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Statistical approximation by positive linear operators

by

O. Duman and C. Orhan (Ankara)

Abstract. Using A-statistical convergence, we prove a Korovkin type approximation
theorem which concerns the problem of approximating a function f by means of a sequence
{Tn(f ;x)} of positive linear operators acting from a weighted space C%1 into a weighted
space B%2 .

1. Introduction. The sequences of some classical approximation oper-
ators tend to converge to the values of the function they approximate. How-
ever, at points of discontinuity, they often converge to the average of the left
and right limits of the function. There are, however, some exceptions, such
as the interpolation operators of Hermite–Fejér [2] that do not converge at
points of simple discontinuity. In this case, the matrix summability methods
of Cesàro type are applicable to correct the lack of convergence [3]. Statisti-
cal convergence, which is a regular non-matrix summability method, is also
effective in “summing” divergent sequences [7], [9], [10]. Recently, its use in
approximation theory has been considered in [6], [13]. The aim of this paper
is to use A-statistical convergence to study Korovkin type approximation of
a function f by means of a sequence {Tn(f ;x)} of positive linear operators
from a weighted space C%1 into a weighted space B%2 .

Approximation theory has important applications in various areas of
functional analysis, and in numerical solution of differential and integral
equations [1], [5], [18].

Before proceeding we recall some notation on statistical convergence.
Let A = (ajn) be an infinite summability matrix. For a given sequence
x := (xn), the A-transform of x, denoted by Ax := ((Ax)j), is given by
(Ax)j =

∑∞
n=1 ajnxn, provided the series converges for each j. We say that

A is regular if limj(Ax)j = L whenever limj xj = L (see [14]). Assume
now that A is a non-negative regular summability matrix and K is a subset
of N, the set of all natural numbers. The A-density of K is defined by
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δA(K) := limj
∑∞

n=1 ajnχK(n) provided the limit exists, where χK is the
characteristic function ofK. A sequence x := (xn) is said to be A-statistically
convergent to a number L if, for every ε > 0, δA{n ∈ N : |xn − L| ≥ ε} = 0;
or equivalently

lim
j

∑

n: |xn−L|≥ε
ajn = 0.

We denote this limit by stA-limx = L ([4], [8], [17], [19]). For A = C1, the
Cesàro matrix, A-statistical convergence reduces to statistical convergence
([7], [9], [10]). We note that if A = (ajn) is a non-negative regular summa-
bility matrix for which limj maxn{ajn} = 0, then A-statistical convergence
is stronger than convergence [17].

It should be noted that the concept of A-statistical convergence may also
be given in normed spaces: Assume (X, ‖·‖) is a normed space and u = (un)
is an X-valued sequence. Then (un) is said to be A-statistically convergent
to u0 ∈ X if, for every ε > 0, δA{n ∈ N : ‖un − u0‖ ≥ ε} = 0 (see [15],
[16]). We recall that x = (xn) is A-statistically convergent to L if and only if
there exists a subsequence {xn(k)} of x such that δA{n(k) : k ∈ N} = 1 and
limk xn(k) = L (see [17], [19]). The same result also holds in normed spaces
([15], [16]).

Now we recall the concepts of weight functions and weighted spaces
considered in [11], [12]. Let R denote the set of real numbers. A real-valued
function % is called a weight function if it is continuous on R and

lim
|x|→∞

%(x) =∞, %(x) ≥ 1 (for all x ∈ R).(1)

The space of real-valued functions f defined on R and satisfying |f(x)| ≤
Mf%(x) (for all x ∈ R) is called the weighted space and denoted by B%, where
Mf is a constant depending on the function f. The weighted subspace C%
of B% is given by

C% := {f ∈ B% : f is continuous on R}.
The spaces B% and C% are Banach spaces with the norm

‖f‖% := sup
x∈R

|f(x)|
%(x)

.

Now let %1 and %2 be two weight functions satisfying (1). Assume also
that

lim
|x|→∞

%1(x)
%2(x)

= 0.(2)

If T is a positive linear operator from C%1 into B%2 , then the operator norm
‖T‖C%1→B%2 is given by

‖T‖C%1→B%2 := sup
‖f‖%1=1

‖Tf‖%2 .
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The following approximation theorem for a sequence of positive linear op-
erators acting from C%1 into B%2 may be found in [11] and [12].

Theorem A. Assume that %1 and %2 are weight functions satisfying (2)
and {Ln} is a sequence of positive linear operators from C%1 into B%2 . Then
limn ‖Lnf − f‖%2 = 0 for all f ∈ C%1 if and only if limn ‖LnFv − Fv‖%1 = 0
for v = 0, 1, 2, where

Fv(x) =
xv%1(x)
1 + x2 , v = 0, 1, 2.

In the present paper, we give an analog of Theorem A with the ordi-
nary limit operator replaced by an A-statistical limit operator. We will also
exhibit an example of a sequence of positive linear operators to which The-
orem A does not apply but our A-statistical approximation theorem does.

2. Statistical approximation in weighted spaces. In this section
we will obtain a Korovkin type approximation theorem for A-statistical con-
vergence of a sequence of positive linear operators acting from C%1 into B%2 .

We require the following lemmas.

Lemma 1. Let A = (ajn) be a non-negative regular summability matrix
and let {Tn} be a sequence of positive linear operators from C%1 into B%2 ,
where %1 and %2 satisfy condition (2). Assume that there exists a number
M > 0 such that

δA{n ∈ N : ‖Tn‖C%1→B%1 ≤M} = 1.(3)

If

stA- lim
n

sup
‖f‖%1=1

sup
|x|≤s

|Tn(f ;x)|
%1(x)

= 0 for any s ∈ R,(4)

then
stA- lim

n
‖Tn‖C%1→B%2 = 0.

Proof. By (2), given ε > 0, there exists a number s0 such that %1(x) ≤
(ε/M)%2(x) for |x| > s0. Also, by the continuity of %1/%2, there exists C > 0
such that %1(x) ≤ C%2(x) whenever |x| ≤ s0. Let

K := {n ∈ N : ‖Tn‖C%1→B%1 ≤M}.(5)

By (3), δA(K) = 1. Then, for all n ∈ K, by (5) we have

‖Tn‖C%1→B%2 = sup
‖f‖%1 =1

sup
x∈R

|Tn(f ;x)|
%2(x)

≤ sup
‖f‖%1 =1

sup
|x|≤s0

|Tn(f ;x)|
%2(x)

+ sup
‖f‖%1 =1

sup
|x|>s0

|Tn(f ;x)|
%2(x)



190 O. Duman and C. Orhan

≤ C sup
‖f‖%1 =1

sup
|x|≤s0

|Tn(f ;x)|
%1(x)

+
ε

M
sup
‖f‖%1 =1

sup
x∈R

|Tn(f ;x)|
%1(x)

≤ Cϕn(s0) +
ε

M
‖Tn‖C%1→B%1 ≤ Cϕn(s0) + ε,

where

ϕn(s0) := sup
‖f‖%1 =1

sup
|x|≤s0

|Tn(f ;x)|
%1(x)

.

Now for a given r > 0 choose ε > 0 such that ε < r. Thus∑

n∈K: ‖Tn‖C%1→B%2≥r
ajn ≤

∑

n∈K:Cϕn(s0)≥r−ε
ajn.(6)

Hence, letting j →∞ in (6) and taking (4) into account, we get the result.

Lemma 2. Let A = (ajn), %1 and %2 be as in Lemma 1. Let {Tn} be a
sequence of positive linear operators from C%1 into B%2 for which (3) holds
for some M > 0. If , for any s ∈ R,

stA- lim
n

sup
‖f‖%1 =1

sup
|x|≤s
|Tn(f ;x)− f(x)| = 0,(7)

then
stA- lim

n
‖Tnf − f‖%2 = 0 for all f ∈ C%1 .

Proof. Let E be the identity operator on C%1 and let Ln := Tn−E, U :=
{n ∈ N : ‖Tn‖C%1→B%1 ≤ M} and V := {n ∈ N : ‖Ln‖C%1→B%1 ≤ M + 1}.
Since ‖Ln‖C%1→B%1 ≤ ‖Tn‖C%1→B%1 + 1, we have U ⊆ V. Since δA(U) = 1,
we have δA(V ) = 1. As %1 ≥ 1 on R, we get, for any s ∈ R,

sup
‖f‖%1=1

sup
|x|≤s

|Ln(f ;x)|
%1(x)

≤ sup
‖f‖%1=1

sup
|x|≤s
|Ln(f ;x)|

= sup
‖f‖%1=1

sup
|x|≤s
|Tn(f ;x)− f(x)|.

From (7) it follows that

stA- lim
n

sup
‖f‖%1=1

sup
|x|≤s

|Ln(f ;x)|
%1(x)

= 0.

Hence the sequence {Ln} satisfies all the conditions of Lemma 1. So we have

stA- lim
n
‖Ln‖C%1→B%2 = 0.

Combining this with the fact that

‖Lnf‖%2 ≤ ‖Ln‖C%1→B%2‖f‖%1 (for all f ∈ C%1),

we immediately conclude that

stA- lim
n
‖Lnf‖%2 = stA- lim

n
‖Tnf − f‖%2 = 0.



Statistical approximation by positive operators 191

Now we present the following main result.

Theorem 3. Let A = (ajn), %1 and %2 be as in Lemma 1. Assume that
{Tn} is a sequence of positive linear operators acting from C%1 into B%2 .
Then

stA- lim
n
‖Tnf − f‖%2 = 0 for all f ∈ C%1(8)

if and only if

stA- lim
n
‖TnFv − Fv‖%1 = 0 (v = 0, 1, 2),(9)

where
Fv(x) =

xv%1(x)
1 + x2 (v = 0, 1, 2).

Proof. Since each Fv belongs to C%1 , it is clear that (8) implies (9).
Conversely, assume that (9) holds true. We first prove that (3) holds for
some M > 0.

By (9), for each v = 0, 1, 2, there exists a setKv ⊆ N such that δA(Kv)=1
and limn∈Kv ‖TnFv − Fv‖%1 = 0, i.e., given ε > 0 there exists Nv(ε) such
that for all n ∈ Kv and n ≥ Nv(ε) we have ‖TnFv − Fv‖%1 < ε. Hence there
is a positive number Mv such that ‖TnFv − Fv‖%1 ≤ Mv for every n ∈ Kv.
Let K := K0 ∩K1 ∩K2. Observe that δA(K) = 1. So, for every n ∈ K, we
have

‖Tn‖C%1→B%1 = ‖Tn%1‖%1 ≤ ‖Tn%1 − %1‖%1 + 1

≤ ‖TnF2 − F2‖%1 + ‖TnF0 − F0‖%1 + 1 ≤M,

where M := 1 +M0 +M2. This implies that K ⊆ {n : ‖Tn‖C%1→B%1 ≤M},
which yields (3).

We now prove that condition (7) holds. To see this we write

Tn((t− x)2F0(t);x) = Tn(t2F0(t);x)− 2xTn(tF0(t);x) + x2Tn(F0(t);x)

≤ |Tn(F2(t);x)− F2(x)|+ 2|x| |Tn(F1(t);x)− F1(x)|
+ x2|Tn(F0(t);x)− F0(x)|.

Hence for any s ∈ R and n ∈ K we get

un := sup
|x|≤s

Tn((t− x)2F0(t);x)(10)

≤ B{‖TnF2 − F2‖%1 + ‖TnF1 − F1‖%1 + ‖TnF0 − F0‖%1},
where B := max{1, 2 sup|x|≤s |x|%1(x), max|x|≤s x2%1(x)}.

Now let f ∈ C%1 and let |x| ≤ s. Since f is continuous on R, given ε > 0,
there exists a δ > 0 such that |f(t)− f(x)| < ε for all t, x with |t− x| < δ.
When |t− x| ≥ δ, we have

|f(t)− f(x)| ≤ 2Mf %1(x)%1(t) = 2Mf %1(x)F0(t)(1 + t2)

≤ 4Mf %1(x)F0(t)(1 + x2 + (t− x)2)
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= 4Mf %1(x)F0(t)(t− x)2
(

1 + x2

(t− x)2 + 1
)

≤ K%1(x)(t− x)2F0(t),

where K%1(x) := 4Mf%1(x)((1 + x2)/δ2 + 1). So, for all t ∈ R and |x| ≤ s,
we see that

|f(t)− f(x)| < ε+K%1(x)(t− x)2F0(t).(11)

It follows from (11) that

|Tn(f(t);x)− f(x)| ≤ Tn(|f(t)− f(x)|;x) + |f(x)| |Tn(1;x)− 1|
< εTn(1, x) +K%1(x)Tn((t− x)2F0(t);x)

+ |f(x)| |Tn(1;x)− 1|.
This also implies, for any s ∈ R, that

vn := sup
‖f‖%1=1

sup
|x|≤s
|Tn(f(t);x)− f(x)|(12)

< C1ε‖Tn(1, x)‖%1 + C2 sup
|x|≤s

Tn((t− x)2F0(t);x)

+ C3 sup
|x|≤s
|Tn(1;x)− 1|,

where C1 := sup|x|≤s %1(x), C2 := sup|x|≤sK%1(x) and C3 := sup|x|≤s |f(x)|.
Since ‖Tn(1, x)‖%1 ≤ ‖Tn(%1, x)‖%1 = ‖Tn‖C%1→B%1 , it follows from (12),

for all n ∈ K, that

vn ≤MC1ε+ C2 un + C3 sup
|x|≤s
|Tn(1;x)− 1|.(13)

Since F0 ∈ C%1 and

F0(x)|Tn(1;x)− 1| ≤ |Tn(F0(t);x)− F0(x)|+ |Tn(F0(t)− F0(x);x)|,
we have, by (11),

|Tn(1;x)− 1| < 1
F0(x)

{|Tn(F0(t);x)− F0(x)|+ εTn(1;x)

+K%1(x)Tn((t− x)2F0(t);x)}.
So we conclude, for any s ∈ R and all n ∈ K, that

sup
|x|≤s
|Tn(1;x)− 1| ≤ C4{ ‖TnF0 − F0‖%1 + εM + C2un},(14)

where C4 := sup|x|≤s %1(x)/F0(x). Taking (10), (13) and (14) into account,
for all n ∈ K, we obtain

vn ≤ Cε+ C{‖TnF0 − F0‖%1 + ‖TnF1 − F1‖%1 + ‖TnF2 − F2‖%1},(15)

where C := max{M(C1 + C3C4), BC2 + C3C4 +BC2C3C4}.
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Now for a given r > 0, choose ε > 0 such that Cε < r. Define

D :=
{
n ∈ K : ‖TnF0−F0‖%1 +‖TnF1−F1‖%1 +‖TnF2−F2‖%1 ≥

r − Cε
C

}
,

D0 :=
{
n ∈ K : ‖TnF0 − F0‖%1 ≥

r − Cε
3C

}
,

D1 :=
{
n ∈ K : ‖TnF1 − F1‖%1 ≥

r − Cε
3C

}
,

D2 :=
{
n ∈ K : ‖TnF2 − F2‖%1 ≥

r − Cε
3C

}
.

Then it is easy to see that D ⊆ D0 ∪D1 ∪D2. Thus (15) yields
∑

n∈K: vn≥r
ajn ≤

∑

n∈D
ajn ≤

∑

n∈D0

ajn +
∑

n∈D1

ajn +
∑

n∈D2

ajn,

from which (7) follows. So by Lemma 2, we have

stA- lim
n
‖Tnf − f‖%2 = 0 for all f ∈ C%1 .

Note that if we take A to be the identity matrix I, then we immediately
get Theorem A.

The next result is a consequence of Theorem 3.

Corollary 4. Let {Tn} be a sequence of positive linear operators from
Cw into Cw for the weight function w defined by w(x) = 1 + x2 and let
A = (ajn) be a non-negative regular summability matrix. Also let %1 and %2
be weight functions satisfying (2) and consider the sequence {Pn} of positive
linear operators from C%1 into B%2 defined by

Pn(f(t);x) =
%1(x)
w(x)

Tn

(
1 + t2

%1(t)
f(t);x

)
.

If
stA- lim

n
‖Tnfv − fv‖w = 0,

where fv(t) = tv (v = 0, 1, 2), then

stA- lim
n
‖Pnf − f‖%2 = 0 for all f ∈ C%1 .

Proof. By the definition of the operators Pn,

Pn(Fv;x) =
%1(x)
w(x)

Tn(fv;x) (v = 0, 1, 2),

where Fv (v = 0, 1, 2) is as in Theorem 3. Since, for each v = 0, 1, 2,

Pn(Fv;x)− Fv(x) =
%1(x)
w(x)

(Tn(fv;x)− fv(x)),
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we have
‖PnFv − Fv‖%1 = ‖Tnfv − fv‖w.

So the assertion follows from Theorem 3.

Let ϕ be a continuous increasing function on R. Now we deal with A-
statistical approximation in the space C%1 with %1(x) = 1 + ϕ2(x).

Lemma 5. Let A = (ajn) be a non-negative regular summability matrix ,
let {Tn} be a sequence of positive linear operators from C%1 into B%2 , and
assume that %1 and %2 satisfy (2). If

stA- lim
n
‖Tnϕv − ϕv‖%1 = 0 (v = 0, 1, 2),(16)

then
stA- lim

n
sup
‖f‖%1=1

sup
a≤x≤b

|Tn(f ;x)− f(x)| = 0

for all a < b.

Proof. Let f ∈ C%1 . It is shown in [11] that, given ε > 0, there exists a
number δ > 0 such that for all t ∈ R and all x satisfying a ≤ x ≤ b we have

|f(t)− f(x)| < ε+K%1(x)(ϕ(t)− ϕ(x))2,(17)

where

K%1(x) := 4Mf %
2
1(x)

[
1

∆2
δ(ϕ;x)

+ 1
]
,

∆δ(ϕ;x) := min{ϕ(x+ δ)− ϕ(x), ϕ(x)− ϕ(x− δ)}.
Now (17) yields

|Tn(f(t);x)− f(x)| ≤ Tn(|f(t)− f(x)|;x) + |f(x)| |Tn(1;x)− 1|
< εTn(1, x) +K%1(x)Tn((ϕ(t)− ϕ(x))2;x) + |f(x)| |Tn(1;x)− 1|
≤ (ε+ |f(x)|)|Tn(1;x)− 1|+ ε+K%1(x)Tn((ϕ(t)− ϕ(x))2;x)

≤ ε+ (ε+ |f(x)|)|Tn(1;x)− 1|
+K%1(x){|Tn(ϕ2(t);x)− ϕ2(x)|+ 2|ϕ(x)| |Tn(ϕ(t);x)− ϕ(x)|
+ ϕ2(x)|Tn(1;x)− 1|}

= ε+ {ε+ |f(x)|+K%1(x) + ϕ2(x)}|Tn(1;x)− 1|
+ 2K%1(x)|ϕ(x)| |Tn(ϕ(t);x)− ϕ(x)|+K%1(x) |Tn(ϕ2(t);x)− ϕ2(x)|.

So we get

un := sup
‖f‖%1=1

sup
a≤x≤b

|Tn(f(t);x)− f(x)|(18)

≤ ε+ C{‖Tn1− 1‖%1 + ‖Tnϕ− ϕ‖%1 + ‖Tnϕ2 − ϕ2‖%1}
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where

C := max{ sup
a≤x≤b

%1(x)(ε+ |f(x)|+K%1(x) + ϕ2(x)),

sup
a≤x≤b

2%1(x)K%1(x) |ϕ(x)|}.

Now for a given r > 0, choose ε > 0 such that ε < r. Define

D :=
{
n : ‖Tn1− 1‖%1 + ‖Tnϕ− ϕ‖%1 + ‖Tnϕ2 − ϕ2‖%1 ≥

r − ε
C

}
,

D0 :=
{
n : ‖Tn1− 1‖%1 ≥

r − ε
3C

}
,

D1 :=
{
n : ‖Tnϕ− ϕ‖%1 ≥

r − ε
3C

}
,

D2 :=
{
n : ‖Tnϕ2 − ϕ2‖%1 ≥

r − ε
3C

}
.

Then it is easy to see that D ⊆ D0 ∪D1 ∪D2. By (18) we have
∑

n:un≥r
ajn ≤

∑

n∈D
ajn ≤

∑

n∈D0

ajn +
∑

n∈D1

ajn +
∑

n∈D2

ajn.(19)

Letting n→∞ in (19) and using (16) we conclude that

stA- lim
n

sup
‖f‖%1=1

sup
a≤x≤b

|Tn(f ;x)− f(x)| = 0,

which completes the proof.

Assume now that %1 := 1+ϕ2 and %2 satisfy (2). Then by Lemmas 2 and
5 we get the following A-statistical Korovkin type approximation theorem.

Theorem 6. Let A = (ajn) and {Tn} be as in Lemma 5. Then (8) holds
if and only if {Tn} satisfies (16).

Proof. Since ϕv ∈ C%1 (v = 0, 1, 2), (8) implies (16). Assume now that
{Tn} satisfies (16). By Lemma 5 we have

stA- lim
n

sup
‖f‖%1=1

sup
−s≤x≤s

|Tn(f ;x)− f(x)| = 0(20)

for any s ∈ R. Also, as in the proof of Theorem 3 we can find a positive
number M such that δA{n ∈ N : ‖Tn‖C%1→B%1 ≤ M} = 1. It follows from
Lemma 2 that

stA- lim
n
‖Tnf − f‖%2 = 0 for all f ∈ C%1 .

3. Concluding remarks. In this section we deal with an example of
a sequence of positive linear operators to which Theorem A does not apply
but our Theorem 3 does.
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Example. Let %1 and %2 be weight functions satisfying (2) and let {Ln}
be a sequence of positive linear operators from C%1 into B%2 satisfying one of
the two equivalent properties stated in Theorem A. Assume thatA = (ank) is
a non-negative regular summability matrix such that limj maxn{ajn} = 0;
then A-statistical convergence is stronger than convergence. So there is a
sequence (un) which is A-statistically null but not convergent [17]. Without
loss of generality we may assume that (un) is non-negative. Now define
the sequence {Tn} of positive linear operators mapping C%1 into B%2 by
Tn(f) = (1 + un)Ln(f) for f ∈ C%1 . Observe that {unLn(f)} does not
tend to zero because Ln(f) → f for all f ∈ C%1 and (un) is divergent.
Hence the sequence {‖Tnf − f‖%2} does not tend to zero either, but it is an
A-statistically null sequence for all f ∈ C%1 .
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