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Factorization of unbounded operators on Köthe spaces

by

T. Terzioğlu (Istanbul), M. Yurdakul (Ankara)
and V. Zahariuta (Istanbul)

Abstract. The main result is that the existence of an unbounded continuous linear
operator T between Köthe spaces λ(A) and λ(C) which factors through a third Köthe
space λ(B) causes the existence of an unbounded continuous quasidiagonal operator from
λ(A) into λ(C) factoring through λ(B) as a product of two continuous quasidiagonal
operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about
the quasidiagonal characterization of the relation (λ(A), λ(B)) ∈ B (which means that
all continuous linear operators from λ(A) to λ(B) are bounded). The proof is based on
the results of [9] where the bounded factorization property BF is characterized in the
spirit of Vogt’s [10] characterization of B. As an application, it is shown that the existence
of an unbounded factorized operator for a triple of Köthe spaces, under some additonal
asumptions, causes the existence of a common basic subspace at least for two of the spaces
(this is a factorized analogue of the results for pairs [8, 2]).

1. Introduction. We denote by λ(A) the Köthe space defined by the
matrix A = (api ), and by (en) the canonical basis of λ(A). For a mapping
σ : N → N and a sequence (tn) of scalars the operator D : λ(A) → λ(B)
defined by D(en) = tn eσ(n), n ∈ N, is called quasidiagonal . Dragilev [3]
proved that the existence of an unbounded continuous linear operator from
λ(A) to λ(B), where both spaces are assumed to be nuclear, implies the
existence of a continuous unbounded quasidiagonal operator from λ(A) to
λ(B) (cf. [6, 7]). This result has recently been generalized by Djakov and
Ramanujan [2] by omitting the nuclearity assumption.

We recall that the closed linear span of a subbasis (ein) is called a basic
subspace of a Köthe space. If λ(A) and λ(B) have a common basic subspace,
then it is easy to construct a continuous linear operator mapping λ(A) into
λ(B), which is unbounded unless the common basic subspace is a Banach
space. Under certain conditions on λ(A) and λ(B) the converse of this trivial
fact is also true. Namely, if both spaces are nuclear, Nurlu and Terzioğlu [8]
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proved that the existence of an unbounded continuous linear operator T :
λ(A) → λ(B) implies, under some additional conditions, the existence of
a common basic subspace of λ(A) and λ(B); this result was generalized
by Djakov and Ramanujan in [2] to the non-nuclear case. In these works
Dragilev’s theorem plays a crucial role.

It was discovered in [13, 14] that if the matrices A and B satisfy the
conditions d2, d1, respectively, then every continuous linear operator from
λ(A) into λ(B) is bounded. This phenomenon was studied extensively by
many authors; the most comprehensive result is due to Vogt [10], where all
pairs of Fréchet spaces with this property are characterized. Terzioğlu and
Zahariuta [9] characterized those triples (X,Y,Z) of Fréchet spaces such
that each continuous linear operator T : X → Z which factors through Y is
automatically bounded.

The aim of the present work is to prove a factorization analogue of Dra-
gilev’s theorem [3] and its generalization [2]. Namely, we prove that if there
is an unbounded continuous linear operator T : λ(A)→ λ(C) which factors
through λ(B), then, in fact, there exists an unbounded continuous quasidi-
agonal operator D : λ(A) → λ(C) that factors through λ(B) as a product
of two continuous quasidiagonal operators. As an application, similarly to
[8, 2], we show that the existence of an unbounded factorized operator for a
triple of Köthe spaces causes that, under some additional conditions, these
spaces (or at least two of them) have a common basic subspace.

2. Bounded factorization property and quasidiagonal operators.
We denote by L(X,Y ) and LB(X,Y ) the spaces of all continuous linear
operators and of all bounded linear operators from the locally convex space
X into the locally convex space Y . If for each S ∈ L(X,Y ) and R ∈ L(Y,Z)
we have T = RS ∈ LB(X,Z), we say (X,Y,Z) has the bounded factorization
property and write (X,Y,Z) ∈ BF ([9]).

Dealing with several Fréchet spaces we always use the same notation
{| · |p : p ∈ N} for a system of seminorms defining their topologies and
{| · |∗p : p ∈ N} for the corresponding system of polar norms in the dual
spaces. For any operator T ∈ L(E,F ) we consider the operator seminorms

|T |p,q = sup {|Tx|p : |x|q ≤ 1}, p, q ∈ N,
which may take the value +∞. In particular, for any one-dimensional oper-
ator T = x′ ⊗ y, x′ ∈ E′, y ∈ F , we have |T |p,q = |x′|∗q · |y|p.

Dealing with a Köthe space λ(A) we always assume that the matrix
A = (api ) satisfies the condition

api ≤ a
p+1
i , i, p ∈ N.(1)

An operator T ∈ L(λ(A), λ(B)) is quasidiagonal if T (ei) = tieτ(i), i ∈ N, for
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some map τ : N→ N and scalar sequence (ti). We denote by Q(A,B) the set
of all quasidiagonal operators and by Qτ (A,B) its subset corresponding to
the map τ . We note that Qτ (A,B) is a subspace of L(λ(A), λ(B)) whereas
Q(A,B) is only a subset.

Our aim is to prove the following characterization of the bounded fac-
torization property for triples of Köthe spaces in terms of quasidiagonal
operators, which is a natural generalization of Dragilev’s theorem ([3, 2]).

Theorem 1. We have (λ(A), λ(B), λ(C)) ∈ BF if and only if for each
S ∈ Q(A,B) and R ∈ Q(B,C) the quasidiagonal operator T = RS is
bounded.

The proof will be given in Section 3 after some intermediate results. In
what follows we will use the following result from [9].

Proposition 2. We have (λ(A), λ(B), λ(C)) ∈ BF if and only if for
each non-decreasing map π : N → N there is r ∈ N such that for every
q ∈ N there exists n = n(q) ∈ N so that the inequality

cqi
arj
≤ n max

p=1,...,n

{
bpν

a
π(p)
j

}
· max
p=1,...,n

{
cpi

b
π(p)
ν

}
(2)

holds for all (i, j, ν) ∈ N3.

Given two Fréchet spaces E and F and a map π : N → N, we consider
the Fréchet space

Lπ(E,F ) := {T ∈ L(E,F ) : |T |p,π(p) <∞, p ∈ N}
with the topology generated by the system of seminorms {| · |p,π(p) : p ∈ N}.

We note that, in the case of Köthe spaces, the intersection

Qπσ(A,B) := Qσ(A,B) ∩ Lπ(λ(A), λ(B))

is a closed subspace of Lπ(λ(A), λ(B)). Fix σ, %, and π and assume that for
each S ∈ Lσ(A,B), R ∈ L%(B,C) the composition RS is bounded. If we
apply Lemma 2.1 from [9] to the bilinear map

θ : Qπσ(A,B)×Qπ%(B,C)→ LB(λ(A), λ(C))

which simply sends each (S,R) to RS, we obtain the following result.

Proposition 3. Let σ and % be two maps of N into N. If for each
S ∈ Qσ(A,B) and R ∈ Q%(B,C) the composition RS is bounded , then for
each π : N → N there is r ∈ N such that for every q ∈ N there exists
n = n(q) ∈ N such that the inequality

cq%(σ(j))

arj
≤ n max

p=1,...,n

{ bpσ(j)

a
π(p)
j

}
· max
p=1,...,n

{cp%(σ(j))

b
π(p)
σ(j)

}
(3)

holds for every j ∈ N.
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We note that here both r and n depend not only on π and q but also
on our choice of σ and %. This is an obstacle to deriving Theorem 1 imme-
diately from Proposition 3. On the other hand, the methods of [9] cannot
be applied directly to Q(A,B), since it is not a subspace. So we need some
other considerations.

3. Proof of Theorem 1. Suppose (λ(A), λ(B), λ(C)) 6∈ BF . Then, by
Proposition 2, there is a non-decreasing map π : N → N such that for each
r ∈ N there exists q = q(r) ∈ N such that for any n ∈ N there are in = in(r),
jn = jn(r), νn = νn(r) with

cqin
arjn

> n max
p=1,...,n

{
bpνn

a
π(p)
jn

}
· max
p=1,...,n

{
cpin

b
π(p)
νn

}
.(4)

With this notation we have the following technical result, which is crucial
for our proof.

Lemma 4. For any r ≥ r0 = π(π(1)) the sequences (in)n, (jn)n, (νn)n
diverge to +∞.

Proof. First we notice that (4) is equivalent to the system of inequalities

cqin
arjn

> n
bpνn · csin

a
π(p)
jn
· bπ(s)
νn

, 1 ≤ p, s ≤ n.(5)

Suppose that jn does not tend to +∞, that is, jnk = j = const for some
subsequence nk. This contradicts (5): take s = q, p = π(q), n = nk > π(q).

Analogously, assuming that ink = i = const for some subsequence nk,
we get a contradiction by putting s = 1, p = π(1), n = nk > π(1) in (5) and
taking into account the assumption r ≥ π(π(1)).

Finally, the assumption νnk = ν = const also leads to a contradiction:
consider (5) with s = q, p = 1, n = nk > q, remembering that r ≥ r0
≥ π(1).

We are now ready to prove a result which is somewhat stronger than
Theorem 1.

Proposition 5. If (λ(A), λ(B), λ(C)) 6∈ BF then there are bijections
σ and % on N and operators S ∈ Qσ(A,B) and R ∈ Q%(B,C) such that the
operator T = RS is unbounded.

Proof. From our assumption we have (4) with the same notation. Pass-
ing to subsequences three times and using Lemma 4, for any fixed r ≥ r0 :=
π(π(1)) we construct a subsequence Lr = {nk(r)} of N such that each co-
ordinate of (jnk(r), νnk(r), ink(r)) takes different values for different k. Let us
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represent each infinite set Lr as a disjoint union of infinite subsets

Lr =
∞⋃

µ=0

Lr,µ.

Let us now construct a new sequence of infinite disjoint sets

L̃r = {lµ(r) : µ ∈ N} ⊂ Lr, r ≥ r0,

in the following inductive way. We form L̃r0 by taking precisely one element
lµ(r0) from each Lr0,µ, µ ∈ N. Assume we have already constructed pairwise
disjoint sets L̃s for r0 ≤ s ≤ r, so that each L̃s contains exactly one element
from Ls,µ and is disjoint from Ls,0. We then construct L̃r+1 by taking from
each Lr+1,µ, µ ∈ N, one element different from every lµ(s), r0 ≤ s ≤ r.
By induction this concludes the construction of L̃r, r ≥ r0. The set I0 :=
N \⋃∞r=r0 IL̃r is infinite since it contains ILr,0 for each r ≥ r0. By the same
token the sets

J0 := N \
∞⋃

r=r0

JL̃r , N0 := N \
∞⋃

r=r0

NL̃r

are also infinite.
Let α : J0 → N0 and β : N0 → I0 be arbitrary bijections. Consider the

maps % : N→ N and σ : N→ N defined by

σ(j) :=

{
α(j) if j ∈ J0,

νlµ(r) if j = jlµ(r) ∈ JL̃r , r ≥ r0,

%(ν) :=

{
β(ν) if ν ∈ N0,

ilµ(r) if ν = νlµ(r) ∈ NL̃r
, r ≥ r0.

For each r we have

c
q(r)
%(σ(j))

arj
> n max

p=1,...,n

{ bpσ(j)

a
π(p)
j

}
· max
p=1,...,n

{cp%(σ(j))

b
π(p)
σ(j)

}

for all j = jn, where n ∈ L̃r. Hence by Proposition 3, there exist S ∈
Qσ(A,B) and R ∈ Q%(B,C) with RS unbounded.

4. Some consequences. Nurlu and Terzioğlu [8] studied the conse-
quences of the existence of an unbounded operator between nuclear Köthe
spaces. They showed, in particular, that if the spaces satisfy a splitting
condition of Apiola type [1], then the existence of an unbounded operator
implies the existence of a common basic subspace. Djakov and Ramanujan
[2] obtain the same result without the assumption of nuclearity and assum-
ing the weaker splitting condition of Krone and Vogt [5].
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Before dealing with the main result of this section (see Theorem 10
below) we discuss certain modifications and factorized analogues of some
properties, important for studying the relation Ext1(F,E) = 0 (see, e.g.,
[11, 12, 4]). A pair (F,E) of Fréchet spaces satisfies the condition S if there
is a mapping τ : N → N such that for all p, r ∈ N there exists a constant
C = C(p, r) such that the estimate

|T |r,τ(p) ≤ C max {|T |τ(p),p, |T |τ(r),r}(6)

holds for any one-dimensional operator

T = e′ ⊗ f, e′ ∈ E′, f ∈ F.
It is easy to check that the condition S is an equivalent slight variation of
Vogt’s condition S∗2 ([11]). It is known that the property Ext1(F,E) = 0 is
characterized by (F,E) ∈ S whenever both spaces are either Köthe spaces
([5]) or nuclear ([4]). A pair of Köthe spacesE = λ(A) and F = λ(B) satisfies
the condition S if and only if the condition (6) holds for the operators
T = e′i ⊗ ej , i, j ∈ N ([5]).

If the estimate (6) is true for arbitrary operators T ∈ L(E,F ) (with an
obvious meaning if some of the operator norms equals +∞) then we write
(F,E) ∈ S (in fact, one can see that this condition is reasonable only for
bounded operators T ). It is easy to check that the condition (F,E) ∈ S
coincides with the condition on LB(E,F ) considered by Dierolf, Frerick,
Mangino, and Wengenroth (see, e.g., [4, the proof of Theorem 2.2]); more-
over, by Vogt [12], this condition coincides with the condition (wQ) for the
natural representation of LB(E,F ) as an (LF )-space.

In what follows we shall denote by λ(A)L the basic subspace of a Köthe
space λ(A) which is the closed linear envelope of {en : n ∈ L}, L ⊂ N.

Suppose now (λ(A), λ(B), λ(C)) 6∈ BF and (λ(C), λ(A)) ∈ S. By Theo-
rem 1 we know that there are S ∈ Qσ(A,B) and R ∈ Q%(B,C) with some
bijective maps σ and % on N such that T = RS is an unbounded quasidi-
agonal operator. The theorem of Djakov and Ramanujan [2] implies the
existence of infinite subsets J and I of N such that T maps λ(A)J isomor-
phically onto λ(C)I . Then one can easily check that for N := σ(J) = %−1(I)
both S : λ(A)J → λ(B)N and R : λ(B)N → λ(C)J are also isomorphisms.
We have therefore proved the following result.

Proposition 6. Let E = λ(A), G = λ(B), and F = λ(C). Suppose that
(E,G,F ) 6∈ BF and (F,E) ∈ S. Then there is a common basic subspace for
all three spaces.

Now we consider a factorized analogue of the condition S. A triple of
Fréchet spaces (F,G,E) satisfies the condition SF (we write (F,G,E) ∈
SF) if for any one-dimensional operator T = RS, with both S ∈ L(E,G)
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and R ∈ L(G,F ) also one-dimensional, the inequality

|T |r,τ(p) ≤ C max {|R|τ(p),p, |R|τ(r),r} ·max {|S|τ(p),p, |S|τ(r),r}(7)

holds with the same requisites as in (6).
If the condition (7) holds for an arbitrary operator T = RS with S ∈

L(E,G) and R ∈ L(G,F ) we will write (F,G,E) ∈ (SF) (with the evident
meaning when some of the operator norms equals +∞; in fact, this condition
is reasonable only for bounded operators T ).

We note that if E = G or G = F the condition (F,G,E) ∈ SF reduces
simply to (F,E) ∈ S, and (F,G,E) ∈ SF reduces to (F,E) ∈ S.

Proposition 7. Let E,G, F be arbitrary Fréchet spaces. If (E,G,F )
∈ BF , then (F,G,E) ∈ SF .

Proof. Suppose that (E,G,F ) ∈ BF . Denote by Π(p) the set of all
strictly increasing mappings π ∈ NN such that π(1) = p. By Theorem 2.2
from [9], for any π ∈ Π(p) there are q ∈ N and µ ∈ NN such that for every
T = RS with S ∈ L(E,G) and R ∈ L(G,F ) the inequality

|T |r,q ≤ µ(r)
µ(r)
max
l=1
{|R|l,π(l)} ·

µ(r)
max
l=1
{|S|l,π(l)}(8)

holds for each r ∈ N. We denote by Πq(p) the set of all π ∈ Π(p) satisfying
(8) with a given q ∈ N. It is obvious that Π(p) =

⋃∞
q=1Πq(p) and Πq(p) ⊂

Πq+1(p), q ∈ N. Therefore for each p ∈ N there is q = %(p) such that
sup {π(q) : π ∈ Πq(p)} = ∞. Now we fix an arbitrary r ∈ N and apply (8)
with q = %(p) and π ∈ Πq(p) such that π(q) ≥ r. Taking into account that

|R|l,π(l) ≤
{ |R|q,p if 1 ≤ l ≤ q,
|R|µ(r),r if q < l ≤ µ(r),

and that the same holds for S, we derive from (8) that

|T |r,%(p) ≤ µ(r) max {|R|%(p),p, |R|µ(r),r} ·max {|S|%(p),p, |S|µ(r),r}.
Hence one can easily conclude that there are τ ∈ NN and C = C(p, r) such
that (7) holds. Thus (F,G,E) ∈ SF .

In particular, if F = G or G = E, we get the following

Corollary 8. Let E and F be Fréchet spaces. Then (E,F ) ∈ B implies
(F,E) ∈ S.

This is a generalization of Proposition 3.4 from [5], where the case of
Köthe spaces was considered (for Köthe spaces the conditions S and S
coincide): basically, our proof of Proposition 7 is a generalized direct version
of the proof ad absurdum from [5]).



68 T. Terzioğlu et al.

Now we compare the conditions S and S with their factorized versions.

Proposition 9. Let E, G, and F be arbitrary Fréchet spaces. If the
couple (F,E) satisfies S (or S), then the triple (F,G,E) satisfies SF (re-
spectively , SF).

Proof. Because of complete similarity we consider only the case S. Sup-
pose that (F,E) ∈ S. Then there is a function τ : N→ N such that for each
T ∈ L(E,F ) the estimate

|T |r,τ(p) ≤ C max {|T |τ(p),p, |T |τ(r),r}(9)

holds for all p, r ∈ N with some constant C = C(p, r). Without loss of
generality we assume τ(p) ≥ p for every p ∈ N. Using now the evident
estimate

|T |τ(p),p ≤ |S|p,p · |R|τ(p),p ≤ |S|τ(p),p · |R|τ(p),p, p ∈ N,
for any operator T = RS, we obtain the estimate (7), which means that
(F,G,E) ∈ SF .

The following example shows that SF is strictly weaker than S. Here we
use the notation Λα(a) := K(exp (αp ai)) with αp ↑ α ≤ ∞, a = (ai).

Example. Let a = (ai) be a positive sequence increasing to infin-
ity. Since (Λ1(a), Λ∞(a)) ∈ B ([14]), we have (Λ1(a), Λ∞(a), Λ1(a)) ∈ BF
trivially. Hence (Λ1(a), Λ∞(a), Λ1(a)) ∈ SF by Proposition 7. However
(Λ1(a), Λ∞(a)) 6∈ S.

We conclude with a generalizaton of Djakov–Ramanujan’s result ([2,
Proposition 3]) in the context of factorization.

Theorem 10. Suppose (λ(A), λ(B), λ(C)) 6∈ BF and (λ(C), λ(B), λ(A))
∈ SF . Then one of the pairs (λ(A), λ(B)) or (λ(B), λ(C)) has a common
basic subspace.

Proof. By Theorem 1 there exist quasidiagonal operators S ∈ Qσ(A,B)
and R ∈ Q%(B,C) with σ and % bijective such that T = RS is unbounded.
Without loss of generality we assume in what follows that all three opera-
tors are identity embeddings, since otherwise we can get this property by
considering a new triple of Köthe spaces obtained from the original one by
some permutations and normalizations of their canonical bases (note that
the property SF is preserved under such reconstruction). When applied to
the above embeddings, the condition SF gives the following: there is a map
τ : N→ N such that

cri

a
τ(p)
i

≤ C max
{
b
τ(p)
i

api
,
b
τ(r)
i

ari

}
·max

{
c
τ(p)
i

bpi
,
c
τ(r)
i

bri

}
(10)

for all (p, r, i) ∈ N3 with some constant C = C(p, r).
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It now suffices to prove that there is an infinite set I ⊂ N such that
λ(A)I = λ(B)I or λ(B)I = λ(C)I . Suppose that this assertion is false. Then
for each infinite set I ⊂ N and m ∈ N there is r ≥ m such that

lim inf
i∈I

b
τ(r)
i

ari
= lim inf

i∈I
c
τ(r)
i

bri
= 0.(11)

We define inductively the sets N0 ⊃ N1 ⊃ . . . by

N0 := N, Np :=
{
i ∈ Np−1 : max

{
b
τ(p)
i

api
,
c
τ(p)
i

bpi

}
≥ 1
}
, p ∈ N,(12)

with τ from (10).
We claim that for each p ∈ N the embedding T is unbounded on the

basic subspace Xp of λ(A) spanned by {ei : i ∈ Np−1 \Np}. If that is not so,
then for each q ∈ N there is an infinite subset Iq ⊂ Np−1 \Np and m(q) ∈ N
with

lim
i∈Iq

c
m(q)
i

aqi
=∞.(13)

For I = Iq we find r ≥ m(q) such that (11) holds. Then there is an infinite
set Jq ⊂ Iq with

max
{
c
τ(r)
i

bri
,
c
τ(r)
i

bri

}
< 1, i ∈ Jq.(14)

On the other hand, by (12), we have

max
{
c
τ(p)
i

bpi
,
c
τ(p)
i

bpi

}
< 1, i ∈ Iq.(15)

Applying now (10) with q = τ(p) and r chosen above and taking into account
the estimates (14) and (15), we obtain

cri
aqi
≤ C

for all i ∈ Jq, which contradicts (13). This proves our claim that the embed-
ding T is bounded on each Xp. Hence, for every p ∈ N, the operator T must
be unbounded on the basic subspace Yp generated by {ei : i ∈ Np}, which,
in particular, implies that Np is an infinite set.

Now we construct a sequence I = {ip} so that ip ∈ Np, ip+1 6= ip, p ∈ N.
Then, due to (12), there is an infinite set J ⊂ I such that at least one of
the inequalities api ≤ b

%(p)
i or bpi ≤ c

%(p)
i holds for all p ∈ N and all i ∈ J

such that i ≥ p, which contradicts the assumption (11). This completes the
proof.
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[8] Z. Nurlu and T. Terzioğlu, Consequences of the existence of a non-compact operator
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