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Statistical approximation by positive linear operators
by

O. DumaN and C. ORHAN (Ankara)

Abstract. Using A-statistical convergence, we prove a Korovkin type approximation
theorem which concerns the problem of approximating a function f by means of a sequence
{Tn(f;z)} of positive linear operators acting from a weighted space Cyp, into a weighted
space By, .

1. Introduction. The sequences of some classical approximation oper-
ators tend to converge to the values of the function they approximate. How-
ever, at points of discontinuity, they often converge to the average of the left
and right limits of the function. There are, however, some exceptions, such
as the interpolation operators of Hermite-Fejér [2] that do not converge at
points of simple discontinuity. In this case, the matrix summability methods
of Cesaro type are applicable to correct the lack of convergence [3]. Statisti-
cal convergence, which is a regular non-matrix summability method, is also
effective in “summing” divergent sequences [7], [9], [10]. Recently, its use in
approximation theory has been considered in [6], [13]. The aim of this paper
is to use A-statistical convergence to study Korovkin type approximation of
a function f by means of a sequence {T,,(f;x)} of positive linear operators
from a weighted space C,, into a weighted space B,,.

Approximation theory has important applications in various areas of
functional analysis, and in numerical solution of differential and integral
equations [1], [5], [18].

Before proceeding we recall some notation on statistical convergence.
Let A = (ajn) be an infinite summability matrix. For a given sequence
x = (xy), the A-transform of x, denoted by Az := ((Az);), is given by
(Az); = > 0% | ajnxy, provided the series converges for each j. We say that
A is regular if limj(Az); = L whenever limjz; = L (see [14]). Assume
now that A is a non-negative regular summability matrix and K is a subset
of N, the set of all natural numbers. The A-density of K is defined by
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da(K) = lim; > >, ajnXk(n) provided the limit exists, where xx is the
characteristic function of K. A sequence x := (zy,) is said to be A-statistically
convergent to a number L if, for every ¢ > 0, 04{n € N : |z, — L| > €} = 0;

or equivalently
lim Z ajn = 0.

n: |z, —L|>e
We denote this limit by sta-limz = L ([4], [8], [17], [19]). For A = C4, the
Cesaro matrix, A-statistical convergence reduces to statistical convergence
([7], [9], [10]). We note that if A = (a;,) is a non-negative regular summa-
bility matrix for which lim; max,{a;,} = 0, then A-statistical convergence
is stronger than convergence [17].

It should be noted that the concept of A-statistical convergence may also
be given in normed spaces: Assume (X, ||-||) is a normed space and u = (uy,)
is an X-valued sequence. Then (u,) is said to be A-statistically convergent
to up € X if, for every € > 0, da{n € N : |[up, — upl| > €} = 0 (see [15],
[16]). We recall that = = (x,,) is A-statistically convergent to L if and only if
there exists a subsequence {z,,1)} of x such that 64{n(k) : k € N} =1 and
limy, z,,(x) = L (see [17], [19]). The same result also holds in normed spaces
([15], [16]).

Now we recall the concepts of weight functions and weighted spaces
considered in [11], [12]. Let R denote the set of real numbers. A real-valued
function p is called a weight function if it is continuous on R and
(1) ‘ 1|im o(x) =00, p(x)>1 (forall z€R).

r|—0o0
The space of real-valued functions f defined on R and satisfying |f(x)| <
M¢yo(z) (for all x € R) is called the weighted space and denoted by B,, where
My is a constant depending on the function f. The weighted subspace C,
of B, is given by

C, :={f € B, : f is continuous on R}.
The spaces B, and C, are Banach spaces with the norm

o @]
7l =2

Now let o1 and g2 be two weight functions satisfying (1). Assume also
that
2) lim 248 _
jw]—o0 02()
If T is a positive linear operator from C,, into B,,, then the operator norm
ITlc,,—B,, is given by

HT”091—>B92 = sSup HTfHQQ
[1£1lo;=1
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The following approximation theorem for a sequence of positive linear op-
erators acting from C), into By, may be found in [11] and [12].

THEOREM A. Assume that 01 and o2 are weight functions satisfying (2)
and {L,} is a sequence of positive linear operators from Cy, into By,. Then
limy, |Lnf — fllgs =0 for all f € Cy, if and only if limy, ||L,F, — Fyllo, =0
forv=20,1,2, where

x¥01(x)
1+ 22’
In the present paper, we give an analog of Theorem A with the ordi-
nary limit operator replaced by an A-statistical limit operator. We will also
exhibit an example of a sequence of positive linear operators to which The-

orem A does not apply but our A-statistical approximation theorem does.

F,(z) = v=0,1,2.

2. Statistical approximation in weighted spaces. In this section
we will obtain a Korovkin type approximation theorem for A-statistical con-
vergence of a sequence of positive linear operators acting from C,, into B,,.

We require the following lemmas.

LEMMA 1. Let A = (ajn) be a non-negative regqular summability matric
and let {T,,} be a sequence of positive linear operators from C,, into B,,,
where o1 and o2 satisfy condition (2). Assume that there ezists a number
M > 0 such that

(3) 5A{REN: HTnHCm_,BQ1 SM}: 1.
If
Tn(f;
(4) sta-lim sup sup M =0 forany s €R,

"I floy=1 fal<s  €1(2)
then
sta-lim [T, c,, —5,, =0
Proof. By (2), given € > 0, there exists a number sg such that g;(x) <

(e/M)p2(z) for |x| > sg. Also, by the continuity of o1 /02, there exists C' > 0
such that o1(x) < Cp2(x) whenever |z| < sg. Let

(5) K :={neN:|Tylc, —B, <M}
By (3), 64(K) = 1. Then, for all n € K, by (5) we have
T.(f;x
1Twllcy,—B,, = sup supM
1£ll,, =1 zc®  02(2)
To(f; To(f;
O 10 2 I ¢ ESE0]

Tl =1 lel<so 02(F) fll, =1 Jal>s0  02(2)
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T.(f; T (f:
< C sup sup M + i sup sup M

111, =1 lol<so  €1(2) M gy, =1 ver  01(2)
g
< Cn(s0) + MHTnHCQIﬁBQI < Copn(so) + ¢,
where

o |Tn(f§ x)‘
©on(s0) := sup sup ——
111, =1 Jol<so  €1(2)
Now for a given r > 0 choose € > 0 such that ¢ < . Thus

(6) Z Qjn < Z Qjn,-

nek: ”Tn”CQlHBQ2 >r neK:Cop(so)>r—e
Hence, letting j — oo in (6) and taking (4) into account, we get the result. m

LEMMA 2. Let A = (ajn), 01 and o2 be as in Lemma 1. Let {T,,} be a
sequence of positive linear operators from C,p, into B,, for which (3) holds
for some M > 0. If, for any s € R,

(7) sta-lim sup sup |Tn(f;2) — f(z)| =0,

"N fllgy =1 Jzl<s
then
sta-Um || T, f — fllg, =0  forall f € Cy,.
n

Proof. Let E be the identity operator on Cy, and let L, :=T,, — E, U :=
{n e N:|Thlc, —B, <M}and V :={n € N:|Llc, -B, <M+1}.

o1 —

Since ||Lnllc,, —B,, < IThllc,,—B,, +1, we have U C V. Since 64(U) = 1,
we have 04(V) =1. As o1 > 1 on R, we get, for any s € R,

L .
sup supwé sup sup |Ly(f; )]
flloy=1 lel<s  €1(T) 7 |7 =1 Jal<s

= sup sup |Tn(f;2) — f(2)].
1ller=1 lal<s

From (7) it follows that

L .
st4-lim sup sup M =0.

" flley=1 lel<s  01(2)
Hence the sequence {L,,} satisfies all the conditions of Lemma 1. So we have
StA— h?gn HLTLHCQI_,BQQ =0.
Combining this with the fact that
1Lafller < I Zllog -2y, Ifll  (for all £ € Cyp),
we immediately conclude that
sta-lim || L fllo, = sta-lm [T f = fllg, = 0. m
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Now we present the following main result.

THEOREM 3. Let A = (ajn), 01 and g2 be as in Lemma 1. Assume that
{T..} is a sequence of positive linear operators acting from C,, into B,,.
Then

(8) stA—liern | Tnf — flloo =0  forall f e Cy
if and only if
(9) sta-lm [ TuFy — Filloy =0 (0=0,1,2),
where v

Fy(z) = xl ili‘? (v=0,1,2).

Proof. Since each F), belongs to C,,, it is clear that (8) implies (9).
Conversely, assume that (9) holds true. We first prove that (3) holds for
some M > 0.

By (9), for each v = 0, 1, 2, there exists a set K, C Nsuch that d4(K,)=1
and lim,er, |1 Fy — Fyllp, = 0, ie., given € > 0 there exists N,(e) such
that for all n € K,, and n > N, (¢) we have || T,,F, — Fy||,; < €. Hence there
is a positive number M, such that ||T;,F, — Fy||,, < M, for every n € K,.
Let K := KoN K; N Ks. Observe that d4(K) = 1. So, for every n € K, we
have

[Tnllc,, —Bo, = 1 Therller < [Ther = o1lon +1

S| ToFz = Fallgy + [T Fo — Foll, +1 < M,

where M := 1+ My + M. This implies that K C {n : [|Ty|c,,~5, < M},

which yields (3).

We now prove that condition (7) holds. To see this we write
T ((t — 2)2Fy(t); z) = Tp(t2Fo(t); ) — 22T, (tFy(t); ) + 22T (Fo(t); z)
< |Tn(Fa(t);2) — Fo(x)| + 2lz] [Tu(F1(2); 2) — Fi(x)]
+ 2| T (Fo(t); 2) — Fo(z)).
Hence for any s € R and n € K we get
(10)  wyp := sup Tp((t — )2 Fy(t); x)

|z|<s
< B{||T.F2 — F2H91 + [ TnFy - FIHm + [ TnFo - F0H91}7
where B := max{1, 2sup, <, |z[01(x), max,<s 2201(x)}.
Now let f € Cp, and let |z| < s. Since f is continuous on R, given ¢ > 0,
there exists a 6 > 0 such that |f(t) — f(x)| < ¢ for all ¢, z with |t — x| < 4.
When |t — z| > §, we have

1F(t) = f(x)] < 2Mj o1(x)o1(t) = 2Mj o1 (2) Fo(t)(1 4 %)
<AM; o1(2)Fo(t) (1 + 2* + (t — z)?)
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:UQ
— AM; o () Fo(t) (¢ :r)2<(1 fm)g + 1)

< Ko (2)(t — 2)° Fo(8),
where K, (z) := 4Mo1(x)((1 + 22)/6% + 1). So, for all t € R and |z| < s,
we see that
(11) () = f(@)] < e+ Ky, (2)(t — )2 Fo(2).
It follows from (11) that
T (f(t);2) = f(2)] < Tu(lf () = f@)|;2) + [ f ()] [Tn(1; 2) — 1
< eTn(1,2) + Ky, (2)To((t — 2)*Fo(t); )
+[f (@) Tn(L;2) — 1.
This also implies, for any s € R, that

(12) vn = sup sup [T, (f(t);x) — f(z)|
[flloy=1 |z|<s

< Cie||Tn(L, @) [lgy + C2 Sup T,((t — x)*Fo(t); o)
z|<s

+ Cs sup [T (1;2) — 1],
|z|<s

where C := sup, <, 01(7), C2 1= supjg<s Ky, () and C3 := supp, <, [ f(2)].
Since [|T5,(1, 2)[lo1 < [ Tn(01,2)|lor = | Tnllc,,—B,,» it follows from (12),
for all n € K, that

(13) vp < MCie + Crup + C3 sup [T, (1;2) — 1].
|z|<s

Since Fy € Cp, and
Fo(2)|Tn(1;2) — 1| < |Tn(Fo(t); ) — Fo(x)| + [Tn(Fo(t) — Fo(z); z)l,
we have, by (11),
1
Tn(L;2) — 1] < ——— {|Tu(Fo(t); 2) — Fo(x)| + eTn(L; 2)
Fy(x)
+ K (2)T((t — 2)* Fo(t); 2) }-
So we conclude, for any s € R and all n € K, that
(14) sup |1 (1;2) — 1| < Cuf{ || T Fo — Follp, + M + Couy},

lz|<s

where Cy := supjy<, 01(x)/Fo(x). Taking (10), (13) and (14) into account,
for all n € K, we obtain

(15) vy < Ce + C{||Tnko — Follgy + | TnF1 — Fillg, + ([ Tnf2 — F2|lg
where C := max{M(Cl + 0304), BCy 4+ C3Cy + 3020304}.
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Now for a given r > 0, choose € > 0 such that Ce < r. Define

r—Ce
D= {n € K : |TnkFo— Follgy + | TnF1 — Fill g + [|TnF2 — Fhall g, > e }

v

r—Ce
Dy := {TLEKIHTTLF()—F()Hgl 30 },

v

r—Ce
D1 = {nEK3||TnF1_F1H91 30 },

v

r—Ce
Dy = {nEK:HTnFQ—FQHgl 30 }

Then it is easy to see that D C Dy U D; U Ds. Thus (15) yields
Do <D < D amt Yt D g,
neK:vp,>r neD n€Dg neDy n€Dy

from which (7) follows. So by Lemma 2, we have

sta-lUm [T, f — fllp, =0 forall feC, . n

Note that if we take A to be the identity matrix I, then we immediately
get Theorem A.
The next result is a consequence of Theorem 3.

COROLLARY 4. Let {T,} be a sequence of positive linear operators from
Cy into Cy, for the weight function w defined by w(z) = 1+ 2% and let
A = (ajn) be a non-negative reqular summability matriz. Also let o1 and oo
be weight functions satisfying (2) and consider the sequence {P,} of positive
linear operators from C,, into By, defined by

o1(x) (1—1—752
w(z) "\ oi(t)

Po(f(t);z) = f(t);x).

If
sta-tim [T, fy — fullw = 0.
where f,(t) =t" (v=0,1,2), then
stA-liqlngPnf — fllos =0 forall f €C,,.
Proof. By the definition of the operators P,

Po(Fyiz) = ful((;“))

T.(fv;z) (v=0,1,2),

where F, (v =0,1,2) is as in Theorem 3. Since, for each v =0, 1,2,

PulFiia) = Fule) = 205 (T, (i) ~ ().




194 O. Duman and C. Orhan

we have
HPan - FUHQl = HTnfv - vaw‘
So the assertion follows from Theorem 3. m

Let ¢ be a continuous increasing function on R. Now we deal with A-
statistical approximation in the space Oy, with o1(z) = 1+ ¢*(x).

LEMMA 5. Let A = (ajn) be a non-negative regular summability matriz,
let {T,,} be a sequence of positive linear operators from Cp, into By,, and
assume that 01 and o satisfy (2). If

(16) StA-h,rl;n HTTLQO’U - SOUH91 =0 ('U = 07 17 2)7

then

sta-lim sup sup |T,(f;2)— f(x)]=0
" flley=1 a<z<b

for all a < b.

Proof. Let f € C,,. It is shown in [11] that, given € > 0, there exists a
number § > 0 such that for all ¢ € R and all x satisfying a < z < b we have

(17) () = f(@)] < e+ Ky (2)(0(t) — 0(2))?,

where

K. () = 4M; 3(x) [m . 1} ,

As(py2) i= min{p(z +96) = ¢(z), p(z) — p(z = d)}.
Now (17) yields
T (f(t);2) = f(2)] < Tu(lf(t) = f(@)|s2) + [ f (@)] [Tn(1;2) — 1]
< eTn(l,2) + Koy (2)Tn((0(t) — p(2)) % 2) + [ f(2)| | Tn(L;2) — 1
< (e +1f @)D Ta(L2) — L + & + Ky, (2)Tal(0(t) — o(@))* 2)
Se+ (e+ [f(@)DITa(L;2) =1
+ Ko (){|Tn(9?(); 2) — 9*(2)] + 2|0(2)| [Talp(t): ) — p()]
+¢*(@)|Tn(1;2) — 11}
= e+ {e+[f(2)| + Kp (2) + *(2) }Tu(L;2) — 1
+ 2K, (2)|p(@) | Ta(p(t); ) — ()| + K, (2) | Tu(9® (8); 2) — ¢*(2)].
So we get

(18)  wp:= sup sup |[T.(f(t);z)— f(z)|
1 £llo; =1 a<z<b

< e+ C{ITnl — 1oy + | Tog — ¢lloy + [|T00* — 0?0}



Statistical approximation by positive operators 195

where
O = max({ sup. 01(@)(e +1F(@)] + Kor(2) + (@)
ailigb%l(m)ffgl () ()]}

Now for a given r > 0, choose € > 0 such that ¢ < r. Define

r—e
D= {0 1 = 1y + 1T = el + 1T = Pl 2 "5

r—e
DO = {n: ”Tnl — 1HQ1 > W},

r—e
Dy = {ni 1T — @lloy > w}
Dy = dn: |The? -, > —= 4
vim {17 = Pl 2 o
Then it is easy to see that D C Dy U D1 U Ds. By (18) we have
A9 > @m <Y a4 < Yt ) amt Y a
n: Up >T nebD n€Dg neDq n€Day

Letting n — oo in (19) and using (16) we conclude that

sta-lim sup sup |Tn(f;z)— f(z)] =0,
" |1 fllgy =1 a<z<b

which completes the proof. =

Assume now that o1 := 1+ ¢? and g9 satisfy (2). Then by Lemmas 2 and
5 we get the following A-statistical Korovkin type approximation theorem.

THEOREM 6. Let A = (ajn) and {T},} be as in Lemma 5. Then (8) holds
if and only if {T,,} satisfies (16).
Proof. Since ¢" € Cp, (v =10,1,2), (8) implies (16). Assume now that
{T},} satisfies (16). By Lemma 5 we have
(20) sta-lim sup  sup |Tn(f;2) — f(2)[ =0
" flley=1 —s<z<s

for any s € R. Also, as in the proof of Theorem 3 we can find a positive
number M such that da{n € N : [T,/ c, —5, < M} = 1. It follows from
Lemma 2 that

sta-lUm | T f — flle, =0  forall feCyp,. m
n

3. Concluding remarks. In this section we deal with an example of
a sequence of positive linear operators to which Theorem A does not apply
but our Theorem 3 does.
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ExXAMPLE. Let g1 and g2 be weight functions satisfying (2) and let {L,,}
be a sequence of positive linear operators from C,, into B,, satisfying one of
the two equivalent properties stated in Theorem A. Assume that A = (a,) is
a non-negative regular summability matrix such that lim; max,{a;,} = 0;
then A-statistical convergence is stronger than convergence. So there is a
sequence (uy,) which is A-statistically null but not convergent [17]. Without
loss of generality we may assume that (u,) is non-negative. Now define
the sequence {T},} of positive linear operators mapping C,, into B,, by
To(f) = (1 + un)Lp(f) for f € C,, . Observe that {u,Ly,(f)} does not
tend to zero because L, (f) — f for all f € Cp, and (u,) is divergent.
Hence the sequence {|| T, f — f|l4,} does not tend to zero either, but it is an
A-statistically null sequence for all f € C,,.
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