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Schrödinger equation on the Heisenberg group

by

Jacek Zienkiewicz (Wrocław)

Abstract. Let L be the full laplacian on the Heisenberg group Hn of arbitrary di-
mension n. Then for f ∈ L2(Hn) such that (I − L)s/2f ∈ L2(Hn) for some s > 1/2 and
for every φ ∈ Cc(Hn) we have

�

Hn
|φ(x)| sup

0<t≤1
|e
√−1 tLf(x)|2 dx ≤ Cφ‖f‖2W s .

Introduction. Let Vt be the Schrödinger unitary group generated by a
self-adjoint, positive differential operator L on Rd. The degree of smoothness
needed for the almost everywhere convergence of Vtf to f as t → 0 has
been extensively studied. In general, the result of Cowling [Cw] says that if
‖(1 + L)s/2f‖L2 <∞ for some s > 1, then

(∗) lim
t→0

Vtf(x) = f(x) a.e.

This does not depend on any other properties of L.
For −L being the Laplace operator on Rd, s > 1/2 suffices for all d, and

for d = 2, s > 1/2− δ is also sufficient. See [B], [Mo]. In our previous paper
[Z] the Laplace operator L on the Heisenberg group Hn has been studied
from this point of view, and we have proved that s > 3/4 implies (∗). In
this paper we simplify the proof of the result in [Z] and decrease the needed
regularity of f to f ∈W s, s > 1/2.

The author would like to express his gratitude to M. Derencz and A. Hu-
lanicki for their help in editing the paper.

0. Preliminaries. We identify R2 with C and consequently R2n with
Cn. Denote by S(z,w) = 2=(z · w) the standard symplectic form on R2n.
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For m = 0, 1, 2, . . . let

Lm(x) =
m∑

k=0

(
m

k

)
(−x)k

k!

be the Laguerre polynomial of degree m and for a 6= 0 let

lm,a(z) = e−|a||z|
2
Lm(2|a| |z|2)

be the corresponding Laguerre function.
Let m = (m1, . . . ,mn) and z = (z1, . . . , zn). We write

qm,a(z) = lm1,a(z1)lm2,a(z2) . . . lmn,a(zn).

It is well known that the qm,1 form an orthonormal basis of the space of
polyradial functions on Cn.

We denote by dz the Lebesgue measure on Cn and for a 6= 0 we define
the twisted convolution

f ×a g(z) =
�
f(z−w)g(w)eiaS(z,w) dw, f, g ∈ C∞c (Cn).

We have the following orthogonality relation for the Laguerre functions
(cf. [M]):

(0.1) |a|nqk,a ×a qm,a(z) = δk,mqm,a(z).

Fix a real a 6= 0 and let

(0.2) Qm,af(z) = |a|nqm,a ×a f(z).

It follows from (0.1) that for a fixed a 6= 0 the operators Qm,a are mutually
orthogonal projectors. Moreover

∑
mQm,a = Id (cf. [M]).

We introduce a separate notation for the operators Qm,a in the case
m = m ∈ N, i.e. n = 1. We then write

Qm,af = Pm,af = |a|lm,a ×a f.
The Heisenberg group Hn is defined as Cn × R, with the group product

(z, s)(w, t) = (z+w, s+ t+2=(z ·w)) where z = (z1, . . . , zn), zj = xj + iyj .

Then the Lebesgue measure on Cn × R is the Haar measure on Hn.
Let

Xi = ∂xi + 2yi∂t, Yi = ∂yi − 2xi∂t for 1 ≤ i ≤ n, T = ∂t,

and let

L =
n∑

i=1

(X2
i + Y 2

i ) + T 2

be the elliptic laplacian on Hn. The closure of L on C∞c (Hn) is a self-adjoint
operator (see [NS]). Therefore iL generates a group {Vt}t∈R of unitary opera-
tors on L2(Hn). We will use the following formula for Vt, valid for f ∈ S(Hn)
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(cf. [M]):

(0.3) Vtf(z, u) =
∑

m

�

R
eiuaeitλ|m|(a)Qm,af

a(z) da,

where λ|m|(a) = (2|m| + n)|a| + a2, |m| = m1 + . . . + mk and fa denotes
the Fourier transform with respect to the central variable.

Let s ≥ 0. We define a scale of Sobolev spaces by putting

‖f‖W s = ‖(I − L)s/2f‖L2 .

Since Qm,a are mutually orthogonal projectors and

Lf(z, u) =
�

R

∑

m

eiuaλ|m|(a)Qm,af
a(z) da

the Plancherel theorem applied to the variable u implies

(0.4) ‖f‖2W s =
∑

m

�

R
(1 + λ|m|(a))s‖Qm,af

a‖2L2(Cn) da.

For a more detailed exposition of the preliminary facts we refer the reader
to [M] and [Z].

1. Basic lemmas. Let 0 < α < 1. The fractional derivative of order α
is defined by

∂αf(s) =
�

R
(f(s− t)− f(s))|t|−(1+α)

dt.

Lemma 1 (Sobolev). Let γ > 0 be a Schwartz function and 1/2 < α < 1.
Then

sup
−1≤t≤1

|f(t)|2 ≤ Cα
( �

R
|∂αf(t)|2γ(t) dt+

�

R
|f(t)|2γ(t) dt

)
.

For a function φ, let Mφ denote the operator of multiplication by φ. Set
B(r) = {z : |z| ≤ r}.

Fix φ ∈ C∞c (C) with suppφ ⊂ B(1) and |φ(z)| ≤ 1, and define

Tm,af(z) = MφPm,af(z) = φ(z)|a|lm,a ×a f(z).

Since Pm,a is an orthogonal projector we have ‖Tm,a‖L2→L2 ≤ 1. The fol-
lowing two lemmas have been proved in [Z].

Lemma 2. For 4 ≤ |a| ≤ m+ 1 we have

‖Tm,a‖2L2→L2 ≤ C
( |a|
m+ 1

)1/2

.

Lemma 3. For |a| ≤ 4 we have

‖Tm,a‖2 ≤ C
( |a|
m+ 1

)1/2

.
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For the reader’s convenience we include the proofs of Lemmas 2 and 3.
To do this we need a number of consequences of the classical estimates for
Laguerre functions, collected below.

Lemma 4.

(1.1) Lm(λx) =
m∑

k=0

(
m

k

)
Lk(x)λk(1− λ)m−k.

Lemma 5. Let 1 ≤ |z| ≤ (m+ 1)1/2. Then

|lm,1(z)| ≤ C(m+ 1)−1/4|z|−1/2.

Proof. Let 0 < ε ≤ ϕ ≤ π/2−ε(m+1)−1/2. Then by a theorem of Szegő
[Sz], for x = (4m+ 2) cos2 ϕ, we have

e−x/2Lm(x) = (−1)m(π sinϕ)−1/2(sin((m+ 1/2)(sin 2ϕ− 2ϕ) + 3π/4)

× (x(m+ 1))−1/4 + (x(m+ 1))−1/2O(1)).

Lemma 6. Let |z| ≤ 1. Then

lm,1(z) = J0(21/2|z|(m+ 1/2)1/2) +O((m+ 1)−3/4),

where J0 is the zero Bessel function.

Proof. Follows from an asymptotic formula for the Laguerre polynomials
(cf. [Sz]):

e−x/2Lm(x) = J0((2x(m+ 1/2))1/2) +O((m+ 1)−3/4).

Lemma 7. There is a constant C such that for A ≥ 1 we have
�
|lm,1(z)|2e−|z|2/A2

dz ≤ CA(m+ 1)−1/2.

Proof. By Lemma 5, we obtain
�

1≤|z|≤(m+1)1/2

|lm,1(z)|2e−|z|2/A2
dz

≤ C
� 1
|z|(m+ 1)1/2

e−|z|
2/A2

dz ≤ CA(m+ 1)−1/2.

Also �

|z|≥(m+1)1/2

|lm,1(z)|2e−|z|2/A2
dz ≤ e−m/A2 �

|lm,1(z)|2 dz ≤ CA(m+1)−1/2.

On the other hand, by Lemma 6, using the estimate |J0(x)| ≤ C(1+ |x|)−1/2

for the Bessel function (see [Sz]) we obtain

|lm,1(z)| ≤ C(1 + |z|1/2(m+ 1)1/4)−1.

Hence �

|z|≤1

|lm,1(z)|2e−|z|2/A2
dz ≤ C(m+ 1)−1/2.
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Proof of Lemma 2. Since Pm,a is an orthogonal projector, Tm,aT ∗m,a =
MφPm,aMφ. Hence, the kernel K of Tm,aT ∗m,a is given by the formula

(1.1) K(z1, z2) = φ(z1)|a|lm,a(z1 − z2)e−iaS(z1,z2)φ(z2).

We write

1 = e−|z1−z2|
2
e|z1−z2|

2
= e−|z1−z2|

2 ∑

α

cαz
α1
1 zα3

1 zα2
2 zα4

2 .

Thus

(1.2) K(z1, z2)

=
∑

α

cαz
α1
1 zα3

1 φ(z1)e−|z1−z2|
2 |a|lm,a(z1 − z2)e−iaS(z1,z2)φ(z2)zα2

2 zα4
2 .

Consequently, the operator Tm,aT ∗m,a is the sum over α of operators

cαMφMz
α1
1 z

α3
1
TK1Mz

α2
2 z

α4
2
Mφ,

where
TK1 = f ×a K1, K1(z) = e−|z|

2 |a|lm,a(z).

Since cα converges to zero faster than exponentially, it suffices to estimate
the norm of TK1 . Dilating we see that the norm of TK1 is the same as the
norm of the 1-twisted convolution operator by

K(z) = e−|z|
2|a|−1

lm,1(z).

The radial function K(z) has a decomposition

K(z) =
∞∑

k=0

ck,m,alk,1(z),

where

(∗) ck,m,a =
�
e−|z|

2|a|−1
lk,1(z)lm,1(z) dz.

So

K(z)×1 f(z) =
∞∑

k=0

ck,m,aPm,1f(z).

Since Pm,1, m = 0, 1, . . . , are mutually orthogonal projectors the norm of
the operator f 7→ K ×1 f is equal to

sup
k
|ck,m,a|.

By the Schwarz inequality, we obtain

|ck,m,a| ≤ ‖e−|z|
2/2|a|lk,1(z)‖L2‖e−|z|2/2|a|lm,1(z)‖L2 .
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Now, by Lemma 7, if 10k ≥ m, then

|ck,m,a| ≤ C
( |a|
m+ 1

)1/4( |a|
k + 1

)1/4

≤ C
( |a|
m+ 1

)1/2

.

It remains to estimate the coefficients ck,m,a for 10k ≤ m. Observe that by
the definition of lm,1(z), for λ = (1 + (2|a|)−1)−1, (∗) turns into

ck,m,a = C

∞�

0

e−λ
−1xLm(x)Lk(x) dx.

Then

ck,m,a = Cλ

∞�

0

e−xLm(xλ)Lk(xλ) dx,

whence, in virtue of (1.1), because the Lk form an orthonormal basis with
the weight e−x, we obtain

ck,m,a = Cλ
m∑

s1=0

k∑

s2=0

(
m

s1

)(
k

s2

)
λ(s1+s2)(1− λ)m+k−(s1+s2)

×
∞�

0

e−xLs1(x)Ls2(x) dx

= Cλ
k∑

s=0

(
m

s

)(
k

s

)
λ2s(1− λ)m+k−2s.

Now, if |a| ≥ 4 then 2/3 ≤ λ ≤ 1 so for 10k ≤ m we have

|ck,m,a| ≤
k∑

s=0

2m2k(1− λ)m+k−2k ≤ k2m2k3−m−k

≤ k
(

2
3

)m+k

≤ 2−εm ≤ 2−εm|a|

for some positive constant ε.

Proof of Lemma 3. In order to estimate the norm of Tm,aT ∗m,a we use (1.1)
and the asymptotic formula for the Laguerre functions given in Lemma 6.

Let |a| ≤ 4. By the Taylor series expansion for eiaS(z1,z2) we have

K(z1, z2) =
∑

α

zα1
1 zα3

1 φ(z1)|a|lm,a(z1 − z2)φ(z2)zα2
2 zα4

2 aα|a||α|/2

=
∑

α

aα|a||α|/2Kα(z1, z2).

Since the aα’s decay faster than exponentially, and the norms of the opera-
tors MφMzα grow at most exponentially, it suffices to estimate the norm of



Schrödinger equation on the Heisenberg group 105

the operator K given by the kernel

A(z1, z2) = ψ(z1)|a|lm,a(z1 − z2)ψ(z2), where

ψ ∈ C∞c with ψ(z) = 1 on suppφ.

Now using Lemma 6 we obtain

ψ(z1)|a|lm,a(z1−z2)ψ(z2) = Cψ(z1)|a|J0(2|a|1/2|z1 − z2|(2m+1)1/2)ψ(z2)

+ ψ(z1)ψ(z2)O(|a|(m+ 1)−3/4).

Observe that the error term in the last formula gives an operator with norm
of order |a|(m+ 1)−3/4, so it is negligible.

Hence, for a function φ̃ ∈ S(C) with φ̃ = 1 on suppψ − suppψ we write

ψ(z1)|a|J0(|a|1/2|z1 − z2|(2m+ 1)1/2)ψ(z2)

= φ̃(z1 − z2)ψ(z1)|a|J0(|a|1/2|z1 − z2|(2m+ 1)1/2)ψ(z2).

Thus we may drop ψ(z1), ψ(z2) and we estimate the norm of the convolution
operator by the function

R = φ̃(z)|a|J0(|a|1/2|z|(2m+ 1)1/2).

By definition, J0 is the Fourier transform of the normalized Lebesgue mea-
sure supported on the unit circle. Hence

R̂ = ̂̃
φ ∗ |a|µ,

where µ is the normalized Lebesgue measure supported by the circle of
radius |a(2m+ 1)|1/2. We write (using a smooth resolution of identity 1 =∑
j∈Z2 k(z − j) with supp k ⊂ B(2))

̂̃
φ =

∑

j

αjφj ,

where
∑
j |αj | < ∞, ‖φj‖L∞ ≤ 1 and the support of φj is contained in the

disc of radius two. A trivial geometric argument shows that for |(2m+ 1)a|
≥ 1, ‖φj ∗ µ‖L∞ ≤ C|(2m+ 1)a|−1/2. These imply that the L∞ norm of R̂
is bounded by C|a|1/2|(m+ 1)|−1/2. If |(2m+ 1)a| ≤ 1 then ‖φj ∗µ‖L∞ ≤ C
and consequently ‖R̂‖L∞ ≤ C|a| ≤ C|(m + 1)|−1/2|a|1/2. This proves the
lemma.

2. Main theorem. For a fixed φ ∈ C∞c (Hn) we define the local maximal
function of the group Vt by

Mf(z, u) = φ(z, u) sup
0≤t≤1

|Vtf(z, u)|.

We have



106 J. Zienkiewicz

Theorem 1. Let s > 1/2 and f ∈W s. Then

‖Mf‖L2 ≤ C‖f‖W s .

Proof. Let f ∈ L2(Hn). To estimate ‖Mf‖L2(Hn) we introduce a family
of projections Pα. Then we write

‖Mf‖L2(Hn) ≤
∑

α

‖MPαf‖L2(Hn)

and we estimate each ‖MPαf‖L2(Hn) separately.
We will use the abbreviation

s ≈ 2k iff 2k ≤ s < 2k+1.

For k, l ∈ N let

Pk,lf(z, u) =
∑

{m : |m|≈2k}

�

{|a|≈2l}
eiuaQm,af

a(z) da,

P0f(z, u) =
∑

m

�

{|a|≤1}
eiuaQm,af

a(z) da.

Then obviously

P0 +
∑

k,l

Pk,l = Id .

The maximal function of the theorem splits into the maximal functions

(2.2)

Sk,lf(z, u) = sup
0≤t≤1

|ψ(z)φ(u)Pk,lVtf(z, u)|,

S0f(z, u) = sup
0≤t≤1

|ψ(z)P0Vtf(z, u)|,

where ψ ∈ C∞c (Cn), φ̂ ∈ C∞c (R), supp φ̂ ⊂ B(1).
We are going to estimate the norms ‖Sk,l‖W 1/2+ε→L2 and ‖S0‖W 1/2+ε→L2 .

Then we sum up the estimates. With no loss of generality we may consider
only the m’s in I1 = {m : m1 = max(m1, . . . ,mn)}.

Let A = {(m, r) : m2 = r2, . . . ,mn = rn, m, r ∈ I1}. We fix a and we
note that |m| = |r| and (m, r) ∈ A imply m = r. By the orthogonality
relations (0.1) for Pm,a we have

�
Qm,af(z)Qr,af(z) dz2 . . . dzn

=
�
Pm1,aPm2,a . . . Pmn,af(z)Pr1,aPr2,a . . . Prn,af(z) dz2 . . . dzn = 0

if (m2, . . . ,mn) 6= (r2, . . . , rn). In the formula above Pmi,a acts on the vari-
able zi.
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We begin by estimating the norm of S0, making use of the Sobolev
lemma. We have

|S0f(z, u)|2≤C
( �

R
|∂1/2+ε
t VtP0f(z, u)|2γ(t) dt+

�

R
|VtP0f(z, u)|2γ(t) dt

)
ψ(z).

In what follows we assume that γ̂ is supported in the interval [−1, 1].
Integrating with respect to dzdu, by the Plancherel theorem applied to the
Fourier transform in the central variable, we have
�
|S0f(z, u)|2 dz du ≤

�
|∂1/2+ε
t P0Vtf(z, u)|2ψ(z)γ(t) dz du dt+ C‖f‖2L2

= C
� � � ∣∣∣

∑

m

I{0≤|a|≤1}(a)Qm,af
a(z)∂1/2+ε

t eiλ|m|(a)t
∣∣∣
2
da γ(t) dt ψ(z) dz

+ C‖f‖2L2

≤ C
� � � ∣∣∣

∑

m

I{C/|m|≤|a|≤1}(a)(λm(a))1/2+ε

×Qm,af
a(z)eiλ|m|(a)t

∣∣∣
2
da γ(t) dt ψ(z) dz + ‖f‖2L2 .

In the last inequality we have used the fact that for |a| ≤ C|m|−1, we have
λ|m|(a) ≤ C.

In the above sum the multiindices m belong to I1. We enlarge the last
expression by replacing the ψ(z) by ψ(z1), ψ ∈ C∞c (C). Thus

� � � ∣∣∣
∑

m

I{C/|m|≤|a|≤1}(a)(λ|m|(a))1/2+εQm,af
a(z)eiλ|m|(a)t

∣∣∣
2
da γ(t) dt ψ(z) dz

=
� � ∑

m∈I1

∑

r∈I1
I{C/|m|≤|a|≤1}(a)I{C/|r|≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×Qm,af
a(z)Qr,afa(z) γ̂(λ|m|(a)− λ|r|(a)) daψ(z1) dz.

By orthogonality of Pm,a the last expression is equal to
� ∑

(m,r)∈A
I{Cmax{|m|−1,|r|−1}≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×
�
Qm,af

a(z)Qr,afa(z)ψ(z1) dz γ̂(λ|m|(a)− λ|r|(a)) da

=
� ∑

(m,r)∈A
I{C max{|m|−1,|r|−1}≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×
�
Qm,af

a(z)Qr,afa(z)ψ(z1) dz γ̂(2m1|a| − 2r1|a|) da
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≤
� ∑

(m,r)∈A
I{Cmax{|m|−1,|r|−1}≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×
( |a|
|m|+ 1

|a|
|r|+ 1

)1/4

× ‖Qm,af
a‖ ‖Qr,af

a‖γ̂(2(m1 − r1)|a|) da.
To verify the last inequality we use Lemma 3. The last expression is bounded
by

S = C
� ∑

(m,r)∈A
I{Cmax{|m|−1,|r|−1}≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×
(( |a|
|m|+1

)1/2

‖Qm,af
a‖2+

( |a|
|r|+1

)1/2

‖Qr,af
a‖2
)
γ̂(2(m1−r1)|a|) da.

For fixed r we have

(2.3)
∑

{m : (m,r)∈A}
I{Cmax{|m|−1,|r|−1}≤|a|≤1}(a)(λ|m|(a)λ|r|(a))1/2+ε

×
( |a|
|r|+ 1

)1/2

γ̂((m1 − r1)|a|) ≤ C(λ|r|(a))1/2+2ε.

In order to verify (2.3) we observe that for m, r, and a as in (2.3) one can
write

cλ|m|(a) ≤ (|m|+ 1)|a| ≤ Cλ|m|(a), cλ|r|(a) ≤ (|r|+ 1)|a| ≤ Cλ|r|(a),

c|m| ≤ |r| ≤ C|m|.
To show the last inequality we observe that the conditions γ̂((m1 − r1)|a|)
6= 0, (m, r) ∈ A and C max{|m|−1, |r|−1} ≤ |a| ≤ 1 imply that

∣∣|m| − |r|
∣∣

≤ Cmin{|r|, |m|}. Also

]{m : (m, r) ∈ A, |r1 −m1| |a| ∈ supp γ̂} ≤ C/|a|.
Now (2.3) follows by an easy calculation.

By (2.3), S is dominated by

2
� ∑

r

I{Cr−1≤|a|≤1}(a)(λ|r|(a))1/2+ε‖Qr,af
a‖2da ≤ ‖f‖2W 1/2+ε .

We are going to estimate ‖Sk,lf(z, u)‖L2 in a similar way. Without loss of
generality, we can consider only

S1
k,lf(z, u) = sup

0≤t≤1
|ψ(z1)φ(u)P 1

k,lVtf(z, u)|,

where
P 1
k,lf(z, u) =

∑

{m∈I1 : |m|≈2k}

�

{|a|≈2l}
eiuaQm,af

a(z) da.
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Again by the Sobolev lemma, the norm ‖S1
k,lf(z, u)‖2L2 is controlled by

� � � ∣∣∣
∑

{m∈I1 : |m|≈2k}

�

{|a|≈2l}
eiua+itλ|m|(a)λ

1/2+ε
|m| (a)Qm,af

a(z) da
∣∣∣
2

× ψ(z1)φ(u) dz du γ(t) dt

=
� � � ∑

{m,r : |m|,|r|≈2k, r∈I1}

� �
eiu(a1−a2)+it(λ|m|(a1)−λ|r|(a2))

× I{|a|≈2l}(a1)I{|a|≈2l}(a2)(λ|m|(a1)λ|r|(a2))1/2+ε

×Qm,a1f
a1(z)Qr,a2f

a2(z)ψ(z1) dzφ(u) du γ(t) dt da1 da2

=
∑

{m,r : |r|≈2k,m,r∈I1}

� �
I{|a|≈2l}(a1)I{|a|≈2l}(a2)(λ|m|(a1)λ|r|(a2))1/2+ε

×Qm,a1f
a1(z)Qr,a2f

a2(z)ψ(z1) dz

× φ̂(a1 − a2)γ̂(λ|m|(a1)− λ|r|(a2)) da1 da2

=
∑

{(m,r)∈A : m,r∈I1, |m|,|r|≈2k}

� �
I{|a|≈2l}(a1)I{|a|≈2l}(a2)

× (λ|m|(a1)λ|r|(a2))1/2+ε
�
Qm,af

a(z)Qr,af
a(z)ψ(z1) dz

× φ̂(a1 − a2)γ̂(λ|m|(a1)− λ|r|(a2)) da1 da2

≤ 2
� ∑

{r∈I1 : |r|≈2k}

� ∑

{m : (m,r)∈A, |m|≈2k}
I{|a|≈2l}(a1)I{|a|≈2l}(a2)

× (λ|m|(a1)λ|r|(a2))1/2+εγ̂(λ|m|(a1)− λ|r|(a2))φ̂(a1 − a2) da1

×
�
|Qr,a2f

a2(z)|2ψ(z1) dz da2 = J.

For fixed r and a2 we have

(2.4)
� ∑

{m : (m,r)∈A, |m|≈2k}
I{|a|≈2l}(a1)I{|a|≈2l}(a2)

× (λ|m|(a1)λ|r|(a2))1/2+εφ̂(a1 − a2)γ̂(λ|m|(a1)− λ|r|(a2)) da1

≤ (2k + 2l)(1+2ε)22lε.

To see (2.4) we observe that d
da1

λ|m|(a1) = ((2|m|+n)+2|a1|)sgn(a1). So the
measure of {a1 : λ|m|(a1)− λ|r|(a2) ∈ supp γ̂} is dominated by C/(2k + 2l).
Hence

(2.5)
�
γ̂(λ|m|(a1)− λ|r|(a2)) da1 ≤

C

2k + 2l
.
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Also

(2.6) ]{m ≈ 2k : (m, r) ∈ A and ∃a1≈2lλ|m|(a1)− λ|r|(a2) ∈ supp γ̂

and a1 − a2 ∈ supp φ̂} ≤ C max{1, |r|/2l}.
Combining (2.5) and (2.6) gives (2.4).

Hence by Lemma 2 and (2.4) we obtain the desired estimate for J :

J ≤
� ∑

{r∈I1 : |r|≈2k}
22lε

(
2l

2k + 2l

)1/2

(2k + 2l)1+2ε‖Qr,af
a‖2L2 da

≤
� ∑

{r∈I1 : |r|≈2k}
(2k2l + 22l)1/2+2ε‖Qr,af

a‖2L2da ≤ C‖f‖W 1/2+8ε2−(k+l)ε

Summing up the estimates for S0 and Sk,l we get the theorem.

Remark. The above theorem combined with the estimates obtained in
[Z] allows one to state a slightly sharper result. This requires a different
definition of the scale of Sobolev spaces. We do not go into details here.
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