"L2(ZQk’¢) <
cllf Il om=+2)/Gm* 1) g3y for some ¢ > 0, for all k > k(o) and f € S(R3).

For v € Z let Ty, ¥, be as in Remark 4.1. Then for f € S(R?) and
€ = (&1,&2,&3) such that £, # 0 we have

£ =T () F(&) =D (T.HNE)

rez rez
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with convergence in L?(R?). Now we proceed as in the first part of the proof,
but with T, replaced by 7)., to obtain

HfH%Q(EAO,(;,w) < CHf"i(m*+2)/(m*+1)(R3)'
From Remark 2.1(c) we get

(44) 1l 0

- 9~ llH(mA2) (" +1)/(m* +2) — (m+2)] ||f||L<m*+2>/(m*+1)(R3)

— 02_j(m* _m)/(m*+2) ||f||L(m*+2)/(m*+1)(R3)'

If &« > m — 2 then m* > m, so we can perform the sum on j to obtain the
conclusion.

Finally, for « = m — 2 the estimates in (4) are uniform on j and then we
proceed as in the case o < m — 2 to get the assertion. m

From this lemma we proceed as in the proof of Theorem 3.4 to obtain
the following

THEOREM 4.4. Let ¢ : R? — R be a homogeneous polynomial function
such that det ¢ (x) is not identically zero, and let m be as in Theorem 3.4.
Then (m+1)/(m+2),1/2) € E.
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