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Ideals in big Lipschitz algebras of analytic functions
by

THOMAS VILS PEDERSEN (Frederiksberg)

Abstract. For 0 < v <1, let A;" be the big Lipschitz algebra of functions analytic
on the open unit disc D which satisfy a Lipschitz condition of order « on D. For a closed
set E on the unit circle T and an inner function Q, let J(E, Q) be the closed ideal in /I.JYr
consisting of those functions f € /LJYr for which

(i) f=0o0n E,

(i) [f(2) = f(w)| = o(|z — w|7) as d(z, E), d(w, E) — 0,

(iii) £/Q € AF.
Also, for a closed ideal I in Ai‘, let Ef ={2€T: f(z) =0 for every f € I} and let Qf
be the greatest common divisor of the inner parts of non-zero functions in 7. Our main
conjecture about the ideal structure in /LJYr is that Jy(E,Qr) C I for every closed ideal
I in A,Jyr. We confirm the conjecture for closed ideals I in /1.JYr for which Ej is countable
and obtain partial results in the case where Q; = 1. Moreover, we show that every wk*
closed ideal in A# is of the form {f € A# :f=0on Eand f/Q € A#} for some closed
set £ C T and some inner function Q.

1. Introduction. Throughout this paper, we let 0 < ~ < 1 unless
otherwise stated and denote all constants by C'. Let A, be the big Lipschitz
algebra of functions f on the unit circle T for which

1f(2) = f(w)] < Clz —w|”
for z,w € T. Equipped with the norm

114, = [ flloo + sup {M sweT, s # w} (fed),

|z —w|Y
it is well known to be a Banach algebra. We shall be concerned with the
closed subalgebra
Aj:{fEA,Y:f(n)zoforn<0}

~

of A, (where f(n) is the nth Fourier coefficient of f). Since every function
in A;r has an extension to a function analytic in the open unit disc I, we
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deduce that
AT = A, N AD),

where A(D) is the usual disc algebra. Moreover, a function f analytic on I
belongs to A7 if and only if
(1) fl <=z (zeD),
and
1Lt = Iflloe +sup [f (2)[(1 = [))'77 (f € A7)
zeD

defines an equivalent norm on A ([3, Theorem 5.1]). In particular, we have

f € A7 if and only if f’ € H™ (the algebra of bounded analytic functions
on D). In passing, we mention that Dyakonov ([4]) has shown that

Hf(T?:Lj[iw)H cz,w €D, z#w} (fE/l;r)

1£llo +sup{

defines an equivalent norm on A;r . This is a remarkable result since this
norm only depends on the moduli of the functions. However, for practical
purposes the norm || - || A+ Is easier to estimate.

In this paper, we describe certain closed ideals in A;r by means of zero
sets and inner functions. For f € /lfyr , let

Z(f)={2€D: f(z) =0}
be the zero set of f (counting multiplicities on D). Also, for a closed ideal I
in A7, let
Zr =) 2(f)
fel
be the hull of I, let
Er=7Z;NnT

and let Q)7 be the greatest common divisor of the inner parts of non-zero
functions in I ([6, p. 85]). We shall use the following result of Havin and
Shamoyan several times. (See, for instance, [15].)

THEOREM 1.1. If f € A# and Q is an inner function for which f/Q
€ H™, then f/Q € A;‘ and

17/Qlgs < CllflL e
In particular, if f belongs to a closed ideal I in AY, then f/Qr € AY.
Recall that a closed set E C T is called a Carleson set if

S logd(e, E) df > —oc.
T
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Carleson (]2, Theorem 1]) proved that E is a Carleson set if and only if there
exists a function f € AF with E = Z(f). In this case

LY(E):{fG/UY':f:OOHE}

is a closed ideal in AY with Ep (g) = E and Q (g) = 1. Now, let Q = BS
be an inner function, where B is a Blaschke product and S a singular inner
function. Let Z(B) be the zeros of B (in D) and let supp(S) be the support
of the singular measure on T that defines S. It follows from [9, Theorems 2
and 4] that there exists a function f € I,(E) with inner factor @ if and only
if

{plogd(e®, EU Z(B))df > —o,
(2) supp(5) C E,

Z(B)\ Z(B) C E.

In this case f/Q € A;r by the previous theorem and

I’y(EaQ) ={fe I’y(E) 1 f/Q e Ajy_}
is a closed ideal in AT with Ep (g g) = E and Qp () = Q. Clearly,
I,(E, Q) is the largest closed ideal I in AY with E; = E and Q1 = Q.

For 0 < v < 1, our results are motivated by the ideal structure in the
little Lipschitz algebra )\f{, which is the closed subalgebra of Ai{ of functions
f satisfying

£ (2) = f(w)] = o]z — w|)
uniformly as |z — w| — 0. Matheson ([11]) showed that
I={fe A;“ :f=0on Er and f/Qr € H™} = 1,(Er,Qr) ﬂ)\f;

for every closed ideal I in )\j. In the non-separable algebra A;“ , it is not
possible to obtain such a result. This is most easily seen for v = 1. Let x be
a character on H* belonging to the fiber at z = 1, that is, x(«) = 1, where
a denotes the function z — z (see, for example, [6, Chapter 10]). Then

L= {f € h({1}) : x(f') = 0}

is a closed ideal in A with E; = {1} and Q= 1. Moreover, I, # I, if
X1 # X2. Similarly, for 0 < v < 1, we shall see that there are uncountably
many closed ideals I in A;r with By = {1} and Q; = 1. Nevertheless, we
shall obtain certain results about the ideal structure in A;“ .

In the algebra A, on T, Sherbert ([14, Theorem 5.1]) proved that, for a
closed set £ C T, the closed ideal

{fedy:f=0onFEand|f(z) - f(w)] = o]z — w[7)

as d(z,E),d(w, E) — 0}

is the smallest closed ideal in A, which has E as hull. We shall prove a
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similar result for AY. For a Carleson set E' C T, let
J(E) ={f € L(E) :|f(2) = f(w)| = o]z —w[") as d(z, E), d(w, E) — 0}.

It is easily seen that J,(E) is a closed ideal in AY. Also, for a closed set
E C T and an inner function @ satisfying (2), let

(B, Q) ={f € J,(E): [/Q € H*}.

It follows from Theorem 1.1 that J,(E,Q) is a closed ideal in Aﬁ; , and
Ej (g = F and Q1 (£,q) = @ by [9, Theorem 4]. The main result in this

paper is that the following conjecture holds when Ej is countable.
CONJECTURE. Let I be a closed ideal in AY. Then J,(Er,Qr) C 1.

The proof of Matheson’s result (and of other similar results in separable
algebras—see, for instance, [1], [10] and [16]) was to a high extent based on
the so-called Carleman transform. (See the next section for the definition.)
Apparently, Hedenmalm ([5]) was the first to apply the Carleman transform
to a non-separable Banach algebra, when he obtained certain results about
the ideal structure in the algebra H°.

The proof of our main result uses the Carleman transform and ideas by
Bennett and Gilbert ([1]). The Carleman transform of a linear functional ¢
depends only on the restriction of ¢ to the separable subalgebra /\fyr and we
therefore find it interesting that it can be used to obtain results about /1,? .
Moreover, we use a representation of the Carleman transform which is dif-
ferent from the one used in [1], and by following the lines of our proof, one
can actually obtain a simpler proof of the main result in [1].

The organization of the paper is as follows. We first obtain some basic
facts about the Carleman transform (Section 2) and the ideal J(E, Q) (Sec-
tion 3). In Section 4 we prove our main result, and in Section 5 we partially
confirm our conjecture for closed ideals I in Aﬁ; with @7 = 1. Finally, in
Section 6 we show that the wk* closed ideals in A;r are exactly the ideals
I,(E, @), where the closed set £ C T and the inner function @ satisfy (2).

2. The Carleman transform. For ¢ € (A7)*, we define the Carleman
transform @ of o on C\ D by
P(z)=((z—a) ") (2€C\D).
With @(n) = (a", ) for n € Ny, we have

B(z)=> @n)z " (zeC\D).
n=0
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For f € AT and 0 < r < 1, let fo.(2) = f(rz) (2 € D). For notational
convenience, let

N ={feA]:feAD)}.
For f € )\j, it is well known (see, for example, [8, 1.2.13]) that f, — f in
AY asr — 1_. Hence

(f.¢) = lim (f;,0) = lim Zz F)r"@(n)
=l %é F(e)e D56 db

and this was used by Matheson in his proof. However, for f € Ai{ \ )\fyr , We
do not have f, — f in ./lfyr as 7 — 1_, so this method does not work in our
case.
Let I be a closed ideal in AY, let
It={pc (AT)*: (f, ) = 0 for every f € I}
be the annihilator of I and let 7 : AT — A¥ /I be the quotient map. Suppose

that ¢ € I+ (= (A% /1)*). Tt is well known that the character space of the
algebra /1,? /I equals Z;, so the spectrum of m(«) equals Z; and the function

D(2) = ((z—7(a)) ) (2€C\Zp)
thus extends the domain of ¢ to C\ Z;.
For f € AT and z € D, define S, f by

f(z) = f(w) -
(SHw)=¢  z-w for w e D\ {z},

f'(z) for w = z.

Then S.f € A, N A(D) = AT. It is easily seen that

(3) Iz =) Ya, <Cl1— 2| (zeC\T),
so we have
(4) 18:fll 4+ < CA—[2)~0F) (2 eD).

We shall often use the following representation of @.
LEMMA 2.1. Let I be a closed ideal in /1‘7Ir and let o € I+, Then
(S:9,¢)
P(z) = ———— zeD\ Z(g
(2) 1) ( \ Z(9))
forgel.

Proof. For g € [ and z € D\ Z(g), we have (z — a)S.g = g(z) — g and
thus (2 — 7(a)) ™! = 7(S.g)/g(z), so the result follows. =
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The normal approach to the Carleman transform (see, for example, [1],
[10], [11] and [16]) is to define @ on D \ Z; by the expression ¢(z) =
(S:9,¢)/9(z) and then show that ¢ extends analytically to C \ Z;. With
the present definition, we obtained this as an immediate consequence of the
general fact from Banach algebra theory that the character space of the
algebra AT /I equals Zr.

The following result is similar to [1, Theorem 2.4].

LEMMA 2.2. Let I be a closed ideal in /lfyr and let ¢ € I'+. Suppose that
zo € ZrN\D is of multiplicity k. Then @ has a pole of order at most k at zg.

Proof. There exist g € I and h € Aﬁ; with h(zp) # 0 such that g =
(a — 29)*h. By the previous lemma, we thus have

(= 20)40(z) = (2 — o)t Eo?) _ (5:0:9)

9(2) h(z)
for z in a neighborhood of zy, which proves the lemma. =

For ¢ € (A¥)* and f € AY, we define p(= fp) € (AF)* by

(g:0f) = {fg.0) (g€ A).

If I is a closed ideal in AT and ¢ € I+, then ¢y € I+ for f € AT. We
denote the Carleman transform of ¢y by ®;. Whereas & depends only on
the restriction of ¢ to )\f{, the function @; depends only on the restriction
of ¢ to the subalgebra /\fyr f of Ai{. Heuristically, this is the reason why
the Carleman transform can be successfully applied to the non-separable
algebra A7

LEMMA 2.3. Let f € A,‘y*', let I be a closed ideal in /1:{F and let p € I+,
Then
Pp(z) = f(2)P(2) — (5=f, ¢)
forze D\ Z;.
Proof. Let z € D\ Z; and choose g € I such that g(z) # 0. Since
gS.f € I, we have

Dp(z) — f(2)P(2) = (S:9,05) — f(2)(S:9,¢)

9(2)
_((f=f(2)S:9,0) _ ((g—9(2))S:f,0)
R R

as required. m

3. The ideal J,(E, Q). In this section, we prove some basic facts about
Jy(E, Q). In order to use the characterization (1) of AT, we need to describe
Jy(E) in terms of derivatives.
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PROPOSITION 3.1. For a closed set E C T and f € A;ﬂ the following
conditions are equivalent:

(a) f € J,(E).

(b) £ € L,(E) and |£'(2)] = o((1 — s as d(z, E) — 0.

Proof. (a)=(b). Given e > 0, we choose ¢ > 0 such that |f(z) — f(w)| <
elz—w|" for z,w € Dwith d(z, E),d(w, E) < 6. Let z € Dwith d(z, E) < §/2
and let r = 1 —|z| < /2. Then d(w, E) < ¢ for |w — z| = r, so Cauchy’s
formula

shows that |f/(z)| < er?~! as required.

(b)=>(a). Let ¢ > 0 and choose §; > 0 such that |f/(2)| < e(1 — |z|)?~*
for = € D with d(z, E) < 61. Choose d > 0 such that |f(z)| < ed] for
z € D with d(z,F) < 62 and let § = min{dq,d2}. Let 21,20 € D with
d(zx, F) < 6/3 (k=1,2). If |29 — 21| > 61/3, then

[f(22) = f(z1)] < 2e0] <2-37¢e[zg — 21[7,
so we may assume that |zp — 21| < 61/3. With z, = e (k = 1,2), we
may also assume that r; > ro and that 0 < 69 — 1 < 7. First, suppose that
|za — 21| <1 —ry. Since d(w, E) < 6 and |w| < r; for every point w on the
line segment from z; to z2, we deduce that
f(22) = f(21)] < lz2 = 21le(1 =)' < ez — 1]

Now, suppose that |ze — 21| > 1 —r1. Let p =1 — |23 — 21| and let I" be the
curve ‘ ‘
I={re :o<r<r}ufee?:6,<0<6)

U {re® : 7 is between o and ro}.

Then d(w, E) < ¢ for w € I', so
1

[f(ee™) = f)] < e (1 —r) " dr = (e/7)]z2 — [,
0
Similarly, if ¢ < ro, then

| f(22) — f(0€?)| < €|z2 — 21|,

If o > ro, then
0

[f(z2) = foe®)| <& § (1 —r)" " dr < (/7)((1 = r2)" = (1 =11))

T2

<e(ry —re)” <elzg — z1]".
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Moreover,
[f(0e") = f(0e™™)| < (B2 = 61)(1 — )7} < Celzz — 217,
so we obtain
|f(z2) = f(z21)] < (C'+2)e|zz — 21
as required. =
For v = 1, the previous proposition takes the following form. Let
X={feH®: f'(2) > 0asd(z,E) — 0}
for a closed set £ C T.

COROLLARY 3.2. For a closed set E C T and f € A, we have f € J1(E)
if and only if f € I,(E) and [ € HE.

We shall use the notation

Jyo = Jw({l})7 Iyo = Iw({l})~

Also, for s > 0, let ¥_g be the singular inner function defined by

1 _
vl =ew(-s152) eB\Q)
and write
ny,s = J’y({l}a"vb—s)a I’Y,S = I’Y({l}ad)—s)'
For n € N, let
11—«
=T o

For many separable Banach algebras of analytic functions on D, it is well
known that the sequence (K,) is an approximate identity for the maximal
ideal of functions vanishing at z = 1. In our case, the local condition at
z = 1 imposed on functions in J, g enables us to prove the following result.

LEmMMA 3.3. For f € J,o, we have K,f — f in AZ{F as n — 0o0. In
particular, for v < 1, the sequence (Ky,) is an approzimate identity for the

ideal J, .

Proof. Let f € Jypandlet p, =1— K, =n"'(1+1/n—a)"! (n€N).
Since p,, — 0 uniformly on compact subsets of D\ {1} as n — oo, it follows
that

sup [pa(2) f'(2)|(1 = [2[)' 7 — 0
z€D
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as n — o0o. Also,

, —y 1—-2
PN D' <=1~ 2D | =
1—-=2 1

<e(ll—z)) (zeD),
where €(t) — 0 as t — 0. Since
1-=2
n(l+1/n— 2)?

uniformly on compact subsets of D\ {1} as n — oo, it thus follows that

— 0

sup [pr, (2) f(2)|(1 = |2[)' 77 — 0
z€D

as n — oo. Hence p,f — 0 in AT asn — oo. =

We finish this section with a description of the ideals .J,  in terms of
generators.

LEMMA 3.4. Let 3,5 >0 and let f = (1 —a)y_,. Then f € A;r if and
only if B> 2y and f € Jy s if and only if B> 2.

Proof. We have
fr=-p01- O‘)B_lw—s —2s(1 - O‘)ﬁ_2¢—s-

For z € D, we write 1 — z = re?. Then 1 — |2|2 = r(2cosf — 1), s0 2cos ) >

r > 0. Also,
1
Re( —|—z> _ 2cos 1
1—=z2 r

SO
11— 272 los ()L — |2

— P2 exp(—s (2 C:SQ - 1)) (r(2cos§ — 1))

1—y
:TﬁQWGXp<_S<20089_1>><2COSO_1> ’
T r

and the result follows. =

PROPOSITION 3.5. (a) For (3 > =, we have
Jy0 = m-
(b) For s >0 and 8 > 2v, we have
Ty =M (1= o).
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Proof. (a) Since (1 — a)? € .J,0, we have the inclusion A (1 — a)f
C Jy,0. Moreover, it follows from Lemma 3.3 that J,9 = Jy0(1 — @) and

thus J, 0 C A3 (1 — a)™ for m € N, which proves the reverse inclusion.
(b) It follows from the previous lemma that

A—W’_(l - O‘>ﬂw—s C Jys

Conversely, let f € J, s. By Lemma 3.3, we have K, f — f in Ai{ asn — o0.
FixneNandlet g= K, f. Let 0 < a <1 and let

T¢(z) = exp(—e(1—2)"%) (2 €D).
Then |T| <1 on D and
T'(z) = —a(l — 2)"@IT(2) (2 eD),

so (T°) is a semigroup of outer functions in A¥. (In Section 6, we shall make
use of a more general version of this semigroup.) Moreover,

(Teg) =T°¢g' +e(T'/T)T°g (e > 0).

Since T° — 1 uniformly on compact subsets of D\ {1} and since |g(z)| <
C|1 — z["*! for z € D, we deduce that T°g — g in AT as ¢ — 0. Finally,
using (a), we choose a sequence (g,,) in A such that

Im (1 — 0‘)/5 — g/P—s

in A¥ as m — oo. It is easily seen that T € AT, so

ngm(l - O‘)Bw—s - Tag

in AT as m — oo for € > 0, and it follows that f € AT (1 —a)%)_,. =

4. Ideals with countable hull. Our main aim in this paper is to prove
the following result.

THEOREM 4.1. We have
Jy(Er,Qr) €1
for every closed ideal I in /lfyr for which Ej is countable.

Before proceeding to the proof of the theorem, we present a few con-
sequences. It follows from Theorem 1.1 that if f € I,(E,Q), then f/Q €
I,(E). We do not know whether the corresponding result for J,(E, Q) holds
in general, but for F countable it follows easily from the theorem.

COROLLARY 4.2. Suppose that a closed set E C T and an inner func-
tion @ satisfy (2) and that E is countable. If f € J,(E,Q), then f/Q €
Sy (E).
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Proof. Consider the closed ideal

I={feJy(E,Q): f/Q€ Jy(E)}
in A,? . We have E; = FE and ;7 = @, so the previous theorem entails that
Jy(E,Q) C I and the conclusion follows. m

For v =1, Theorem 4.1 can be restated as follows with the use of Corol-
lary 3.2.

COROLLARY 4.3. Let I be a closed ideal I in Af and suppose that Ef
is countable. Then
{fe(ErLQr): ffeHE}C I
For the primary ideals, more can be said.
COROLLARY 4.4. Let s > 0. The closed ideals I in AT with Er = {1}
and Qr = Y_s are exactly the closed subspaces I of /1;r with
J’Y’s g I g I’V,S'
Proof. Let I be a closed subspace of A;r with J, s €I C I, For f € Aj
and g € I, we have
(f - f(l))g €l ,0° Iw,s c Jw,s - -[7
so fg € I and the result follows. =

In his paper [5] on the ideal structure in H*°, Hedenmalm stated the
following result, which is now easily deduced from our results.

COROLLARY 4.5. Let I be a closed ideal in Af with E; = {1} and
Q1 = 1. Then there is a closed subspace Z in H*™ containing Hf‘f} such
that

I={fen({1}):f €2}
Conversely, every such set I is a closed ideal in Af with E; = {1} and
Qr=1.

Proof. For f € I ({1}), we have ||f|locc < 2[|f'|loc, SO f — ||f'[|cc defines
a norm on I;({1}) which is equivalent to the A norm. Hence I + I’ =
{f": f € I} defines a bijective correspondence between the closed subspaces
I'in A with Ji({1}) € I C I1({1}) and the closed subspaces Z in H* with
Hf‘f} C Z, so the result follows from the previous corollary. =

Finally, we shall show that there are uncountably many closed ideals
between J, s and I ;.

LEMMA 4.6. Let fs= (1 —a)?_s (s >0). For 0 <ty < s, we have

Hfs - ftH/Q/J%O >C
fortg <t <s<sg.
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Proof. We have
1714t 0 2 limsup [/ ()1 = =)™
for f € AT. Also,
Fo= =291 =) s = 25(1 = ),
SO
1o = s, = Tinsup 205 = 01— 2220 (2)
+ 2t(1 = 2)772 (s (2) — e (2))|(1 = |2)'7

As in the proof of Lemma 3.4, we write 1 — z = re' for z € D. Then

<1+z> 2sind
Im = ,
1—=z2 r

so there exists a sequence (z,) tending to 1 such that

Im (1 —I—zn> _ (2n+)m

1—2, s—1

and thus
[ (s)(z0) = 1] > 1 =Ret_(oyy(2n) > 1.
It thus follows from the proof of Lemma 3.4 that

limsup (1 = 2,)*7 2 (¥—s(2n) = ¥1(20))|(1 = |2a])' 7 > C.
n—oo
Hence there exists § > 0 such that

| fs — ftHAWJ%O > toC
for 0 < s —t < ¢ and the result follows. =

COROLLARY 4.7. For s > 0, there are uncountably many closed ideals I
in AF with J, o CTC L.

Proof. The inclusion map ¢ : I, s — I o induces a bounded linear map
v:1ys/Jys — Iyo/Jyo. Since fi € I, for t > s, we deduce from the
previous lemma that I, ,/J, s is non-separable, so the result follows from
Corollary 4.4. u

We now turn to the proof of Theorem 4.1. Recall the following definitions
(with a few modifications) from [1]:

H,: consists of the analytic functions f on D for which | f(z)] < C(1—|z|)~V
for z € D for some N € N,

H _: consists of the analytic functions f on C\D with |f(z)| < C(|z| - =N
for z € C\ D for some N € N and f(z) — 0 as |z| — o0,
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G: consists of the analytic functions f on C\ T for which f € H_ on C\ D
and f = g/h with g € H; and h € H* on D.

The following result as well as its proof are similar to [1, Theorem 4.3].

PROPOSITION 4.8. Let I be a closed ideal in Ai{ and let ¢ € I+, If
[ € Jy(Er,Qr), then ¢ does not have any isolated singularities.

Proof. It follows from Lemma 2.2 that ;@ and thus f® is analytic on D.
Hence @ is analytic on D by Lemma 2.3, so the singularities of @; belong
to Z; N'T = E;. Moreover, by Lemmas 2.1 and 2.3, we have

(f(2)/Q(2))(Sz9,9) — (9(2)/Q(2)){5-f, ¢)

for g € I. From (3) and (4), we thus deduce that ¢; € G, so it follows from
[1, Theorem 3.2(ii)] that any isolated singularity of @ is a pole.

Suppose that @; has a pole of order p at (say) z = 1, so that the func-
tion ¥ defined by
(5) ¥ =(1-a)d;
is analytic in a neighborhood U of 1 and a = ¥(1) # 0. Since f € J,, we
have K, f — f in AT as n — oo by Lemma 3.3. Moreover, K,, € AT and the
polynomials are dense in )\fyr , so there exists a sequence (py,) of polynomials
with p,(1) = 1 and p,f — 0 in AT as n — oco. Let ¢, = ¢, and let
®,, be the Carleman transform of ¢,. Since ¢, = (¢f)p,, it follows from
Lemma 2.3 that

(6) Pn(2) = pn(2)P5(2) = (Sepn, p5) (2 €D\ Z1)
and ¢n(2) = (S.pn,¢y) is a polynomial in z. Combining (5) and (6), we
obtain

(1 —a)Pd, = pp¥ — (1 — a)Pgy
on U, so the function ¥, defined by ¥, = (1 — a)P®,, is analytic in U and
U,(1) = a.
Choose a circle I" centered at 1 and contained in U and a function g € I
such that g(z) # 0 for z € I'ND. We have

(7) lenll < llpnfllp+ - llell = 0
as n — 00, SO

8,(2)] <C(A—|z))"0FY)  (zeI'nD)
by (4) and

[®n(2)| < C(l2| - 1)"0F) (€ I\ D)

by (3). It thus follows from the proof of [8, Lemma VI.8.3] that the sequence
(¥,) is uniformly bounded on some disc centered at 1. By (7), we have
&,, — 0 pointwise on C \ Z; as n — oo and thus ¥, — 0 pointwise on I
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as n — oo. Hence ¥, (1) — 0 as n — oo by Cauchy’s integral formula and
Lebesgue’s dominated convergence theorem, contradicting ¥, (1) =a # 0. =

Proof of Theorem 4.1. Let I be a closed ideal in /1;“, let ¢ € I+ and let
f € Jy(Er,Qr). We will use the same transfinite induction as in [1, p.17]
to prove that & is entire. Let Lo = E; and inductively define L, for any
ordinal ¢ in the following way: If 0 = 7 + 1 is not a limit ordinal, we define
L, to be the set of limit points of L., and if o is a limit ordinal, we let
L, = ﬂT<U L. If 29 is a singularity of @, then 2o € Ej = Lo. Suppose that
we have shown that zg € L, for every ordinal 7 < o. If 0 = 7+ 1 is not a
limit ordinal, then L, \ L, consists of isolated points, so it follows from the
previous proposition that zy € L,. The same conclusion clearly holds if o is
a limit ordinal, so we conclude that zg € L, for every ordinal o. However,
Ly contains no perfect subsets, so L, C L, for every non-limit ordinal
o =7+ 1, and it follows that there exists a first ordinal ¢ such that L,
is empty. This contradicts our earlier conclusion zyp € L,,. Consequently,
@ does not have any singularities, so @ is entire. Hence @y = 0 and since
span{(z — a)~! : z € C\ D} is dense in AY, this is equivalent to ¢y = 0
on \¥. Consequently,

(i) =(Lpy) =0

and since ¢ € I+ was arbitary, we conclude that f € I. =

For closed ideals with finite hull, we shall now give a proof of Theorem 4.1
which is more constructive and does not depend on Proposition 4.8. For
simplicity, we consider only closed ideals I in A;r with Z; = {1}. For v < 1
and Q7 = 1, the main idea in the proof is to show that if ¢ € It, then
(f,¢) = af(1) for f € \T for some a € C (and similarly for v = 1).

Proof of Theorem 4.1 when Z; = {1}. First, suppose that Q; = 1. For
@ € I+, we have

(8) [#(2)| < C(I2] = 1)~U*) (2 € C\D)

by (3). Moreover, for g € I and z € D, it follows from (4) and Lemma 2.1
that

9(2)8(2)| < C(1 = |2))""*) (2 € D).

Hence @ has a pole at z = 1 by [1, Theorem 3.2(ii)]. We first consider the
case where 0 < v < 1. Then z = 1 is a simple pole of @ by (8) and since
&(z) — 0 as |z] — oo, we deduce that

P(z)=alz—1)""1 (zeC\{1})
for some a € C. Let 4; € (./HYr )* denote the point evaluation at z = 1. Then

(z=a) 0 =(:=1)"" (:€C\D),
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s0 ¢ = ad; on the closed span of {(z —a)™' : |z| > 1}, that is, on AT.
In particular, (1 — a,¢) = 0. The Hahn-Banach theorem thus implies that
1—-a €, so J,o C I by Proposition 3.5. For v = 1, the same method
works with the following changes. From (8), we deduce that ¢ has a pole of
order 2 at z =1, so

D(2)=alz—1) +bz-1)"2 (2€C\{1})
for some a,b € C. On \], we define §; by (g,8]) = ¢’(1) (g € \]). Then
(z=a)™ L o) =(-1)"? (:eC\D),
s0 ¢ = ady + bd} on Af. In particular, ((1 — a)?,¢) = 0, so Jio C I by
Proposition 3.5.

Now, suppose that Q; = 1_ for some s > 0. We have (1 —a)?)_g € A
and the division ideal

I={feL{1}): 1-a)’vsf e}
satisfies £7 = {1} and Q7 = 1, so J, C I by the first part of the proof.

Since (1—a)? € J, 0, we thus have (1—a)*)_gs € I, so the conclusion follows
from Proposition 3.5. m

5. Ideals with (J; = 1. Our aim in this section is to prove the following
result.

THEOREM 5.1. Let E C T be a Carleson set and let F' € J,(E) be an
outer function with Z(F) = E. Then

AYF = J,(E).

REMARKS. (1) We do not know whether a closed ideal I in A} with
Q1 = 1 necessarily contains an outer function F' with Z(F') = E;. However,
if this is the case, then the theorem verifies our conjecture for this class of
closed ideals. This is seen as follows: Let H € J,(E;) be an outer function
with Z(H) = Er. Then FH € I N Jy(Er) and Z(FH) = Ef, so it follows
from the theorem that

Jy(E))=ATFH CATF CI

as required.
(2) We do not know how to prove a version of the theorem for the ideals
Jy(E, Q) with Q # 1.
For a closed set E C T and p € N, let
— + .
I2(E) = {f € A : |f(2)] < Cd(z, B (z € T)}.
For f € I(E), we have | f(z)| < C|z—wl|? (z € T, w € E) and since (a—w)P

is outer, this holds for z € D, so it follows that |f(2)| < Cd(z, E)P (z € D).
Theorem 5.1 is an immediate consequence of the following two results.
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PROPOSITION 5.2. Let E C T be a Carleson set, let F' € J,(E) be an
outer function with Z(F) = FE and let p € N with p > 2. Then

Jy(E)NIEX(E) C AJF.
PROPOSITION 5.3. Let E C T be a Carleson set and let p € N. Then
Jy(E)NIE(E) is dense in Jy(E).
For an outer function F' and a measurable set I" C T, let

eie Py )
9) Fr(z) =exp (i S ewtz logF(eZ€)|d9> (z € D).
r

2

Observe that |Fr| = |F| a.e. on I" and |Fr| =1 a.e. on T\ I'. Also, Fp — 1
pointwise on D as m(I") — 0. The following proof is inspired by [13].

Proof of Proposition 5.2. Let f € J,(E) N IJ(E) and write T \ E =
UnZ Vi, where (V4,) is a sequence of pairwise disjoint, open arcs on T with
endpoints a,, and b,. For N € N, let I'v = U,y Vo and let Fy = Fry.
We shall prove that

(i) Fnyf — fin AT as N — oo.
(i) Fxf € ATF for N € N.
(i): We have

(Fnf—[f)=FN=1)f +Fyf.
Also, Fy — 1 uniformly on compact subsets of D\ E, so Fy f — f uniformly
on D and

sup | (F(z) = Df ()1 = |2)' 7 = 0

as N — o0o. We shall now prove that

(10) [Fy(2)f(2)] = o((1 = |2)"")
as d(z, E) — 0 uniformly in N. For N € N, let Ey = EN Iy = 0y and
let

Giy={z=re eD:d(e", Ex) < (1 —1r)/?},
Gon ={z=re eD:d(e", Ex) > (1 —7r)"/? and " & 'y},
Gsy ={z=re eD:d(e", Ex) > (1—r)"/? and ¢ € I'y}.
For z = re'* € G1n, choose ¢ € Ey such that
d(z, En)? = |z —€”)? = (1 — )2 + 4rsin®(6 — t) /2
=(1—r)2+rde, EN)?<1—r
By Cauchy’s inequalities, |Fy ()] < C(1 —7)71, so
[FN(2)f(2)] < Cd(z, EYP(1 =)~ < (1 —r)P/>7,
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For z = e’ € Gan, we have d(e?, I'y) = d(e, Ey) and thus
d(z,ITn)? = (1 — )2 +rd(e, I'n)? = d(z, Ex)*.

Moreover,

Fi(2) = 1 | i1o |F(e)|d6 - Fr(2)

N - - (eig — 2)2 g N )
I'y
SO '
Fi(2)| < C | [log [F(¢)]| d6 - d(z, Ex)
T

and thus

[P (2)f(2)] < Cd(z, En)P~2.
Also, d(z, En)? = (1 — )2 +rd(e?, EN)2 > 1 — 1, s0
[Fn(2)f(2)] < Cd(z, EYP727(1 —r) L
Now, let z = re € G3n. We have
F'(2)Fn(2) 1 e :
Fy(z)= —22 - = | log|F(e)] df - Fy(2).
Ko = B 2 | sl P P ()
T\I'y
Since d(z,T \ I'y) > d(z, En), the second term can be estimated as for
z € Gapn. For the first term, we apply [13, Lemma 1] with I" = T \ I'y
and n = 1/2 and obtain |Fn(2)/F(z)| < C. Since F' € J,(E), we have
verified (10).
Ford > 0,let Es={z€T:d(2,F) <d}andUs = {z € D:d(z, E) < ¢}.
Given € > 0, it follows from (10) that there exists § > 0 such that

[Fn(2)f ()1 =277 <e

for z € Us and N € N. Since V,, N E # 0 (n € N), there exists Ny € N
such that V,, C Es/o for n > Ny and thus I'y C Es /o for N > Ny. Hence
d(z,I'n) > d/2 for z ¢ Us and N > Ny, so
By (2)] < Cd(=.Tw) > | Jlog|F()][ d — 0
I'n

uniformly on D\ Us as N — oo. We thus conclude that Fy f € A;“ and that
Fnf— fin AT as N — oo,

(ii): Fix N € N. Since f € J,(E), it follows from (10) that Fy f € J,(E).
For a € T and p > 0, let

a—z —
Kou(z) =

A+ma—z (z eD).

(This is a generalization of the sequence (K,) introduced in Section 3.) With

N

p

= (T Kans )
n=1
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it follows from Lemma 3.3 that
(11) P ENf— Fnf
in AF as g — 0. Now, fix g > 0. For e >0 and n=1,..., N, let V;,. be the
subarc of V,, whose endpoints ¢, and d,, are at a distance ¢ from a,, and b,
respectively. Let D, = Uﬁ:le Vae and let

N

p
b, = (H KWKW) .

n=1
We shall show that
(a) ¢M5FD_51 € Af fore >0
(b) e Fp ' Ff — &, Fnf in AY as e — 0.
It then follows from (11) that Fy f € AJ F. For simplicity, we only prove (a)

and (b) for N = 1, but the proof is essentially the same in the general case.
(a): Let € > 0. It follows from the proof of (10) that

[@pe(2)Fp, (2)| < C(A = |21 (2 € D).

Also, the outer function Fp_ is bounded away from zero on T and thus on D,

B (2)(Fp))' ()| < C(A = |27 (2 € D),

and (a) follows.

(b): For ¢ > 0, let W, = Vi \ Vi, so that OW, = {a1,¢1,d1,b1}. Then
F'F = Fy,Fy,

SO
(12) (qusF\ZiFf - dsuFlf)/
= (PucFw. F1 — O, 1) f' + (PpcFy. — ) FL f
+ (@LEFWE — QSL)Flf + @MEFI//VEFlf
As ¢ — 0, we have ¢, — @, and @LE — @L uniformly on D and Fy, — 1
uniformly on compact subsets of D\ {a1, b1}, so

Sug H(@MEFWsFl - gzs}LFl)f/ + (@,uEFWE - gzsM)Fl,f
ze

+ (D) Fw. — 2,)FLfl(2)] - (L= [))' 77 — 0.
In order to estimate the last term on the right-hand side of (12), we shall
imitate the proof of (10). For & > 0, let f. = @, f € IL(OW,) and let

G ={z= ret eD: d(eit,ﬁwg) <(1- 7‘)1/2}7
Goe = {z=re €D :d(e",0W,) > (1 — 7‘)1/2 and e ¢ W},
Gs. ={z=re eD:d(e®,0W.) > (1 —r)"/? and e € W.}.
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For z = re' € Gy., we have d(z,0W.)2 <1 —r, so

|Fy, (2) f-(2)] < C(1 = r)P/?7
uniformly for € > 0. Moreover, F{,VE — 0 uniformly on compact subsets
of D, so

sup [Fyy, (2)f=(2)|(1 = [2)' 77 — 0
Z€G15

as € — 0. Also, for z = re' € Gy, we have
|Fiy () f(2)|(1 =) < C | |log|F(e")[|df — O
We
as ¢ — 0. For z = re't € G, we have d(z,0W.)? < 2d(e™, 0W.)? < 22
Moreover,
F'(z)Fw.(z) 1 et 0
F} =7 ——log |F'(e")| df - F;

WE(Z) F(Z) T S (619 — 2)2 Og‘ (6 )| WE(Z),
T\W.
and |Fw_(z)/F(z)| < C by [13, Lemma 1], so

| By, (2) fo(2)[(1 = )7
< Cd(z, 0W)P(1 — )7t 4 d(z,0W.)"2)(1 — r)1 =7
< C(d(z, OW.)P + d(z, OW,)P~2+20=7)) < O(eP + P~ %),
All in all, we conclude that
sup [y, (2)fe(2)|(1 — |2))"™ — 0
as € — 0, so (b) follows from (12). m
We now turn to the proof of Proposition 5.3. In the proof of the corre-

sponding result for A¥ ([12, Theorem A]), the first step is that if f € AT
with f = F(@Q, where F is an outer and () an inner function, then

fi=F*"Q—f
in AT as t — 0, and moreover f; € I§1+t)7(Z(F)). In our case, for f € J,(E),
we only have f; — f in A;r ast — 0if Z(F) = E, and this complicates the

proof of Proposition 5.3. We shall need the following factorization result,
which we find interesting in itself.

PROPOSITION 5.4. Let F € Aﬁ; be an outer function and suppose that
Z(F) = E1UE,y, where E1, Ey C T are closed, disjoint sets. Then there exist
outer functions Fy, Fp € AY such that F = F1Fy and Z(Fy,) = Ey, (k = 1,2).

Proof. Choose open sets Uy, Us, Vi, Vo C T such that E, C Uy, Uy C V,
(k = 1,2) and such that V; and V, are disjoint, and choose x1,x2 € A,
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such that x1 + x2 =1on T and xx = 1 on Uy (k = 1,2). For k = 1,2, let
vk = Xk log |F| and define an outer function Fj by
1 S e 4 2

Fiu(2) = exp <—

o or(e?) d9> (z e D).
T

el — z

Then Z(Fy) = Ej, and F' = FiF>. Choose 1, € A, such that 1, = ¢, on
T\ Uy and let

6
T
0
2) = e 5 S (on(e”) = (e 0

for z € D, so that Fj, = G, Hj. Since A is closed under harmonic conjugation
([17, Theorem II1.13.29]), it follows that log G € A and thus Gy, G.le AY.

For e € Uy, the function z — (e + 2)/(e? — 2) belongs to A,(T \ V1),
so we deduce that Hy € A, (T \ V1) and thus Fy € A, (T \ V1). Similarly
Fy € A (T\V3),s0 Fy = F/F, € A,(T\ V3) since F5 has no zeros on T\ V5.
Hence I € A, and thus F; € Aj. Similarly F, € A;r. n
Proof of Proposition 5.3. Let f € Jy(F) with f = F(Q, where F is an
outer and () an inner function, and let € > 0. Choose 0 < § < € such that
[f(2)] < e =)

for z € Us, where Us and Ejs are as in the proof of Proposition 5.2. It is easily
seen that there exist closed, disjoint sets F1, Fo C T with £ C E; C E5 and
Z(F) = E1UFEjy, so it follows from the previous proposition that F' = F} F3,
where F1, F € A are outer functions with Z(Fy) = Ep (k = 1,2). For
t >0, let
fi = FIT'RQ = Fif,

so that
(13) fi=tF{'Ff+ Fif' = F(tFRQ + ).
Since F1 = 0on £y 2O E, we deduce that f; € J,(E) ﬂIA(YHt)V(E). Moreover,

(fe = f) =tF{F{FQ + (Ff = 1) f".
Since Z(Fy) C Ejs, we have Ff — 1 uniformly on D\ Us as t — 0, so

limsup || fe — fl 4+ < O sup |f'(2)|(1 — [2])' 77 < Ce.
t—0 zeUs

Write T \ By = U,—; Wx, where (W) is a sequence of pairwise disjoint,
open arcs on T. For N € N, let 2x = ;2 v, Wn and let

Fin = (Fi)oy
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(see (9)). Fix ¢t > 0 and let ¢ € N. We have F{y, — 1 uniformly on compact

subsets of D\ E; and f; = 0 on Ey, so F{\ ft — f uniformly on D. To

estimate (Fiy) fi = qF Flyfi on D\ Us, we choose Ny € N such that

{2n C Es/p for N > Ny. We have

|Fin(2)| < Cd(z,2x5) 72 | [log|F(e”)[|df < C5~2 | |log|F(e”)||d6 — 0
QN QN

uniformly for z € D\ Us as N — oco. To estimate (F{y)’f¢ on Us, we repeat
the proof of [12, Theorem B] (for ¢ sufficiently large) with d(z) = d(z, E1)
and use the fact that

|f(2)| < C|F1(2)| < Cd(z, Er)? < C€7,
and obtain

limsup sup [(F{y)'(2) fo(2)|(1 = [2])' 77 = r(e),
N—oo z€Us

where k(e) — 0 as e — 0. Moreover, by (13), we have

sup | f;(2)[(1 = [2[)'77 < O sup |Fi(2)] < €8 < CeY,
z€Us zeUs
SO

limsup | f, — Fiy ful s+ = 7(e)
N—oo

where K(g) — 0 as ¢ — 0.
Now, fix N € N. It follows from the above that F{ f; € J,(E). Moreover,

|Fin(2)] < Cd(2,0Qy)  (: € D)

for ¢ > p/~. Since O(T \ E1) = E;, we deduce that £\ 0f2y is finite, say
E\ 02y ={a1,...,apn}. By Lemma 3.3, we then have

o p q q
( H Kam,u) Flet - 1th
m=1

in AT as p — 0, and since

M
(TI Kown) Fiy € 1 (B) N I2(B),
m=1

this finishes the proof. =

6. Weak-star closed ideals. In this section, we characterize the wk*
closed ideals in /13/L . We begin by describing the wk* topology on A, and
/1;r . For z € T, let 4, € A7 be the point evaluation functional at z, and let

Y, =span{d, : z € T}
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(norm closure in A%). Johnson ([7, Section 4]) proved that

Yi=A,
Moreover, a bounded net in A, converges wk* to zero in A, if and only if
it converges pointwise to zero on T, and in this case it actually converges

uniformly to zero on T. When 0 < v < 1, we further have Y, = A} and thus
Ay = A3 ([7, Theorem 4.7]).

LEMMA 6.1. Multiplication is separately wk* continuous in A,.

Proof. The space Y;* = A7 is a Banach A,-module under the action

(f,90) = (fg,9) (frg€ Ay, o €YT).
For z € T and g € A, we have

(f:902) = f(2)g(2)  (f €Ay,
so gd, = g(z)0.. Hence Y, is a A,-submodule and the conclusion follows. =

Let (fy) be a sequence in /1;r which converges wk* to f in A, as n — oo.

Then ﬁ(m) — A(m) as n — oo for m € Z by Lebesgue’s dominated conver-
gence theorem. Hence f € /1;r , SO /1;r is wk* closed by the Krein-Smulian
theorem. Denoting the quotient space Y.,/ J-(/1;r ) by Yj, we thus have

A;r = (Yj)*.
The next result often provides us with the easiest way to show wk* conver-
gence in AT,

LEMMA 6.2. Let (f,) be a bounded sequence in A$ which converges
pointwise to zero on D as n — oo. Then f, — 0 wk* in A,‘y“ as n — oo.

Proof. Let z € T and € > 0. Choose w € D with |z — w| < e. Since
fa(w) — 0 as n — oo and since (f,) is bounded in AT, it follows that
limsup,, . |fn(2)| < CeY. Hence f, — 0 pointwise on T as n — oo and the

result follows. m
We now turn our attention to wk* closed ideals in Aﬁ;.

PROPOSITION 6.3. Suppose that a closed set E C T and an inner func-
tion Q satisfy (2). Then I,(E,Q) is a wk* closed ideal in AT .

Proof. Let (f,) be a sequence in I,(E,Q) and suppose that f, — f
wk* in Afyr as n — oo for some f € Aﬁ;. Then f € I,(E) and it follows
from Theorem 1.1 that (f,/Q) is a bounded sequence in AF. Moreover,
fn/Q — f/Q pointwise on T as n — oo, so we deduce that f,/Q — f/Q
wk* in /1;r as n — oo. In particular, f € I,(E,Q). The Krein-Smulian
theorem thus implies that I, (F, Q) is wk* closed. =

The aim of this section is to prove the following result, which states that
the ideals I,(E, Q) are the only wk* closed ideals in Aﬁ;.
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THEOREM 6.4. Let I be a wk™ closed ideal in A;ﬁ Then
I =1I,(Er,Qr).

The proof of the theorem takes up the rest of this paper. The idea in
the proof is similar to that of [10] and [11]. Firstly, the Carleman transform
is used to show that a wk* closed ideal I in Ai{ with ;7 = 1 necessarily
contains a certain class of functions. Secondly, we show that every function
in I,(E, Q) can be approximated by sufficiently smooth functions. Finally,
the result is deduced from these two facts.

For a (wk*) closed ideal I in AT, we let

1 . — — 7t
I={peY:(pf)=0forevery fel} =1 NY].
Also, for an inner function Q, a closed set Z C D and p > 0, let
— + . +
INZ,Q) ={f € AT : f/Q € AT and |f(z)| < Cd(2, 2)F (2 € T)},

so that I(E) = I(E, 1) for a closed set E C T (see the previous section).
For f € A¥, we have ||f7"||/1j{' < HfHA;r for 7 < 1 and thus f, — f wk* in AT

as 7 — 1_, so we can use a method from [10] in the proof of the next result.

LEMMA 6.5. Let I be a wk* closed ideal in Aj with Qr = 1. Then
OB, 1) C L

Proof. Let f € Ig(HV)(EI, 1) and suppose that ¢ € -1. Then

1 o .
(p, f) = lim (p, f) = lim — S f(e®)ePP(se'?) db.
r—1_ s—l4 21 T
From the proof of [10, Lemma 3.3] (see also [11, Theorem 5]), we deduce
that

|8(2)| < Cd(z, Er) 720+ (2 e C\D),

so it follows from Lebesgue’s dominated convergence theorem that

<(P7f> — i S f(eié?)eied;(eie) do.

2T
T

By the Beurling-Rudin theorem, the space I is dense in the Hardy space
H?, so there exists a sequence (f,,) in I converging to 1 in H?2. Since ff, € I,
we thus have

(o, ) = Jim [ () fu(e ) @() d0 = Tim G, £ ) = 0.
T

Hence f € I by the Hahn—Banach theorem.

The main difficulty in the proof of Theorem 6.4 is contained in the fol-
lowing approximation result.
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PROPOSITION 6.6. Let p > 0 and suppose that a closed set E C T and
an inner function Q satisfy (2). Let Z = EU Z(B). Then IY(Z,Q) is wk*
dense in I,(E, Q).

In order to prove the proposition, we shall need a series of lemmas. The
following result should be compared with the comments before the proof of
Proposition 5.4.

LEMMA 6.7. Let f = FQ € A;ﬂ where F' is an outer and Q) an inner
function. Then f, = F1TtQ ¢ AZ{F fort>0and fi — f wk* in AZ{F ast — 0.

Proof. We have F € A;r by Theorem 1.1. Since f' = F'Q + F@Q’, it thus
follows that

sup |F(2)Q'(2)|(1 = |2])' 77 < 0.

Moreover, f{ = (1 +t)F'F'Q + F'Q', so we deduce that (f;) is bounded
in AT as t — 0. Finally, f; — f pointwise on T as t — 0, so f; — f wk* in
Afast— 0. m

For a € T and p > 0, let K,, be as in the previous section. For f € Aﬁ;
with f(a) = 0, it follows from the proof of Lemma 3.3 that

sup | K, (2) f(2)|(1 = [2)! 77 < C
z€eD

for > 0. Hence (K, f) is bounded in Ai{, and since K, f — f pointwise
on T, we deduce that K,,f — f wk* in A$ as u — 0. From this, it is easy
to deduce the following result.

LEMMA 6.8. Let p > 1, let f € AY and let {a1,...,an} € Z(f) NT.

Then N
(TI Kau) £ — 1
n=1

wk* in A,‘y“ as pu — 0.
For an outer function F' and a measurable set I" C T, recall the definition

of Fr from (9). From the proof of [12, Theorem B|, we obtain the following
result.

LEMMA 6.9. Let F be an outer function, (Q an inner function and sup-
pose that F(Q € A,‘y*'. Let t > 0 and let f = F'TtQ. Then there exists qq such
that, for q > qo, we have

FLf e AT with IFAfILy < C
for every open set I' C'T with 0I' C Z(f) (where OI" denotes the boundary
of I'in'T).

Proof of Proposition 6.6. By Lemma 6.7, it is sufficient to prove that,
whenever a function f € I,(E,Q) is of the form f = FQ, where ¢ > 0,



Ideals in big Lipschitz algebras 57

F is an outer function and ) an inner function such that F@Q € A;“,
then f can be approximated in the wk* topology on A;“ by functions from
IX(Z,Q). Let ¢ = max{qo,p/v}. As in the proof of Proposition 5.2, let

T\ E = ;2 Vn, where (V},) is a sequence of pairwise disjoint, open arcs

on T with endpoints a,, and b,, and for N € N, let I'y = UEO:NH V., and
Fn = Fry. As N — oo, we have m(I'y) — 0 and thus Fy — 1 pointwise
on I, so it follows from Lemmas 6.2 and 6.9 that Fy f — f wk* in A for
every q > qo.

Let N € N be fixed. We have E\ I'y C {a1,b1,...,an,by} and

N
Ko uKy ) FLf — FOf
anptibpp N N
n=1

wk* in A¥ as 4 — 0 by Lemma 6.8,
Fix y > 0.Fore >0andn=1,..., N, let V,. be the subarc of V,, whose
endpoints ¢, and d, are at a distance ¢ from a,, and b, respectively. Let

N N
p/2 q
ge = ( H Kan#Kcn,U‘Kdn,ubenN> ( H Fvn\vns) F]%f
n=1 n=1

It follows from the proof of [12, Theorem BJ that (g.) is bounded in AY as
e — 0, so

N
p
ge — <H KanuKbnu> F]({/'f
n=1
wk* in AT as ¢ — 0 by Lemma 6.2.

Finally, fix ¢ > 0. For z € 'y, we have |Fy(z)| = |f(z)|, and for z €
Vi \ Vae for some n € {1,..., N}, we have |Fy,\v,_(2)| = [f(2)[. In both
cases, we thus have

|9:(2)| < Clf (2)|* < Cd(z, Z)P.

Clearly, this also holds for z € ngl Ve, 50 ge € IN(Z,Q), which finishes
the proof. u

It follows from Lemma 6.5 and Proposition 6.6 that Theorem 6.4 holds
for closed ideals I with Q7 = 1. We now finish the proof of the general case.

Proof of Theorem 6.4. Korenblum ([9], see also [10]) has shown that
there exists an outer function T satisfying the following conditions:

(i) T°Qr € AT for every € > 0,
(ii) Z2(T) = Er,
(iii) |T7(2)/T(2)| < Cd(z, Z;)"% (z € T).
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Let € > 0 and consider the division ideal
L={feAf:T°Qfel}

in A;r . Since multiplication is separately wk* continuous in A;’r (Lemma 6.1),
it follows that I, is wk* closed. Moreover, for g € I, we have g/Q1 € I, so
we deduce that Q. =1 and E;. = Er. As mentioned before the proof, we
thus have I. = I,(E7, 1).

Now, let g € Ig(ZI,Q[). Then g/Qr € I,(Er,1) = I, so T°g € I. It
follows from (iii) that

(T9) (2)g(2)| = |eT°(2)(T"(2)/T(2))9(2)| < C (2 €T)

for ¢ > 0. Hence T¢g is bounded in A;r as € — 0 and since T°g — ¢
pointwise on T as ¢ — 0, we have T¢g — g wk* in A,? ase —0,s0g € 1.
Finally, I%(Z[,QI) is wk* dense in I,(Er, Q) by Proposition 6.6, so the
result follows. m
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