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Abstract. Let A(Ω) denote the real analytic functions defined on an open set
Ω ⊂ Rn. We show that a partial differential operator P (D) with constant coefficients
is surjective on A(Ω) if and only if for any relatively compact open ω ⊂ Ω, P (D) admits
(shifted) hyperfunction elementary solutions on Ω which are real analytic on ω (and if
the equation P (D)f = g, g ∈ A(Ω), may be solved on ω). The latter condition is re-
dundant if the elementary solutions are defined on conv(Ω). This extends and improves
previous results of Andersson, Kawai, Kaneko and Zampieri. For convex Ω, a different
characterization of surjective operators P (D) on A(Ω) was given by Hörmander using a
Phragmén–Lindelöf type condition, which cannot be extended to the case of noncovex Ω.
The paper is based on a surjectivity criterion for exact sequences of projective (DFS)-
spectra which improves earlier results of Braun and Vogt, and Frerick and Wengenroth.

This paper is concerned with the basic question when

P (D) : A(Ω)→ A(Ω) is surjective.(0.1)

Here P (D) is a partial differential operator with constant coefficients, Ω ⊂
Rn is an open set and A(Ω) is the space of real analytic functions on Ω.

Several methods have been developed to solve this problem: The first
counterexample to (0.1) is due to Piccinini [34] who showed that the heat
equation is not surjective on A(R3) (see also the conjecture of De Giorgi and
Cattabriga [10]). Then Hörmander [13] characterized (0.1) for convex sets
Ω by means of a Phragmén–Lindelöf condition valid on the complex variety
of P . Since then Hörmander’s method has been adapted by several authors
for further studies on this problem (Miwa [31], Andreotti and Nacinovich
[3], Zampieri [42], Braun [6] and the recent series of papers of Braun, Meise
and Taylor [7, 8]).
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Hörmander’s criterion is restricted to convex sets Ω by the use of Fourier
theory. On the other hand, using hyperfunctions and so-called “good elemen-
tary solutions” for P (D), Kawai [18] was able to prove (0.1) for locally hyper-
bolic operators on special, not necessarily convex bounded open sets Ω. The
assumption of boundedness was removed by Kaneko [15] (see also Kaneko
[16, 17]). Andersson [2] used a similar idea to show that locally hyperbolic
operators are surjective on A(Rn).

While Kawai mainly ignored the (complicated) topology of A(Ω), Hör-
mander observed that the problem is intimately related to a “decomposition
with bounds” in the kernel of P (D). In the present paper we will use the
theory of Projk-functors of Palamodov [32, 33] (see also Vogt [38]), which
is an abstract version of Hörmander’s observation, to prove the following
characterization of (0.1) for general open sets Ω in the spirit of Kawai’s
work: Let B(Ω) denote the hyperfunctions on Ω and for δ > 0 let

Aδ(ω) := {f ∈ A(ω) | sup
x∈ω
|f (a)(x)|δ|a|/a! <∞}.

Theorem. Let Ω ⊂ Rn be open. The following statements are equiva-
lent :

(a) P (D) : A(Ω)→ A(Ω) is surjective.
(b) (i) For any g ∈ A(Ω) and any ω ⊂⊂ Ω there is f ∈ A(ω) such that

(0.2) P (D)f = g|ω.
(ii) P (D) satisfies the following condition (BΩ): for any ω ⊂⊂ Ω

there is ω̃ ⊂⊂ Ω with ω̃ ⊃⊃ ω such that for any ξ ∈ ∂ω̃ and any
ω̂ ⊂⊂ Ω there is F ∈ B(ω̂) such that

P (D)F = δξ on ω̂ and F |ω ∈ A(ω),

where δξ is the point evaluation at ξ.

(c) P (D) satisfies (b)(i) and the following condition (BΩ): for any ω ⊂⊂
Ω there are ω̃ ⊂⊂ Ω and δ > 0 such that for any ξ ∈ Ω\ω̃ there is F ∈ B(Ω)
such that

P (D)F = δξ on Ω and F |ω ∈ Aδ(ω).

This result is part of our Main Theorem 2.1 where further equivalent
characterizations of (0.1) are given (including the important technical con-
dition (AΩ)).

(BΩ) is similar to the criterion for surjectivity of P (D) on nonquasi-
analytic classes of ultradifferentiable functions of Roumieu type which we
proved in Langenbruch [22] (see also Langenbruch [23, 25]).

(BΩ) improves the necessary condition for (0.1) from Langenbruch [24,
Theorem 1.3]. We used the latter condition to show that local hyperbolicity
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of the principal part Pm of P and hyperbolicity of the localizations of Pm
at ∞ are necessary for (0.1) in many situations (see Langenbruch [24, 26]).

The semiglobal solvability condition (0.2) is always satisfied if Ω is con-
vex. Therefore, (0.1) is equivalent to (BΩ) and to (BΩ) if Ω is convex.

(0.2) is also redundant if the shifted elementary solutions F are defined
on convex sets. This gives the following two sufficient criteria:

P (D) is surjective on A(Ω) if one of the following assumptions holds:

(i) For any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω with ω ⊂⊂ ω̃ such that for any
ω̂ ⊂⊂ Ω and any ξ ∈ ∂ω̃ there is F ∈ B(conv(ω̂)) such that

P (D)F = δξ on conv(ω̂) and F |ω ∈ A(ω).

(ii) P (D) satisfies (BRn) and for any ω ⊂⊂ Ω and any ζ ∈ ∂Ω there are
a convex neighbourhood U of Ω and F ∈ B(U) such that

P (D)F = δξ on U and F |ω ∈ A(ω).

This contains and improves the corresponding results of Andersson [2],
Kawai [18], Kaneko [15, 16] and Zampieri [42]. In particular, we get the
following result for operators with locally hyperbolic principal part Pm (see
Section 2 for the definitions):

P (D) is surjective on A(Ω) if for any ζ ∈ ∂Ω and any Θ ∈ Sn−1 there
is NΘ,ζ ∈ Sn−1 such that Pm is locally hyperbolic with respect to NΘ,ζ and

(ζ +K((Pm)Θ, NΘ,ζ)) ∩Ω = ∅,
where K((Pm)Θ, NΘ,ζ) is the local propagation cone of Pm at Θ with respect
to NΘ,ξ.

The paper is organized as follows: In the first section, a short introduction
to the theory of the Projk-functors of Palamodov (see Palamodov [32, 33]
and Vogt [38]) is given. We here prove a strong surjectivity criterion for exact
sequences of projective (DFS)-spectra (see Theorem 1.5) which improves
the corresponding results of Braun and Vogt [9], Frerick and Wengenroth
[11] and Wengenroth [39]: We will show that a continuous linear mapping
is surjective if the kernel spectrum satisfies property (P3) (instead of the
apparently stronger condition (P2) used in loc. cit.) and a suitable notion of
reducedness. Moreover, we obtain a priori bounds for the solutions. In our
concrete situation this implies that the following is also equivalent to the
surjectivity of P (D) on A(Ω) (see Theorem 2.1): for any neighbourhood V ⊂
Cn of Ω there is a neighbourhood W ⊂ Cn of Ω such that P (D)f = g may
be solved with f ∈ H(W ) if g ∈ H(V ). Hörmander [13] proved such a priori
Cauchy estimates for convex Ω using his Phragmén–Lindelöf principle.

In Section 2, the main result is stated in Theorem 2.1. We then prove
the above consequences and discuss their relation to the literature and some
examples. In Sections 3 and 4 we use the Grothendieck–Tillmann duality to



56 M. Langenbruch

show that the technical conditions (AΩ) (and (AΩ)) are necessary (and suf-
ficient, respectively) for (0.1). These are needed to prove the hyperfunction
criteria (BΩ) and (BΩ) for (0.1) in Section 5.

The author wants to thank D. Vogt (Wuppertal) and P. Domański (Poz-
nań) for several valuable discussions concerning the subject of this paper.

1. Projective (DFS)-spectra. We start with some useful notations
and conventions: In this paper, n ∈ N is always at least 2. The sets Ω and
ω are always open in Rn. We also assume that Ω is connected.

The real analytic functions on Ω are denoted by A(Ω). By P (D) we
always mean a partial differential operator in n variables with constant
coefficients. We are concerned with the question when

P (D) : A(Ω)→ A(Ω) is surjective.(1.1)

In this paper, we will extend real analytic functions on Ω to harmonic
functions in n+1 variables defined near Ω in Rn+1 (rather than to holomor-
phic functions defined nearΩ in Cn). To be precise, a point in Rn+1 is usually
written as (x, y) ∈ Rn×R. As usual, ∆ =

∑
k≤n(∂/∂xk)2 + (∂/∂y)2 denotes

the Laplace operator on Rn+1. The harmonic germs near a set S ⊂ Rn+1

are denoted by C∆(S). It is clear that (1.1) holds if and only if

P (Dx) : C∆(Ω × {0})→ C∆(Ω × {0}) is surjective.(1.2)

Indeed, the equivalence of (1.1) and (1.2) is obtained by means of the Cauchy
problem for ∆ with data on Ω×{0}. C∆(Ω×{0}) is the projective limit of
the projective spectrum

CΩ∆ := (C∆(Kk × {0}), Rkj ),
where {Kk | k ∈ N} is an increasing compact exhaustion of Ω, that is,

Kk ⊂⊂ int(Kk+1) for each k and
∞⋃

k=1

Kk = Ω.

The linking maps

Rkj : C∆(Kj × {0})→ C∆(Kk × {0}) for j ≥ k
are defined by restriction.

The theory of projective spectra of linear spaces and the corresponding
Projk-functors were developed by Palamodov [32, 33] (see also Vogt [38]).
We will briefly introduce the corresponding notions and facts which we need.
The reader is referred to these papers for further information.

For S ⊂ Rn+1 let

NP (S) := {f ∈ C∆(S) | P (Dx)f = 0}
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and let
NΩ
P := (NP (Kk × {0}), Rkj )

be the projective spectrum of kernels of P (Dx). We thus have the short
sequence of projective spectra

0→ NΩ
P → CΩ∆

P (D)−→ CΩ∆ → 0.(1.3)

It is called exact if for any k ∈ N there is j ≥ k such that

P (D)C∆(Kk × {0}) ⊃ Rkj (C∆(Kj × {0})).(1.4)

We now have the following key result, which is essentially Theorem 5.1 of
Vogt [38] in our concrete situation.

Proposition 1.1. Let the sequence (1.3) of projective spectra be exact.
Then

P (D) : A(Ω)→ A(Ω) is surjective(1.1)

if and only if Proj1(NΩ
P ) = 0.

Proof. Necessity. Since (1.3) is exact, we have the exact sequence of
linear spaces

0→ Proj0(NΩ
P )→ Proj0(CΩ∆)

P (D)−→ Proj0(CΩ∆)(1.5)

→ Proj1(NΩ
P )→ Proj1(CΩ∆)→ Proj1(CΩ∆)→ 0

by Palamodov [32, p. 542]. We can identify Proj0(NΩ
P ) with NP (Ω × {0})

(and Proj0(CΩ∆) with C∆(Ω×{0})). Since A(Ω) (and hence C∆(Ω×{0})) is
ultrabornological by Martineau [29], Theorem 3.5 of Wengenroth [39] implies
that

Proj1(CΩ∆) = 0.(1.6)

By (1.5) and (1.6) we have the exact sequence of linear spaces

0→ Np(Ω × {0})→ C∆(Ω × {0}) P (D)−→ C∆(Ω × {0})→ Proj1(NΩ
P )→ 0.

Since P (D)(C∆(Ω×{0})) = C∆(Ω×{0}) by the assumption and (1.2), this
implies that Proj1(NΩ

P ) = 0.
Sufficiency. By (1.5) we get the exact sequence of linear spaces

0→ Proj0(NΩ
P )→ Proj0(CΩ∆)

P (D)−→ Proj0(CΩ∆)→ 0

since Proj1(NΩ
P ) = 0 by assumption. The claim now follows by the above

identification.

The exactness of the sequence (1.3) of spectra means that the equa-
tion P (D)f = g can be solved semiglobally in C∆(Ω). If Ω is convex, this
semiglobal solvability easily follows from the solvability theory of (overde-
termined) systems of partial differential equations. For general open sets Ω,
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however, it must be proved before Proposition 1.1 can be used (see Propo-
sition 3.3).

The reader is referred to Palamodov [32, 33] and Vogt [38] for the defi-
nition of the Proj1-functor. We do not need the definition here since we will
only use explicit criteria for the vanishing of the Proj1-functor of projec-
tive (DFS)-spectra (see Theorems 1.2 and 1.5 below). We briefly introduce
the corresponding notions and results in the form needed in this paper: Let
X = (Xk, R

k
j ) be a projective (DFS)-spectrum, that is, a projective spec-

trum of (DFS)-spaces Xk = limindj→∞ Xk,j with Banach spaces Xk,j and
compact inclusion mappings from Xk,j into Xk,j+1. Let Bk,j be the unit
ball in Xk,j . For X := limprojk→∞ Xk let Rk : X → Xk be the canonical
mapping.

A characterization of Proj1(X) = 0 has been obtained by Retakh [35].
We only need the necessity of a part of his criterion here:

Theorem 1.2 (Retakh [35, Theorem 3]). Let X be a projective (DFS)-
spectrum. If Proj1(X) = 0, then for any k ∈ N there is j ∈ N with j ≥ k
such that

Rkj (Xj) ⊂ Rk(X) +Bk,j .

In our concrete situation we have the following:

X := NΩ
P = (NP (Kk × {0}), Rkj )

and
NP (Kk × {0}) := limind

j→∞
NBP ((Kk × {0}) + V1/j),

where Vε := {z ∈ Rn+1 | |z| < ε} and for open V ⊂ Rn+1, NBP (V ) is the
Banach space

NBP (V ) := {f ∈ NP (V ) | f is bounded on V }.(1.7)

Our sufficient criterion for Proj1(X) = 0 is a variant of the results of
Braun and Vogt [9], Frerick and Wengenroth [11] and Wengenroth [39] (see
Theorem 1.5 below). There are two major differences as compared with
these papers: Firstly, we will use condition (P3) defined for the spectrum
X = (Xk, R

k
j ) as follows:

(P3) ∀µ ∃k ∀K ∃n ∀m ∃N,S : Rµk (Bk,m) ⊂ S(RµK(BK,N ) +Bµ,n).

Notice that the order of quantifiers for K and n has been changed compared
with condition (P2) which has been used in loc. cit. This weaker order of
quantifiers has apparently been overlooked, though the proofs of the corre-
sponding results from [9] needed here can be applied almost without change.
The use of (P3) is essential to obtain the sufficiency of the criterion (e)(ii)
of the Main Theorem 2.1.
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Secondly, we will use the following notion of sw-reducedness: The spec-
trum X = (Xk, R

k
j ) is called stepwise reduced (sw-reduced) if

∀j ∃L ≥ j ∀J ≥ j, ∀l ∃k : RjL(XL,l) ⊂ RjJ(XJ,k) +Bj,k.(1.8)

The author is indebted to P. Domański (Poznań) for suggesting this notion.
The statement in (1.8) implies that X is reduced in the sense of Braun

and Vogt ([9, p. 150]), that is,

∀N ∃L ∀K ≥ L : the closure of RNK(XK) in XN contains RNL (XL).(1.9)

The use of sw-reducedness will give Theorem 1.5 below and thus the im-
plication (a)⇒(b) in our Main Theorem 2.1. The statement in 2.1(b) is
important for the transition to the hyperfunction criterion in part (e)(ii) of
the Main Theorem 2.1.

We start with the following result translating the crucial points from
Braun and Vogt [9] to our situation:

Lemma 1.3. Let X = (Xk, R
k
j ) be reduced and satisfy (P3). Assume also

that :

(a) X satisfies the following condition (P3):

∀µ ∃k ∀K ∃n ∀m ∀ε > 0 ∃N,S : Rµk (Bk,m) ⊂ SRµK(BK,N ) + εBµ,n.

(b) Passing to a subsequence in X, for each fixed d ∈ N the following
condition (P3)′′ holds:

∀µ ∃n ∀m ∀ε > 0 ∃N,S : Rµ−1
µ (Bµ,m) ⊂ SRµ−1

µ+d(Bµ+d,N ) + εBµ−1,n.

Then there is an increasing sequence ñ(k) ∈ N such that for any k and
m there are Ñ(k,m) ∈ N and S̃(k,m) > 0 such that

Rk−1
k (Bk,m) ⊂ S̃(k,m)Rk−1

k+d(Bk+d,Ñ(k,m)) +Bk−1,(1.10)

where

Bj :=
j⋂

l=1

(Rlj)
−1(Bl,ñ(l)).

Proof. (a) This follows from the proofs of Braun and Vogt [9, Lemmata
9 and 5].

(b) Passing to a subsequence, we may assume that (P3) holds with k =
µ+ 1. This is then applied for K := µ+ d to obtain (P3)′′.

Since (1.10) is crucial for the present paper, we include its proof here for
the convenience of the reader, though it is mainly a notational variant of the
corresponding proof of [9, Lemma 7]: We define S̃, Ñ and ñ inductively for
k ≥ 2, using n(k), S(k,m, ε) and N(k,m, ε) from (P3)′′ for k instead of µ:
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S̃(k,m) := S(k,m, εk),

where ε2 := 1 and εk := 1/(2(1 + S̃(k − 1, n(k)))) for k ≥ 3,

Ñ(2,m) := N(2,m, 1),

Ñ(k,m) :=

{
N(k, Ñ(k − 1, n(k)), εk) if m < Ñ(k − 1, n(k))

N(k,m, εk) if m ≥ Ñ(k − 1, n(k))
for k ≥ 3,

ñ(1) := n(2),

ñ(k − 1) := max(n(k), Ñ(k − 1, n(k))) for k ≥ 3.

The claim for k = 2 then follows from (P3)′′. Let k ≥ 3 and assume that the
claim holds for k − 1. Let u ∈ Bk,m be given. By (P3)′′ we can decompose
Rk−1
k (u):

Rk−1
k (u) = Rk−1

k+d(vk−1) + uk−1(1.11)

for some

(1.12) vk−1 ∈ SBk+d,N(k,m,εk) and uk−1 ∈ εkBk−1,n(k).

By the induction hypothesis for m = n(k) we can decompose Rk−2
k−1(u):

Rk−2
k−1(uk−1) = Rk−2

k−1+d(vk−2) + ũk−2(1.13)

for some

(1.14) vk−2 ∈ εkS̃(k − 1, n(k))Bk−1+d,Ñ(k−1,n(k)) ⊂ 1
2Bk−1+d,Ñ(k−1,n(k))

(since εkS̃(k − 1, n(k)) ≤ 1/2) and some

ũk−2 ∈ εkBk−2.(1.15)

Let
uk−2 := uk−1 −Rk−1

k−1+d(vk−2).(1.16)

Then

uk−2 ∈ εkBk−1,n(k) + εkS̃(k − 1, n(k))Bk−1,Ñ(k−1,n(k)) ⊂ 1
2Bk−1,ñ(k−1)

by (1.12), (1.14) and the choice of ñ(k − 1). Moreover,

Rk−2
k−1(uk−2) = Rk−2

k−1(uk−1)−Rk−2
k−1+d(vk−2) = ũk−2 ⊂ 1

2Bk−2

by (1.13) and (1.15), since εk ≤ 1/2. Thus,

uk−2 ∈ 1
2Bk−1.(1.17)

By (1.11), (1.16), (1.12), (1.14) and (1.15) we get

Rk−1
k (u) = Rk−1

k−1+d(vk−1) + uk−1 = Rk−1
k+d(vk−1) +Rk−1

k−1+d(vk−2) + uk−2

∈ SRk−1
k+d(Bk+d,N(k,m,εk)) + 1

2R
k−1
k (Bk−1+d,Ñ(k−1,n(k)) + 1

2Bk−1

∈ SRk−1
k+d(Bk+d,N(k,m,εk)) + 1

2R
k−1
k (Bk,m) + 1

2Bk−1
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if m ≥ Ñ(k − 1, n(k)). This defines a decomposition

Rk−1
k (u) = Rk−1

k+d(x1) +Rk−1
k (y1) + w1

and by induction we can find

(1.18) xj+1 ∈ 2−jSBk+d,N(k,m,εk), yj+1 ∈ 2−j−1Bk,m, wj+1 ∈ 2−j−1Bk−1

such that

Rk−1
k (yj) = Rk−1

k+d(xj+1) +Rk−1
k (yj+1) + wj+1 for j ≥ 1.

Since Xk+d,N(k,m,εk) and Xk−1,ñ(k−1) are Banach spaces, the series

v :=
∑

j≥1

xj ∈ 2SBk+d,N(k,m,εk) and w :=
∑

j≥1

wj ∈ Bk−1,ñ(k−1)(1.19)

converge and we see as in [9], by (1.18), that w ∈ Bk−1. Then (1.19) implies
that

Rk−1
k (u) = Rk−1

k+d(v) + w ∈ 2SBk+d,N(k,m,εk) +Bk−1.

This ends the induction step since we have Bk,m ⊂ Bk,Ñ(k−1,n(k)) if m <

Ñ(k − 1, n(k)).

Theorem 1.4. If X is a reduced projective (DFS)-spectrum with (P3),
then Proj1(X) = 0.

Proof. Since X is reduced and satisfies (P3) we have

∀j ∃k ∀K ∃n : Rjk(Xk) ⊂ RjK(XK) +Bj,n

(use the proof of [9, Lemma 5]). Passing to a subsequence, we may thus
assume that X satisfies

∀k ∃n(k) : Rk−1
k (Xk) ⊂ Rk−1

k+2(Xk+2) +Bk−1,n(k)(1.20)

and also (by Lemma 1.3 for d = 3)

∀k,m : Rk−1
k (Bk,m) ⊂ Rk−1

k+3(Xk+3) +Bk−1,(1.21)

where

Bj :=
j⋂

l=1

(Rlj)
−1(Bl,ñ(l)).

We now proceed as in the proof of [9, Theorem 8], using (1.20) and (1.21):

Rk−2
k (Xk) ⊂ Rk−2

k+2(Xk+2) +Rk−2
k−1(Bk−1,n(k)) ⊂ Rk−2

k+2(Xk+2) +Bk−2.

Passing to the subsequence with even indices, for any k we thus get

Rk−1
k (Xk) ⊂ Rk−1

k+1(Xk+1) +Bk−1.

This implies that Proj1(X) = 0 (see the proof of Vogt [37, Theorem 4.4]).

We now consider the following situation: Let

0→ X→ Y
(Tk)−→ Z→ 0(1.22)
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be an exact sequence of projective (DFS)-spectra X = (Xk, Rkj ), Y =
(Yk,Rkj ) and Z = (Zk, Rkj ). Let X, Y and Z be the projective limits of X, Y
and Z, respectively, and let T : Y → Z be the mapping defined by (Tk).

Theorem 1.5. In the situation above, let X be sw-reduced and satisfy
(P3). Then for any sequence µ(j) ∈ N there is a sequence µ̃(j) ∈ N such
that the following holds: If g ∈ Z satisfies gj := Rj(g) ∈ Zj,µ(j) for any j,
then there is f ∈ Y such that

T (f) = g and Rj(f) ∈ Yj,µ̃(j) for any j.

Proof. (a) When proving Theorem 1.5 we may pass to equivalent projec-
tive (DFS)-spectra X̃ = (X̃k, R̃kj ), Ỹ = (Ỹk, R̃kj ) and Z̃ = (Z̃k, R̃kj ) defining

the projective limits X̃, Ỹ and Z̃ isomorphic to X, Y and Z, respectively.
(I) Suppose the statement is proved for the spectra X̃, Ỹ and Z̃ and the

mapping T̃ : Ỹ → Z̃ corresponding to T . Let

ϕ := (ϕjλ(j))j : Ỹ→ Y and Φ := (Φjλ(j))j : Y→ Ỹ

and
ψ := (ψjκ(j))j : Z̃→ Z and Ψ := (Ψ jκ(j))j : Z→ Z̃

define the respective equivalence maps. Let µ(j) and g ∈ Z be given such
that gj := Rj(g) ∈ Zj,µ(j) for any j. By Grothendieck’s lemma (Meise and
Vogt [30, 24.33]) there is ν(j) such that Ψ jκ(j)(R

κ(j)(g)) =: g̃j ∈ Z̃j,ν(j) for

any j. Now, (g̃j)j defines g̃ ∈ Z̃ and R̃j(g̃) = g̃j ∈ Z̃j,ν(j). Choose µ̃(j) for

ν(j) by the statement for X̃, Ỹ and Z̃ and then f̃ ∈ Ỹ such that T̃ (f̃) = g̃

and R̃j(f̃) ∈ Ỹj,µ̃(j) for any j. Again by Grothendieck’s lemma there is ν̃(j)
such that

fj := ϕjλ(j)(R̃
λ(j)(f̃)) ∈ Yj,ν̃(j) for any j.

Then (fj)j defines f ∈ Y , T (f) = g and Rj(f) = fj ∈ Yj,ν̃(j). The claim
thus holds for the spectra X, Y and Z with ν̃(j) instead of µ̃(j).

(II) Using the continuity of the equivalence maps and Grothendieck’s
lemma as in (I), one proves that (P3) and sw-reducedness are inherited
from X by the equivalent (DFS)-spectrum X̃.

(b) Passing to equivalent spectra, we may assume that the following
statements (i)–(iv) hold:

(i) Tj : Yj → Zj is continuous.

Since (1.22) is an exact sequence of spectra, we may assume that

Tj(Yj) ⊃ Rjj+1(Zj+1).

The mapping
T−1
j ◦Rjj+1 : Zj+1 → Yj/kerTj
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is continuous by the closed graph theorem for (DFS)-spaces. Since Yj/kerTj
is isomorphic to limindk(Yj,k

/
ker(Tj |Yj,k)), Grothendieck’s lemma implies

that for any k there is k̂ such that

T−1
j ◦Rjj+1 : Zj+1,k → Y

j,k̂
/ker(Tj |Y

j,k̂
) is continuous.

Thus, we have

(ii) ∀k ∃k̂ : Tj(Yj,k̂) ⊃ R
j
j+1(Zj+1,k).

Since (1.22) is exact at X, X is equivalent to a spectrum of linear sub-
spaces of (Yj). Since (1.22) is exact at Y, X is equivalent to the spectrum
(kerTk, Rkj ) (compare [38, remark before 1.3]). We may therefore assume
that

(iii) Xj = ker(Tj) with the step spaces induced by Yj.

Instead of the step spaces Xj,1,Xj,2, . . . for Xj we can also take the step
spaces 0, . . . , 0,Xj,1,Xj,2, . . . for Xj (with j times the null space in front,
similarly for Yj). Then passing to a subsequence (in the second index), we
may also assume that for any j ≥ k and any n,

Rkj (Xj,n) ⊂ Xk,n and Rkj (Yj,n) ⊂ Yk,n(1.23)

(see [9, (1)]). Passing to a subsequence (in the first index), we assume that
X satisfies (P3)′′ for d = 2 and also (since X is sw-reduced)

∀j, l ∃k : Rj−1
j (Xj,l) ⊂ Rj−1

j+1(Xj+1,k) +Bj−1,k.(1.24)

Now Lemma 1.3 gives

Rk−1
k (Bk,m) ⊂ S̃(k,m)Rk−1

k+2(Bk+2,Ñ(k,m)) +Bk−1(1.25)

⊂ Rk−1
k+2(Xk+2,Ñ(k,m)) +Bk−1,

where

Bj :=
j⋂

l=1

(Rlj)
−1(Bl,ñ(l)) ⊂ Bj,ñ(j).(1.26)

(iv) We have

∀j, l ∃k̃ : Rj−2
j (Xj,l) ⊂ Rj−2

j+1(X
j+1,k̃) + 2−jBj−2.(1.27)

Indeed, fix j and l and choose k by (1.24). Then (1.24) and (1.26) imply

Rj−2
j (Xj,l) = Rj−2

j−1(Rj−1
j (Xj,l)) ⊂ Rj−2

j−1(Rj−1
j+1(Xj+1,k) +Bj−1,k)

⊂ Rj−2
j+1(Xj+1,k) +Rj−2

j+1(Xj+1,Ñ(j−1,k)) +Bj−2

⊂ Rj−2
j+1(X

j+1,k̃) +Bj−2
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for k̃ := max(k, Ñ(j − 1, k)). Since Xj,l and X
j+1,k̃ are linear spaces, this

shows (1.27).

(c) Using the reductions and results from (b), we now start to prove the
theorem: Let µ(j) and g ∈ Z be as above. By (b)(ii) there are

fj ∈ Yj,µ1(j) such that Tj(fj) = Rjj+1(gj+1) = gj ,(1.28)

where µ1(j) ≥ µ(j + 1)∧ can be chosen increasing and gj := Rj(g). We now
prove by induction that for j ≥ 3 there are µ2(j) ∈ N with µ2(j) ≥ µ1(j+1)
and hj ∈ Xj,µ2(j) such that

Rj−2
j+1(fj+1 + hj+1)−Rj−2

j (fj + hj) ∈ 2−jBj−2.(1.29)

Let h3 := 0 and µ2(3) := µ1(4). If hj is chosen, we set F̃ := Rjj+1(fj+1) −
fj − hj and get F̃ ∈ Xj by (b)(iii) and (1.28) since hj ∈ Xj . Since fj+1 ∈
Yj+1,µ1(j+1) and hj ∈ Xj,µ2(j) we have F̃ ∈ Xj,µ2(j) by (1.23) since µ1(j) ≤
µ1(j + 1) ≤ µ2(j). By (1.27) we can thus find k̃ =: µ2(j + 1) ≥ µ1(j + 2)
and hj+1 ∈ Xj+1,µ2(j+1) such that

Rj−2
j (F̃ ) +Rj−2

j+1(hj+1) ∈ 2−jBj−2.

This shows (1.29).
(d) For j ≥ k ≥ 2 we have

Rkj (fj + hj)

= Rkk+2(fk+2 + hk+2) +
j−1∑

l=k+2

Rkl−2(Rl−2
l+1(fl+1 + hl+1)−Rl−2

l (fl + hl))

∈ Yk,µ2(k+2) +
j−1∑

l=k+2

2−lRkl−2(Bl−2) ⊂ Yk,µ2(k+2) +
( j−1∑

l=k+2

2−l
)
Bk

⊂ Yk,µ2(k+2) +
( j−1∑

l=k+2

2−l
)
Bk,ν(k)

by (1.23) and (1.26). Hence,

Fk := lim
j→∞

Rkj (fj + hj) exists in Yk,µ̃(k) for any k,

where µ̃(k) := max(µ2(k + 2), ν(k)). For l ≤ k we have

Rlk(Fk) = lim
j→∞

Rlk(R
k
j (fj + hj)) = lim

j→∞
Rlj(fj + hj) = Fl.
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Thus, (Fk)k defines F ∈ limprojk Yk = Y with Rk(F ) = Fk ∈ Yk,µ̃(k) for
any k. We have T (F ) = g since hj ∈ Xj = Ker(Tj) and therefore

Tk(Fk) = lim
j→∞

Tk(Rkj (fj + hj))

= lim
j→∞

Rkj (Tj(fj)) = lim
j→∞

Rkj (Rjj+1(gj+1)) = gk

by (1.28).

Notice that condition (P3) is weaker than Vogt’s condition (P2) from [37].
The latter condition follows from the surjectivity of T : Y → Z if X, Y and
Z are projective (DFS)-spectra and if Proj1(Y) = 0 (use Vogt [37, Theorems
5.2 and 2.7]). Assuming that X is sw-reduced, Theorem 1.5 thus provides an
automatic improvement on the solutions in this situation if the surjectivity
of T is known.

We will use Theorem 1.5 in Section 4 to prove that the weak technical
condition (AΩ) is sufficient for the surjectivity of P (D) on A(Ω). For this
we have to check first that the sequence (1.3) of projective spectra is exact.
Several equivalent criteria for this are given in Proposition 3.3, including the
condition (CΩ) which obviously follows from (AΩ). Next we have to show
that the kernel spectrum NΩ

P is sw-reduced (see Proposition 4.3, which is
based on Lemma 4.2). The main point however is to prove condition (P3)
for NΩ

P , which means that we have to prove a decomposition with bounds
in NΩ

P . This decomposition is obtained in Theorem 4.5, essentially by using
a cutting off procedure, which of course leads out of NΩ

P , and then repairing
this defect by means of the existence result for P (D) from Theorem 4.4,
which is the analytic core of this part of our results.

2. The characterization. In this section we will state the new char-
acterization of surjective partial differential operators on A(Ω) and prove
some direct applications. The proof of the Main Theorem 2.1 is postponed
to the subsequent sections. To state the theorem, we first introduce some
notation: Let

G(x, y) := −|(x, y)|1−n/((n− 1)cn+1)

be the canonical even elementary solution of∆ (see Hörmander [14, Theorem
3.3.2], and recall that n+ 1 ≥ 3). For T ∈ R let

U(Ω × {T}) := {V ⊂ Rn+1 | V is open and V ∩ (Rn × {T}) = Ω × {T}},
U(Ω) := U(Ω × {0}).

For δ > 0 let

Aδ(ω) := {f ∈ A(ω) | sup
x∈ω
|f (a)(x)|δ|a|/a! <∞}.
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The hyperfunctions on Ω can be defined by

B(Ω) := C̃∆(Ω × (R \ {0}))/C̃∆(Ω × R)(2.1)

(see Bengel [4] and Hörmander [14, Chapter IX]). Here C̃∆(V ) is the space
of harmonic functions on V which are even with respect to y.

Our characterization of surjective partial differential operators on A(Ω)
is contained in the following Main Theorem of this paper:

Theorem 2.1. Let Ω ⊂ Rn be open. The following statements are equiv-
alent :

(a) P (D) : A(Ω)→ A(Ω) is surjective.
(b) For any V ∈ U(Ω) there is W ∈ U(Ω) with W ⊂ V such that

P (D)C∆(W ) ⊃ C∆(V )|W .
(c) P (D) satisfies the following condition (AΩ): for any ω ⊂⊂ Ω there

is ω̃ ⊂⊂ Ω with ω̃ ⊃⊃ ω such that for any ω̂ ⊂⊂ Ω and any ξ ∈ ∂ω̃ there is
δ > 0 such that for any 0 < T ≤ δ there are V ∈ U(ω̂×{T}) and E ∈ C∆(X)
such that

P (D)E = G(· − ξ, ·) on X := V ∪ (ω × ]T − δ, T + δ[).(2.2)

(d) P (D) satisfies the following condition (AΩ): for any ω ⊂⊂ Ω there
are ω̃ ⊂⊂ Ω and δ > 0 such that for any ξ ∈ Ω \ ω̃ and any 0 < T ≤ 1 there
are V ∈ U(Ω × {T}) and E ∈ C∆(X) such that (2.2) holds.

(e) (i) For any g ∈ A(Ω) and any ω ⊂⊂ Ω there is f ∈ A(ω) such that

(2.3) P (D)f = g|ω.
(ii) P (D) satisfies the following condition (BΩ): for any ω ⊂⊂ Ω

there is ω̃ ⊂⊂ Ω with ω̃ ⊃⊃ ω such that for any ξ ∈ ∂ω̃ and
any ω̂ ⊂⊂ Ω there is F ∈ B(ω̂) such that

P (D)F = δξ on ω̂ and F |ω ∈ A(ω),

where δξ is the point evaluation at ξ.

(f) P (D) satisfies (e)(i) and the following condition (BΩ): for any ω ⊂⊂
Ω there are ω̃ ⊂⊂ Ω and δ > 0 such that for any ξ ∈ Ω\ω̃ there is F ∈ B(Ω)
such that

P (D)F = δξ on Ω and F |ω ∈ Aδ(ω).

(g) P (D) satisfies (e)(i) and the following condition: for any ω ⊂⊂ Ω

there are ω̃ ⊂⊂ Ω with ω̃ ⊃ ω and δ > 0 such that for any 0 < δ̂ ≤ δ there
is γ > 0 such that for any H ∈ B(Ω) with H|ω̃ ∈ Aδ̂(ω̃) there is F ∈ B(Ω)
such that

P (D)F = H on Ω and F |ω ∈ Aγ(ω).
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Condition (BΩ) is similar to a condition which is equivalent to the sur-
jectivity of P (D) on nonquasianalytic classes of ultradifferentiable functions
of Roumieu type (Langenbruch [22, 25, 23]).

The canonical elementary solution G of ∆ is used in (2.2) since G pro-
vides the basic isomorphism of C∆(K)′ and C∆,0(Rn+1 \K) in the Grothen-
dieck–Tillmann duality (see (3.3)).

Condition (BΩ) is an improvement of the necessary condition from Lan-
genbruch [24, Theorem 1.3], where a weaker notion of (shifted) elementary
solution was used.

The condition in Theorem 2.1(g) roughly means that the equation
P (D)F = H may be solved in B(Ω) respecting lacunas in the analytic
singular support. This corresponds to the characterization of surjectivity of
P (D) in nonquasianalytic Gevrey classes (see Langenbruch [22, Theorem
2.1(c)]).

We already used the necessary condition from Langenbruch [24, Theorem
1.3] to show that local hyperbolicity of the principal part Pm of P and hy-
perbolicity of the localizations of Pm at∞ are necessary for the surjectivity
of P (D) on A(Ω) in many situations (see Langenbruch [24, 26]).

In the following discussion of the Main Theorem we will therefore con-
centrate on obtaining weak forms of sufficient (or equivalent) conditions for
surjectivity and relate these to the corresponding results in the literature.

As a first consequence, we notice that condition (e)(i) is redundant if the
shifted elementary solutions F are defined on conv(ω̂):

Corollary 2.2. P (D) is surjective on A(Ω) if for any ω ⊂⊂ Ω there
is ω̃ ⊂⊂ Ω with ω̃ ⊃⊃ ω such that for any ω̂ ⊂⊂ Ω and any ξ ∈ ∂ω̃ there is
F ∈ B(conv(ω̂)) such that

P (D)F = δξ on conv(ω̂) and F |ω ∈ A(ω).

Proof. We show (AΩ): Let ω ⊂⊂ ω1 ⊂⊂ Ω. Choose ω̃ for ω1 by the
assumption. For ξ ∈ ∂ω̃, choose F ∈ B(ω̂1) for ω̂1 := conv(ω̂) by the
assumption. By the definition (2.1) of hyperfunctions, F is defined by some
F1 ∈ C̃∆(ω̂1 × (R \ {0})) such that for some H ∈ D′(ω̂1 × R) we have

P (D)F1 = H|ω̂1×(R\{0}) and ∆H = δ(ξ,0) on ω̂1 × R.(2.4)

Moreover, F2 := F1|ω̂1×]0,∞[ can be extended as a harmonic function to
V ∪ (ω̂1×]0,∞[) for some neighbourhood V ∈ U(ω1). Hence there is δ > 0
such that F2 can be uniquely extended to a harmonic function F3 defined
on

W := (ω × ]−δ,∞[) ∪ (ω̂1 × ]0,∞[).

By (2.4) there is h ∈ C∆(ω̂1×R) such that H = G(·−ξ, ·)+h. Since ∆h = 0
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and ω̂1 × R is convex, we may solve the overdetermined system{
P (D)g = h

∆g = 0
on ω̂1 × R(2.5)

by the fundamental principle of Ehrenpreis/Palamodov. E := F3−g|W then
satisfies

P (D)E = G(· − ξ, ·) on W

by harmonic continuation. Since

ω × ]T − δ/2, T + δ/2[ ⊂W ∈ U(ω̂ × {T})
for 0 < T ≤ δ/2, this shows (AΩ).

Corollary 2.3. Let Ω be convex. Then P (D) is surjective on A(Ω) iff
P (D) satisfies (BΩ) iff P (D) satisfies (BΩ).

Proof. The necessity follows from Theorem 2.1, the sufficiency follows
from Corollary 2.3 since ω̂ can be chosen convex.

The two main examples of convex open sets are Rn and a halfspace. We
state the respective conditions for these cases explicitly. Let

Uε(ξ) := {x ∈ Rn | |x− ξ| < ε} and Uε := Uε(0).

Example 2.4. P (D) is surjective on A(Rn) if and only if for any j ∈ N
there is k ∈ N such that for any ξ ∈ Rn with |ξ| ≥ k there is an elementary
solution F ∈ B(Rn) of P (D) such that F is real analytic on Uj(ξ).

Proof. The stated condition directly follows from (BRn) and it implies
(BRn). So the claim is a consequence of Corollary 2.3.

In the discussion of surjectivity of P (D) on A(Ω), operators with lo-
cally hyperbolic principal part Pm have been studied extensively. These are
defined as follows: Let

Sn−1 := {x ∈ Rn | |x| = 1}.
Definition 2.5. Pm is locally hyperbolic if for any Θ ∈ Sn−1 there are

N ∈ Sn−1 and δ > 0 such that for (x, z) ∈ Rn × C,

Pm(Θ + x+ zN) 6= 0 if |(x, z)| < δ and Im z 6= 0.

If Pm is locally hyperbolic at Θ with respect to N , then the localization
(Pm)Θ of Pm at Θ is hyperbolic with respect to N . Recall that (Pm)Θ is
defined by

(Pm)Θ := lim
s→0

(Pm(θ + sx)s−qθ),

where sqθ is the term of lowest order in the expansion of (Pm)Θ.
Let Γ ((Pm)Θ, N) be the component of N in {x ∈ Rn | (Pm)Θ(x) 6= 0}.

Then the dual cone of Γ ((Pm)Θ, N) is called the local propagation cone for
Pm at Θ and is denoted by K((Pm)Θ, N). Obviously, Pm is also locally
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hyperbolic with respect to N for any Θ̃ ∈ Sn−1 near Θ. Moreover, the
mapping Θ 7→ K((Pm)Θ, N) is locally upper semicontinuous, that is, for
any ε > 0 there is δ > 0 such that

Sn−1∩K((Pm)Θ̃, N) ⊂ Sn−1∩(K((Pm)Θ, N)+Uε) if |Θ−Θ̃| < δ.(2.6)

This means that K((Pm)Θ̃, N) is contained in a conic ε-neighbourhood of
K((Pm)Θ, N) if |Θ− Θ̃| < δ. The following basic result is due to Andersson
[1, Corollary 4.1] (use also the remark of Andersson [2, p. 2] and (2.6)).

Theorem 2.6. Let Pm be locally hyperbolic at any Θ ∈ Sn−1 with respect
to NΘ ∈ Sn−1. Then for any ε > 0 there are Θ1, . . . , Θk ∈ Sn−1 and a
fundamental solution F ∈ B(Rn) for P (D) which is analytic outside a conic
ε-neighbourhood of ⋃

j≤k
K((Pm)Θj , NΘj ).

Thus, if Pm is locally hyperbolic, for any x ∈ Sn−1 there is an elementary
solution F ∈ B(Rn) for P (D) such that

F is real analytic in a conic ε-neighbourhood Γ of x.(2.7)

Therefore, the criterion of Example 2.4 is satisfied if Pm is locally hyperbolic,
and P (D) is thus surjective on A(Rn). This is the result of Andersson [2]
who used (2.7) and some additional growth condition for E to get the result
by a decomposition of A(Rn) into a finite sum of real analytic functions
decaying sufficiently fast. In some sense, Example 2.4 thus turns the part
(2.7) of the sufficient criterion of Andersson into a characterization. Notice
that for n ≥ 4 there are operators which are surjective on A(Rn) though Pm
is not locally hyperbolic (Hörmander [13]).

We now discuss the case of halfspaces: For 0 6= η ∈ Rn, k ∈ ]0,∞] and
ε ∈ R let

H(η)ε,k := {x ∈ Uk | 〈x, η〉 > ε},
where H(η) := H(η)0,∞ is the halfspace defined by η.

Example 2.7. P (D) is surjective on A(H(η)) if and only if P (D) sat-
isfies (BRn) (or (BRn)) and for any ε > 0 there is δ < 0 such that for any
k ∈ N there is an elementary solution F ∈ B(H(η)δ,k) of P (D) such that F
is real analytic on H(η)ε,1/ε.

Proof. “⇒” P (D) is surjective on A(Rn) by Hörmander [13], hence (BRn)
holds by Theorem 2.1, and Theorem 2.1 also implies (BH(η)). The second
condition now follows from (BH(η)).

“⇐” By Corollary 2.3 we have to show (BH(η)). Let ω ⊂⊂ H(η). By

(BRn) there is C > 0 such that for any ξ ∈ ∂UC and any k ∈ N there is
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F ∈ B(Uk) such that

P (D)F = δξ on Uk and F |ω ∈ A(ω).

Choose 0 < ε ≤ 1 such that

H2ε,1/ε ⊃⊃ ω + {x ∈ UC | 〈x, η〉 = 0} =: ω + ŨC(2.8)

and then choose 0 < δ < ε and F̃ ∈ B(H(η)−δ,k) for k ∈ N by the assump-
tion. For x ∈ ŨC we set ξ := δη + x and Fξ := F̃ (· − ξ). Then Fξ is defined
on H(η)0,k−C ,

P (D)Fξ = δξ on H0,k−C and F |ω ∈ A(ω)

by (2.8). This proves (BH(η)) for ω̃ := H(η)δ,C .

Condition (BRn) cannot be omitted in Example 2.7, since it does not
follow from the second condition. Indeed, the canonical elementary solution
of the heat operator P (D) :=

∑
j≤n−1 ∂

2
j −∂n vanishes on H(en), so the sec-

ond condition in Example 2.7 is clearly satisfied, but P (D) is not surjective
on A(Rn) for n ≥ 3.

We now come to a sufficient criterion in the spirit of the results of Kawai
[18], Kaneko [15–17] and Zampieri [42], involving only a condition for the
boundary points of Ω.

Theorem 2.8. P (D) is surjective on A(Ω) if P (D) satisfies (BRn) and
if for any ζ ∈ ∂Ω and any ω ⊂⊂ Ω there are a convex neighbourhood U of
Ω and Fζ ∈ B(U) such that

P (D)Fζ = δζ on U and Fζ |ω ∈ A(ω).

If Ω is bounded , condition (BRn) can be omitted.

Proof. We check the condition of Corollary 2.2. Fix ω ⊂⊂ Ω. By Theo-
rem 2.1, P (D) satisfies (BRn), hence there is C > 0 such that for any ξ ∈ ∂UC
there is F ∈ B(Rn) such that P (D)F = δξ and F |ω ∈ A(ω). Therefore, the
condition of Corollary 2.2 must be checked only for those points ξ ∈ Ω∩UC

which are near the boundary. But for these, suitable hyperfunctions are
provided by small shifts of Fζ for ζ ∈ ∂Ω from the assumption.

Corollary 2.9. P (D) is surjective on A(Ω) if for any ζ ∈ ∂Ω and any
Θ ∈ Sn−1 there is NΘ,ζ ∈ Sn−1 such that Pm is locally hyperbolic at Θ with
respect to NΘ,ζ and

(ζ +K((Pm)Θ, NΘ,ζ)) ∩Ω = ∅.(2.9)

Proof. Since Pm is locally hyperbolic, P (D) satisfies (BRn) by (2.7). Fix
ω ⊂⊂ Ω and ζ ∈ ∂ω. By (2.9) we may choose a conic neighbourhood Γ of⋃
Θ∈Sn−1 K((Pm)Θ, NΘ,ζ) such that

(ζ + Γ ) ∩ ω = ∅.(2.10)
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By Theorem 2.6 there is an elementary solution F̃ ∈ B(Rn) for P (D) such
that F̃ is real analytic on Rn \ Γ , hence F := F̃ (· − ζ) is real analytic on ω
by (2.10). Thus P (D)A(Ω) = A(Ω) by Theorem 2.8.

The first results in the direction of Corollary 2.9 are due to Kawai [18].
For bounded Ω, the result is due to Kaneko [16] (see also Kaneko [17]) using
the approach of Kawai.

For convex Ω, Corollary 2.9 was proved by Zampieri [42] using Hörman-
der’s approach. For nonconvex Ω, a different proof was given by Zampieri
[43, Theorem 2.1] in the special case where Pm decomposes into an elliptic
and a hyperbolic factor.

The case of unbounded Ω was considered by Kaneko [15] using Fourier
hyperfunctions. Additionally to the pointwise condition (2.9) he needed cer-
tain extra assumptions including boundary points at ∞, i.e. points in the
closure of ∂Ω in the directional compactification Dn of Rn (see Kaneko [16,
Section 3]). These assumptions are redundant, since we only need shifted
elementary solutions which are real analytic on ω ⊂⊂ Ω (and not on Ω), so
(2.6) and Theorem 2.6 are sufficient in our approach.

As an easy example we now consider operators of real principal type. Re-
call that P (D) is an operator of principal type if Pm is real and if gradPm(θ)
6= 0 whenever 0 6= θ ∈ Rn and Pm(θ) = 0. The set of bicharacteristic direc-
tions is then defined by

BD(P ) := {ξ ∈ Rn | ξ = gradPm(θ) for some 0 6= θ ∈ Rn with Pm(θ) = 0}.
Notice that operators of real principal type are locally hyperbolic with local
propagation cones

K((Pm)θ, gradPm(θ)) = ±[0,∞[ gradPm(θ).

b(x,ξ) := x+ ξR is called a bicharacteristic line if x ∈ Rn and ξ ∈ BD(P ).

Example 2.10. Let P (D) be an operator of real principal type. Then
P (D) is surjective on A(Ω) if any bicharacteristic line b(x,ξ) issuing from
x ∈ ∂Ω intersects Ω in an interval.

Proof. The statement is obvious from Corollary 2.9 and the remarks
above.

The example improves on the corresponding results of Kawai [18, The-
orem 3.1] and Kaneko [15, 16]. The example includes many classical oper-
ators, e.g. the wave equation P (D) := ∂2

n −
∑n−1

j=1 ∂
2
j , the ultrahyperbolic

operator P (D) := ∂2
1 + ∂2

2 − ∂2
3 − ∂2

4 (for n = 4) and Zeylon’s operator
P (D) =

∑n
j=1 ∂

3
j .

In fact, our results improve on those of Kaneko [15] already in the case
of two variables, where we obtain the following characterization of Zampieri
[41, 43] (for bounded open sets see Kawai [18, Theorem 5.7]):
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Corollary 2.11. The following are equivalent for an open set Ω ⊂ R2:

(a) P (D) is surjective on A(Ω).
(b) Every characteristic line intersects Ω in an interval.

Proof. (a)⇒(b). Since P (D) is surjective on A(Ω), Ω is P -convex for
supports by Zampieri [40]. Hence, (b) follows from Hörmander [14, Theorem
10.8.3].

(b)⇒(a). Since n = 2, any Pm is locally hyperbolic, and the notions of a
characteristic line and of the union of the positive and negative propagation
cones coincide. Hence, the assumptions of Corollary 2.9 are satisfied by (b),
and P (D) is surjective on A(Ω) by that corollary.

In a remark on p. 345 of [15], Kaneko noticed that the results of that
paper are not sufficient to show that the operator P (D) = D1 is surjective
on A(Ω) for Ω := {x ∈ R2 | x1 < −x2

2}, while this result clearly follows
from Corollary 2.11 (or integration).

At the end of his paper [16], Kaneko conjectured that condition (2.9)
was also necessary for surjectivity of P (D) on A(Ω) if Ω is bounded. The
following example shows that this is not true:

Example 2.12. For t ∈ R let γ(t) := (cos(t), sin(t)). Let Ω̃ be the spiral
in R3 defined by the disjoint (!) union

Ω̃ :=
⋃

t∈R
(γ(t)]1/2, 2[× ]t− 1, t+ 1[)

and let
Ω := {x ∈ Ω̃ | 0 < x3 < 10}.

Then P (D) := D3 is surjective on A(Ω) though (2.9) is not satisfied.

Proof. The latter statement is obvious (consider ζ = (1, 0, 1/2)). To
prove surjectivity, we set

g(x) := i

x3�

tx

f(x1, x2, ξ) dξ for x ∈ Ω and f ∈ A(Ω),

where tx is the unique real number such that x ∈ γ(tx)]1/2, 2[×]tx−1, tx+1[.
Then g is defined and real analytic on Ω and D3g = f .

Example 2.12 also shows that the existence of elementary solutions de-
fined on conv(ω̂) as in Corollary 2.2 rather than on ω̂ as in (BΩ) is also
not necessary for surjectivity. In fact, let (1, 0, 1/2), (1, 0, 2π) ∈ ω ⊂⊂ Ω
and let ξ := (1, 0, 1 − ε) ∈ ω̂ ⊂⊂ Ω. Then conv(ω̂) contains a column
C := Bε(1, 0)× [1/2, 2π] for large ω̂. Let F ∈ B(conv(ω̂)) be as in Corollary
2.2. Then F is a hyperfunction zerosolution of D3 on C \ {ξ}, hence locally
constant with respect to x3. Since F is real analytic near (1, 0, 1/2) and
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(1, 0, 2π), F is real analytic on U \ {ξ} for a neighbourhood U of ξ. Sub-
tracting the usual shifted elementary solution E := δ(0,1) ⊗ χ[1−ε,∞[ we see
in the same way that E is real analytic near ξ (except at ξ), a contradiction.

The methods and results from this paper are used in Langenbruch [27]
to show several inheritance properties for surjectivity of partial differential
operators on spaces of real analytic functions. We show that surjectivity is
inherited similarly to the case of operators on C∞-functions. More precisely,
if P (D) is surjective on A(Ωj) for any j ∈ J then P (D) is surjective on A(Ω)
for

Ω :=
( ⋂

j∈J
Ωj

)◦

and
Ω := lim inf

j

◦Ωj

:= {ξ ∈ Rn | ∃ε > 0 : Bε(ξ) ⊂ Ωj for all but finitely many j}.
Also, if P (D) is surjective on A(Ω), then P (D) is surjective on A(Ωε) for
any ε > 0, where

Ωε := {ξ ∈ Ω | dist(ξ, ∂Ω) > ε}.
As the main result of [27], we obtain

Theorem 2.13. P (D) is surjective on A(Rn) if P (D) is surjective on
A(Ω) for some Ω 6= ∅.

For convex Ω, this is one of the main results of Hörmander [13], while
the question had been open for general Ω.

As already mentioned in the introduction, the heat equation was the
first example of a nonsurjective partial differential operator on A(Rn) (for
n ≥ 3). By Theorem 2.13 we obtain the following improvement of this
classical result:

Example 2.14. Let n≥3 and let Pm(x) :=
∑k

j=1 ∂
2
j for some 1<k<n.

Then there is no open set Ω ⊂ Rn such that P (D) is surjective on A(Ω).

Of course, this example also applies to the Schrödinger equation.

3. Necessity. In this section, we consider condition (AΩ) defined as
follows: For any ω ⊂⊂ Ω there are ω̃ ⊂⊂ Ω and δ > 0 such that for any
ξ ∈ Ω \ ω̃ and any 0 < T ≤ 1 there are V ∈ U(Ω × {T}) and Eξ ∈ C∆(W ),
W := V ∪ (ω × ]T − δ, T + δ[), such that

P (D)Eξ = G(· − ξ, ·)|W .
Clearly, (AΩ) is stronger than (AΩ) from the Main Theorem 2.1 and we
will show in this section that (AΩ) holds if P (D) is surjective on A(Ω) (see
Theorem 3.4).
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To this end, we will first discuss the operator P (D) on C∆(Q) for a com-
pact set Q ⊂ Rn+1. We introduce the Grothendieck duality and condition
(CΩ) which is equivalent to the exactness of the sequence (1.3) of spectra.
Since (CΩ) is clearly weaker than (AΩ), it can also be used in the sufficiency
proof in the next section. The section ends with the proof of the necessity
of (AΩ).

It is clear from the remarks in Section 1 that we will have to consider
the operator

P (D) : C∆(Q)→ C∆(Q)

for compact nonconvex sets Q ⊂ Rn+1. We start with some corresponding
auxiliary results. Since the Laplacian is elliptic, C∆(Rn+1) is dense in C∆(Q)
for any compact set Q ⊂ Rn+1 such that

Rn+1 \Q does not have a bounded component(3.1)

(see e.g. Hörmander [14, Corollary 10.5.3]). If L ⊂ Q is compact and also
satisfies (3.1), we can thus identify C∆(L)′ with a subset of C∆(Q)′. This
identification will be frequently used.

To solve the equation P (D)f = g for g ∈ C∆(Q) by means of the Hahn–
Banach theorem (see Remark 3.1 below) we need an appropriate represen-
tation for C∆(Q)′b. This is provided by the Grothendieck–Tillmann duality
(which is also the reason why we have to use the canonical elementary so-
lution G of ∆ in (AΩ) since G defines the canonical isomorphism in the
duality): For Q ⊂ Rn+1 compact let

C∆,0(Rn+1 \Q) := {f ∈ C∆(Rn+1 \Q) | lim
ξ→∞

f(ξ) = 0}

endowed with the topology of C(Rn+1\Q). Then C∆,0(Rn+1\Q) is a Fréchet
space. Furthermore,

C(V \Q) also induces the topology of C∆,0(Rn+1 \Q)(3.2)

if V is an open neighbourhood of Q. Let

κ(µ)(x, y) := uµ(x, y) := 〈µ(s,t), G(s− x, t− y)〉 for µ ∈ C∆(Q)′b.

Then we have the topological isomorphisms

κ : C∆(Q)′b → C∆,0(Rn+1 \Q) ∼= C∆(Rn+1 \Q)/C∆(Rn+1)(3.3)

by the Grothendieck–Tillmann duality (Grothendieck [12, Theorem 4], Man-
tovani and Spagnolo [28], Tillmann [36, Satz 6]).
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A first application of (3.3) is contained in the following remark, which
will be frequently used. For compact sets Q ⊂ L ⊂ Rn+1 let

RKL : C∆(L)→ C∆(Q)

be the canonical mapping defined by restriction.

Remark 3.1. Let Q ⊂ L ⊂ Rn+1 be compact sets satisfying (3.1). Then

P (D)C∆(Q) ⊃ RQL (C∆(L))

if there is a neighbourhood V of L such that for any compact set J ⊂ V \ L
there is a bounded set B ⊂ C∆(Q) such that for any µ ∈ C∆(Q)′,

sup
(x,y)∈J

|uµ(x, y)| ≤ C sup
f∈B
|〈P (−D)µ, f〉|.(3.4)

Proof. The mapping P (−D) : C∆(Q)′ → C∆(Q)′ is injective by (3.4)
and (3.3). Moreover,

T := tRQL ◦ P (−D)−1 : H := P (−D)C∆(Q)′ → C∆(L)′

is continuous by (3.4) and (3.2) if H is endowed with the topology of C∆(Q)′.
Indeed,

uT (P (−D)µ) = uµ|Rn+1\L.

For g ∈ C∆(L), the mapping

h : H → C, P (−D)µ 7→ 〈µ, g〉,
is therefore continuous and can be extended to h̃ ∈ C∆(Q)′′ = C∆(Q) by the
Hahn–Banach theorem since C∆(Q) is a (DFS)-space and hence reflexive.
Then P (D)h̃ = RQL (g) since

〈µ, P (D)h̃〉 = 〈P (−D)µ, h̃〉 = h(P (−D)µ) = 〈µ, g〉 for µ ∈ C∆(Q)′.

A standard estimate for uµ is provided by the following basic

Remark 3.2. Let Q ⊂ Rn+1 be compact with (3.1). For any compact set
L ⊂ Rn+1 \ conv(Q) there is a bounded set B ⊂ C∆(Q) such that for any
µ ∈ C∆(Rn+1)′ with P (−D)µ ∈ C∆(Q)′ we have µ ∈ C∆(conv(Q))′ and

sup
(x,y)∈L

|uµ(x, y)| ≤ C sup
f∈B
|〈P (−D)µ, f〉|.

Proof. (a) By assumption, µ ∈ C∆(J)′ for some compact convex set
J ⊂ Rn+1. For w ∈ Rn+1 let

Vw := {z ∈ Rn+1 | 〈z, w〉 > 0}.
Since Vw is convex, there is Ew ∈ C∆(Vw) such that P (D)Ew = G|Vw (as in
(2.5)). For z ∈ Rn+1 with 〈z, w〉 sufficiently small we get

uµ(z) = 〈µη, G(η − z)〉 = 〈µη, P (D)Ew(η − z)〉(3.5)

= 〈P (−D)µ,Ew(η − z)〉 =: vµ(z).
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Then vµ defines a harmonic function on

Ww,c(w) := {z ∈ Rn+1 | 〈z, w〉 < c(w)},
where c(w) := inf{〈w, η〉 | η ∈ Q}. By the identity theorem, uµ can thus be
extended as a harmonic function on Rn+1 \ conv(Q), i.e. µ ∈ C∆(conv(Q))′b
by (3.3).

(b) For each compact convex set L ∈ Rn+1,

P (D) : C∆(L)→ C∆(L) is surjective.

Since C∆(L) is a (DFS)-space, this implies that P (−D) : C∆(L)′b → C∆(L)′b
is a topological isomorphism onto its range. The claim now follows from (3.3)
since C∆(Q)′b is continuously embedded in C∆(conv(Q))′b.

The exactness of the sequence (1.3) of spectra can now be characterized
as follows: For a compact set K ⊂ Ω let RK : C∆(Ω × R)→ C∆(K) be the
canonical mapping defined by restriction. Let I(δ) := ]−δ, δ[ for δ > 0.

Proposition 3.3. The following are equivalent :

(a) For any compact set K ⊂ Ω,

P (D)C∆(K × {0}) ⊃ RK(C∆(Ω × R)).

(b) The following condition (CΩ) holds: for any ω ⊂⊂ Ω there are ω̃ ⊂⊂
Ω and δ > 0 such that for any ξ ∈ Ω\ω̃ there is Eξ ∈ C∆(W ), W := ω×I(δ),
such that

P (D)Eξ = G(· − ξ, ·)|W .(3.6)

(c) The following condition (CΩ) holds: for any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω
with ω ⊂⊂ ω̃ such that for any ξ ∈ ∂ω̃ there are δξ > 0 and Eξ ∈ C∆(W ),
W := ω × I(δξ), satisfying (3.6).

(d) For any compact set K ⊂ Ω there is a compact set J ⊂ Ω with
K ⊂ J such that

P (D)C∆(K × {0}) ⊃ RKJ (C∆(J × {0})).
(e) The sequence (1.3) of projective spectra is exact.

Proof. The statements in (d) and (e) are equivalent by the definition
(1.4). Similarly, (d) clearly implies (a).

(a)⇒(b). For K := ω the mapping

T := P (D)−1 ◦RK : C∆(Ω × R)→ C∆(K × {0})/kerP (D)

is defined by (a) and continuous by the closed graph theorem. The lat-
ter space is a (DFS)-space with step spaces Yk := BC∆((K + U1/k) ×
I(1/k))/kerP (D) of bounded harmonic functions. Thus, there is k ∈ N
by Grothendieck’s lemma (Meise and Vogt [30, 24.33]) such that

T : C∆(Ω × R)→ Yk is continuous.
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Also, there are C, c > 0 and ω1 ⊂⊂ Ω that

‖T (f)‖Yk ≤ C sup
x∈ω1, |y|<c

|f(x, y)| for f ∈ C∆(Ω × R).

Since C∆(Ω × R) is dense in C∆(ω1 × I(c)) by (3.1), T can be uniquely
extended to a continuous mapping T̃ : C∆(ω1 × I(c)) → Yk which also
satisfies

P (D)g = f |ω×I(1/k)

if T̃ (f) = [g] ∈ Yk. This shows (b) for ω̃ ⊃⊃ ω1 since then G(· − ξ, ·) ∈
C∆(ω1 × I(c)) if ξ 6∈ ω̃.

(c)⇒(d). By Remark 3.1, we have to estimate uµ suitably for µ ∈
C∆(K×{0})′. By Remark 3.2 for any compact set L ⊂ Rn+1\(conv(K)×{0})
there is a bounded set B1 ⊂ C∆(K × {0}) such that

sup
(x,y)∈L

|uµ(·, y)| ≤ C sup
f∈B1

|〈P (−D)µ, f〉|.(3.7)

Choose ε > 0 such that ω1 := K + Uε ⊂⊂ Ω. Choose ω̃ ⊃⊃ ω1 for ω1 by
(c) and set J := ω̃. We may assume that X := ω̃ + Uε ⊂⊂ Ω. For ξ ∈ ∂ω̃
choose δξ < ε and Eξ ∈ C∆(ω1× I(δξ)) by (CΩ). For (x, y) ∈ Uδξ × I(δξ) we
then get

uµ(x+ ξ, y) = 〈µ(s,t), G(s− x− ξ, t− y)〉
= 〈µ(s,t), P (D)Eξ(s− x, t− y)〉
= 〈P (−D)µ(s,t), Eξ(s− x, t− y)〉.

Choose ξ1, . . . , ξλ ∈ ∂ω̃ such that W :=
⋃
j≤λ Uδξj (ξj) ⊃ ∂ω̃ and let δ :=

min(δξ1 , . . . , δξλ)/2. Then

sup
(x,y)∈W×I(δ)

|uµ(x, y)| ≤ sup
f∈B
|〈P (−D)µ, f〉|,(3.8)

where

B := {Eξj (· − x− ξj , · − y) | j ≤ λ, |y| ≤ δ, |x− ξj | ≤ δξj}
is bounded in C∆(K × {0}) since K +Uδξj ⊂⊂ ω1. The claim in (d) follows
from (3.7) and (3.8) by Remark 3.1.

We now come to the main result of this section.

Theorem 3.4. Let P (D): A(Ω)→ A(Ω) be surjective. Then P (D) sat-
isfies (AΩ).

Proof. (i) Since P (D) is surjective on A(Ω), P (D) satisfies (CΩ) and
the sequence (1.3) of projective spectra is exact by Proposition 3.3. By
Proposition 1.1 we therefore know that Proj1NΩ

P = 0.
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(ii) Let {Kk | k ∈ N} be an increasing compact exhaustion of Ω. Then
NΩ
P = (Xk, R

k
j ) = (NP (Kk), Rkj ) is a projective (DFS)-spectrum with

Xk = limind
d

Xk,d := limind
d

NBP (Kk + V1/d)

(see (1.7)). For ω ⊂⊂ Ω choose Kk ⊃⊃ ω. Theorem 1.2 of Retakh implies
that there is j ≥ k such that

Rkj (NP (Kj × {0})) ⊂ Rk(NP (Ω × {0})) +NBP (Kk + V1/j).(3.9)

Let Kj ⊂⊂ ω1 ⊂⊂ Ω and choose ω̃ ⊂⊂ Ω and δ > 0 for ω1 by (CΩ). For
ξ ∈ Ω \ ω̃ and T > 0 the equation

P (D)F = G(· − ξ, ·)(3.10)

thus has solutions f ∈ C∆(ω1× I(δ)) by (CΩ) and fT ∈ C∆(Ω ×{T}) since
P (D) is surjective on A(Ω). Set

g := f − fT ∈ NP (Kj × {T}).
By (3.9) there are V ∈ U(Ω × {T}), g1 ∈ NP (V ), g2 ∈ NBP (ω × ]T − 1/j,
T + 1/j[) and 0 < γ < δ1 := min(δ, 1/j)/2 such that g = g1 − g2 on
ω × ]T − γ, T + γ[ (since ω ⊂ Kk). We may assume that fT ∈ C∆(V )
and ω × ]T − γ, T + γ[ = V ∩ (ω × R). For T < δ1, fT + g1 ∈ C∆(V )
and f + g2 ∈ C∆(ω × ]T − δ1, T + δ1[) then coincide on V ∩ (ω × ]T − δ1,
T + δ1[) = ω × ]T − γ, T + γ[. They thus define a solution E of (3.10) on
V ∪ (ω × ]T − δ1, T + δ1[). This proves (AΩ).

We will show at the end of Section 4 that (AΩ) is equivalent to the
surjectivity of P (D) on A(Ω).

Notice that the choice of δ in (AΩ) is uniform as in condition (BΩ) from
Theorem 2.1. However, since T > 0 in (AΩ), the functions Eξ coming from
(AΩ) are not hyperfunctions (in contrast to the elementary solutions Fξ
from (BΩ)).

4. Sufficiency. In this section we will consider condition (AΩ) from
Theorem 2.1(c), i.e.: for any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω with ω ⊂⊂ ω̃ such
that for any ω̂ ⊂⊂ Ω and any ξ ∈ ∂ω̃ there is δ > 0 such that for any 0 < T ≤
δ there are V ∈ U(ω̂×{T}) and E ∈ C∆(W ), W := V ∪ (ω× ]T − δ, T + δ[),
such that

P (D)E = G(· − ξ, ·)|W .
At the end of this section we will prove a first characterization of the sur-
jectivity of P (D) on A(Ω) including condition (AΩ) and part of the Main
Theorem 2.1 (see Theorem 4.6). The main tool in the proof of Theorem
4.6 will be Theorem 1.5, so this section is largely devoted to verifying the
assumptions of that theorem in our concrete situation.
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Our first aim is to prove that the spectrum NΩ
P is sw-reduced (see Propo-

sition 4.3 below). For this, we need two auxiliary results:

Lemma 4.1. Let P (D) satisfy (AΩ).

(a) The sequence (1.3) of projective spectra is exact.
(b) Ω is P -convex for supports.

Proof. (a) Condition (AΩ) clearly implies (CΩ) from Proposition 3.3.
Hence, the claim follows from Proposition 3.3.

(b) This follows from (a) by Zampieri [40, Theorem 1].

Lemma 4.2. Let Ω be P -convex for supports and let P (D) be nonelliptic.
For any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω such that for any µ ∈ C∆(Rn+1)′ the
following holds: If ν := P (−D)µ ∈ C∆(ω×R)′ and if there are δ > 0 and a
neighbourhood Z of ∂ω such that uµ can be extended as a harmonic function
from above to Z × ]−δ,∞[ (and from below to Z × ]−∞, δ[, respectively),
then µ ∈ C∆(ω̃ × R)′.

Proof. The proof relies on the theory of distributional and formal bound-
ary values of harmonic functions (see e.g. Langenbruch [20, 21]).

(i) By hypothesis we may assume that uµ is defined on V := Z×(R\{0})
and that uµ|V can be extended as a distribution (again denoted by uµ) to
Z × R such that

∆uµ = g0 ⊗ δy + g1 ⊗ ∂yδy on Z × R,(4.1)

where
gj ∈ A(Z) and P (−D)gj = 0 on Z for j = 0, 1,(4.2)

since we may assume that

P (−D)uµ = uν ∈ C∆(((Rn \ ω) ∪ Z)× R).(4.3)

(ii) We first cut off uµ appropriately: Choose ϕ ∈ C∞(Rn) such that
ϕ = 1 on a neighbourhood U of Rn \ ω and ϕ = 0 near ω \ Z. Since ∆ is
elliptic, we can choose w ∈ D′((ω ∪ Z)× R) such that

∆w = (ϕg0)⊗ δy + (ϕg1)⊗ ∂yδy on (ω ∪ Z)× R.(4.4)

Then uµ − w ∈ C∆(((ω ∪ Z) ∩ U) × R) and therefore there are a compact
set Q ⊂ Rn+1 and v ∈ C∆(Rn+1 \Q) such that

v − uµ ∈ C∆(U × R) and v − w ∈ C∆((ω ∪ Z)× R).(4.5)

By (3.3) we may assume that

v = uλ for some λ ∈ C∆(Rn+1)′.(4.6)

(iii) Let F : H(Cn)2 → C∆(Rn+1) be the canonical isomorphism defined
via the solution of the Cauchy problem for ∆ with data on Rn × {0}. Then

〈%, (f0, f1)〉 := 〈λ, F (f0, f1)〉
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defines % = (%0, %1) ∈ (H(Cn)′)2 and

P (−D)%j = P (−D)(ϕgj) =: g̃j ∈ C∞0 (ω \ U) for j = 0, 1(4.7)

by (4.2)–(4.6). By Fourier transformation and Malgrange’s lemma (Hörman-
der [14, Lemma 7.3.3]) we thus have %j ∈ C∞0 (Rn).

With λ̃ := (%0 ⊗ δy + %1 ⊗ ∂yδy) ∈ C∆(Rn+1)′ we therefore get

〈λ, F (f0, f1)〉 = 〈%, (f0, f1)〉 = 〈λ̃, F (f0, f1)〉 for any (f0, f1) ∈ H(Cn)2,

that is, λ = λ̃, and by (4.6), v can be extended to Rn+1 as a distribution
(denoted by v again) such that

∆v = %0 ⊗ δy + %1 ⊗ ∂yδy.(4.8)

This implies by (4.1) and (4.5) that

%j = gj is real analytic on Z ∩ U.(4.9)

(iv) %j is real analytic on U . Indeed, choose Φ ∈ C∞(Rn) such that
Φ = 1 on a neighbourhood X of U \ Z and Φ = 0 near ω \ U . Let H be a
distributional elementary solution for P (−D). For x ∈ X and a ∈ Nn0 we
then get

%
(a)
j (x) = Φ(x)%(a)

j (x) = (H ∗ P (−D)(Φ%(a)
j ))(x)(4.10)

=
∑

0<|b|≤m
(H ∗ (P (b)(−D)%(a)

j DbΦ))(x)(−1)|b|/b!,

since
(P (−D)%(a)

j )Φ = g̃
(a)
j Φ = 0

by (4.7) and the choice of Φ. The claim follows from (4.9) and (4.10), since
supp gradΦ ⊂ Z ∩ U .

(v) Since Ω is P -convex and P is nonelliptic, Rn+1 \Ω does not have a
bounded component. Since %j has compact support, we thus conclude from
(iv) that supp %j ⊂ Ω. Since Ω is P -convex and suppP (−D)%j = supp g̃j ⊂
ω, there is ω̃ ⊂⊂ Ω such that supp %j ⊂ ω̃. This proves the lemma by
(4.5)–(4.8).

Proposition 4.3. Let P (D) satisfy (AΩ).

(a) For any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω with ω ⊂⊂ ω̃ such that for
any ω̂ ⊂⊂ Ω with ω̃ ⊂⊂ ω̂ there is β > 0 such that for any 0 < τ < β,
NP (ω̃ × I(τ))|ω×I(τ) is contained in the closure of NP (ω̂ × I(τ))|ω×I(τ) in
NP (ω × I(τ)).

(b) NΩ
P is sw-reduced.

Proof. (a) (I) Let P (D) be elliptic and let

C∞P (U) := {f ∈ C∞(U) | P (D)f = 0}.
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Then there is C > 0 such that for any ε > 0,

(4.11) sup
a
|f (a)(0)|ε|a|/(a!C |a|) ≤ C1 sup

|x|≤ε
|f(x)|

if f ∈ C∞P (Vε) is bounded.

Let
ωB := {(x, y) ∈ ω × R | |y| < B dist(x, ∂ω)}.

Inequality (4.11) implies that there is B > 0 such that for any ω ⊂⊂ Rn,

C∞P (ω)2 = Np(ωB),(4.12)

where the isomorphism is provided by the solution of the Cauchy problem
for ∆ with data on ω × {0}. Notice that we have the restrictions

% : Np((ω1)B)→ NP (ω × I(δ)) if ω ⊂⊂ ω1 and 0 < τ < γ(ω1),

%̃ : Np(ω × I(δ))→ NP (ωB)

(for %̃ use also (4.12)). The claim thus follows in this case from the well
known fact that any open set Ω is P -convex if P (D) is elliptic, hence

C∞P (Ω(1/n)) is dense in C∞P (Ω(1/m)) if n > m,

where Ω(1/k) := {x ∈ Ω | x ∈ Uk and dist(x, ∂Ω) > 1/k}.
(II) Let P (D) be nonelliptic. Let ν ∈ C∆(ω × I(τ))′ and let ν|Np(ω̂×I(τ))

= 0. We have to show that ν|Np(ω̃×I(τ)) = 0.

(i) Let F : H(Cn)2 → C∆(Rn+1) be the canonical isomorphism defined
via the solution of the Cauchy problem for ∆ with data on Rn × {0}. Then

〈ν̃, (f0, f1)〉 := 〈ν, F (f0, f1)〉
defines ν̃ = (ν̃0, ν̃1) ∈ (H(Cn)′)2 and ν̃0 and ν̃1 both vanish on the exponen-
tial solutions of P (D). By Fourier transformation and Malgrange’s lemma
there is µ̃ = (µ̃0, µ̃1) ∈ (H((Cn))′)2 such that P (−D)µ̃d = ν̃d for d = 0, 1.
Then

〈µ, f〉 := 〈µ̃, (f( , 0), ∂yf( , 0))〉 for f ∈ C∆(Rn+1)

defines

µ ∈ C∆(Rn+1)′ and P (−D)µ = ν.(4.13)

By Remark 3.2,

µ ∈ C∆(conv(ω)× I(τ))′.(4.14)

(ii) We now show that uµ satisfies the assumption of Lemma 4.2.
Since Y := Rn×]0,∞[ is convex, there is F ∈ C∆(Y ) such that P (D)F =

G|Y (see (2.5)). Let ω ⊂⊂ ω1 ⊂⊂ Ω and choose ω̃ for ω1 by (AΩ). Let
ω̂ ⊂⊂ Ω be fixed and let ω̂ ⊂⊂ ω̂1 ⊂⊂ Ω. For ξ ∈ ∂ω̃ and ω̂1 choose 0 < δξ
by (AΩ). For Tξ := δξ/4 choose Vξ ∈ U(ω̂1 × {Tξ}) and Eξ ∈ C∆(Wξ),
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Wξ := Vξ ∪ (ω1 × I(δξ)), by (AΩ). Since ω̂ ⊂⊂ ω̂1 and Vξ ∈ U(ω̂1 × {Tξ}),
we may choose 0 < αξ ≤ δξ/16 such that

(ω + Uαξ) ⊂ ω1 and (ω̂ + Uαξ)× (Tξ + I(2αξ)) ⊂ Vξ.(4.15)

For (x, y) ∈ Uαξ × I(αξ) we then have

P (D)F (· − x− ξ, ·+ Tξ − y) = G(· − x− ξ, ·+ Tξ − y)

= P (D)Eξ(· − x, ·+ Tξ − y) on ω̂ × I(τ), if 0 < τ ≤ αξ.
Hence

F (· − x− ξ, ·+ Tξ − y) = Eξ(· − x, ·+ Tξ − y) + hξ,x,y

for some hξ,x,y ∈ NP (ω̂ × I(τ)). Since ν(hξ,x,y) = 0 by assumption, we thus
get by (4.14) and (4.15), for (x, y) ∈ Uαξ × I(αξ),

uµ(ξ + x,−Tξ + y) = 〈µ(s,t), G(s− ξ − x, t+ Tξ − y)〉
= 〈µ(s,t), P (Ds)F (s− ξ − x, Tξ − y + t)〉
= 〈P (−D)µ(s,t), F (s− ξ − x, Tξ − y + t)〉
= 〈ν(s,t), F (s− ξ − x, Tξ − y + t)〉(4.16)

= 〈ν(s,t), Eξ(s− x, Tξ − y + t)〉 =: vξ(x, y).

Equality (4.16) follows from (4.13), since Rn × I(τ) satisfies (3.1). vξ is
harmonic on U := Uαξ×I(δξ/2) by (4.15), since Eξ ∈ C∆(Wξ) and τ ≤ αξ ≤
δξ/4. Thus uµ can be extended as a harmonic function to Uαξ(ξ)×]−∞, δξ/4[.
Choose ξ1, . . . , ξd ∈ ∂ω̃ such that Z :=

⋃d
j=1Uαξj (ξj) ⊃ ∂ω̃ and let

τ < β := min{αξj | j ≤ d}.
Then

uµ extends to Z × ]−∞, δ[ (and to Z × ]−δ,∞[)(4.17)

from below (and from above, respectively) for δ := min{δξj/4 | j ≤ d}.
(iii) Since Ω is P -convex for supports by Lemma 4.1(b), there is ω̃1 ⊂⊂ Ω

by Lemma 4.2 and (4.17) such that µ ∈ C∆(ω̃1 × R)′. Hence µ ∈ C∆(ω̃1 ×
I(τ))′ by (4.14) and P (−D)µ = ν in C∆(ω̃1×I(τ))′ by (4.13) since ω̃1×I(τ)
satisfies (3.1). Thus,

〈ν, f〉 = 〈P (−D)µ, f〉 = 〈µ, P (D)f〉 = 0 for f ∈ NP (ω̃1 × I(τ)) if τ < β.

(b) This follows from (a) and the definition in (1.8) since NBP (ω× I(τ))
is continuously embedded in NP (ω × I(τ)) and the restriction

R1 : NP (ω × I(τ))→ NBP (ω1 × I(τ1))

is continuous if ω1 ⊂⊂ ω and 0 < τ1 < τ .

The next theorem is the crucial step in the proof of the sufficiency of
(AΩ), since it will give the property (P3) from Theorem 1.5 for NΩ

P (see the
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proof of Theorem 4.5). Let

J(δ) := [−δ, δ] for δ > 0.

Theorem 4.4. Let P (D) satisfy (AΩ).

(a) For any compact K ⊂ Ω there is a compact K̃ ⊂ Ω with K ⊂ K̃

such that for any compact Z ⊂ Ω with K̃ ⊂ Z there is δ > 0 such that for
any 0 < γ < δ there are a compact Z̃ ⊂ Ω with Z ⊂ Z̃ and 0 < β < γ such
that

P (D)C∆((K × J(δ)) ∪ (Z × J(β)))

⊃ C∆((K̃ × J(2δ)) ∪ (Z̃ × J(γ)))|(K×J(δ))∪(Z×J(β)).

(b) For any ω ⊂⊂ Ω there is ω̃ ⊂⊂ Ω with ω ⊂⊂ ω̃ such that for any
ω̂ ⊂⊂ Ω with ω̃ ⊂⊂ ω̂ there is δ > 0 such that for any 0 < γ < δ there are
0 < β < γ and a continuous linear operator

S : C∆((ω̃ × R) ∪ (Rn × I(γ)))→ C∆((ω × I(δ)) ∪ (ω̂ × I(β)))

such that
P (D)S(f) = f on (ω × I(δ)) ∪ (ω̂ × I(β)).

Proof. (a) (I) For compact K ⊂ Ω choose ω ⊂⊂ Ω such that K ⊂ ω.
Then choose ω̃ for ω by (AΩ). Choose a compact K̃ ⊂ Ω with ω̃ ⊂ int(K̃).
For Z ⊃ K̃ fixed choose ω̂ ⊂⊂ Ω with ω̂ ⊃ Z. We will apply Remark 3.1 for
Q := (K × J(δ)) ∪ (Z × J(β)) and L := (K̃ × J(2δ)) ∪ (Z̃ × J(γ)), where
δ > γ > β > 0 and Z̃ will be specified in the proof.

Let µ ∈ C∆(Q)′. By Remark 3.2, for any compact X ⊂ Rn+1\(conv(Z)×
J(δ)) and for any a ∈ Nn0 there is a bounded set B ⊂ C∆(Q) such that

sup
(x,y)∈X

|Dauµ(x, y)| ≤ C sup
f∈B
|〈P (−D)µ, f〉|.(4.18)

(II) Using (AΩ), we now obtain additional uniform bounds for uµ in
several steps.

(i) For ξ ∈ ∂ω̃ choose δξ > 0 by (AΩ). If δ ≤ δξ/2, we may choose
Vξ,T ∈ U(ω̂×{T}) and Eξ ∈ C∆(Vξ,T ∪ (ω× ]T − δξ, T + δξ[)) for 0 < T ≤ 2δ
by (AΩ). Since Vξ,T ∈ U(ω̂ × {T}), K ⊂ ω and Z ⊂ ω̂, there are % > 0 and
0 < νξ,T ≤ δξ/4 such that

K + U% ⊂ ω and (Z + U%)× [T − 2νξ,T , T + 2νξ,T ] ⊂ Vξ,T .(4.19)

For (x, y) ∈ U% × J(νξ,T ) we then get, for a ∈ Nn+1
0 ,

Dauµ(x+ ξ, y − T ) = 〈µ(s,t),D
aG(s− ξ − x, t+ T − y)〉(4.20)

= 〈µ(s,t), P (Ds)DaEξ(s− x, t+ T − y)〉
= 〈P (−D)µ(s,t),D

aEξ(s− x, t+ T − y)〉
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if δ ≤ δξ/4 and β ≤ νξ,T . We may choose {ξ1, . . . , ξk} ⊂ ∂ω̃ such that
⋃

j≤k
U%(ξj) ⊃ ∂ω̃.

Set
δ := min{δξj/4 | j ≤ k}.

For j ≤ k we may choose Tj,d ∈ [γ/2, 2δ] for d ≤ λ(j) such that
⋃

d≤λ(j)

]−Tj,d − νξj ,Tj,d ,−Tj,d + νξj ,Tj,d [ ⊃ [−2δ,−γ/2]

and therefore

V :=
⋃

j≤k, d≤λ(j)

U%(ξj)× ]−Tj,d−νξj ,Tj,d ,−Tj,d+νξj ,Tj,d [ ⊃ ∂ω̃× [−2δ,−γ/2].

Let β ≤ ν1 := min{νξj ,Tj,d | d ≤ λ(j), j ≤ k}. Then (4.21) shows that for
any a ∈ Nn+1

0 ,

sup
(x,y)∈V

|Dauµ(x, y)| ≤ sup
f∈B̃
|〈P (−D)µ, f〉|,

where B̃ := {DaEξj (· − x, · + Tj,d − y) | j ≤ k, d ≤ λ(j), |x| ≤ νξj ,Tj,d ,
y ∈ J(νξj ,Tj,d)} is bounded in C∆(Q) by (4.19). Applying (4.21) for uµ(·,−·)
instead of uµ, we get a bounded set B̃ ⊂ C∆(Q) such that for V1 := {(x, y) ∈
Rn+1 | (x, |y|) ∈ V },

sup
(x,y)∈V1

|Dauµ(x, y)| ≤ sup
f∈B̃
|〈P (−D)µ, f〉|.(4.21)

(ii) We now decompose uµ into vµ + wµ, keeping track of uniform esti-
mates.

Choose a neighbourhood U1 of ∂ω̃ such that

U1 ⊂⊂ int(K̃) and U1 × ]γ/2, 2δ[ ⊂ V1

and set U := U1 ∪ ω. Choose ϕ ∈ C∞0 (U × I(2δ)) such that ϕ = 1 near
ω̃ × J(δ). Let f̃µ := ∆(ϕuµ)|W for W := Rn × (R \ J(3γ/4)). By (4.18)
and (4.21), f̃µ can be extended trivially (i.e. by taking its value equal to 0
outside W ) to a bounded function fµ on Rn+1 such that

supp fµ ⊂ (supp gradϕ) ∩W =: W̃ ⊂ V1 ∪ (ω × (I(2δ) \ J(δ))).(4.22)

Moreover, since P (−D)fµ is the trivial extension of P (−D)f̃µ also P (−D)fµ
is a bounded function and

(4.23) sup{|P (−D)fµ(x, y)|+ |fµ(x, y)| | (x, y) ∈ Rn+1}
≤ C1 sup

(x,y)∈W̃
|a|≤m+2

|Dauµ(x, y)| ≤ C2 sup
f∈B∪B̃

|〈P (−D)µ, f〉|
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by (4.22), (4.21) and (4.18). Let gµ := G ∗ fµ. Then

(4.24) sup{|P (−D)gµ(x, y)|+ |gµ(x, y)| | (x, y) ∈ Rn+1}
≤ C3 sup

f∈B∪B̃
|〈P (−D)µ, f〉|

by (4.23). Set vµ :=−gµ|Rn+1\(K̃×J(2δ)) and wµ :=(1−ϕ)uµ+gµ|Rn+1\(Z×J(γ)),
where wµ is defined by trivial extension of (1 − ϕ)uµ. Then we have vµ ∈
C∆,0(Rn \ (K̃ × J(2δ))) and wµ ∈ C∆,0(Rn+1 \ (Z × J(γ))). Moreover,

uµ = vµ + wµ on Rn+1 \ L1(4.25)

for L1 := (K̃ × J(2δ)) ∪ (Z × J(γ)) by the choice of ϕ.
(iii) Let Y ⊂ Rn+1 \ L be compact. Clearly,

sup
(x,y)∈Y

|vµ(x, y)| ≤ C3 sup
f∈B∪B̃

|〈P (−D)µ, f〉|(4.26)

by (4.24). Since wµ ∈ C∆,0(Rn+1 \ (Z × J(γ))), we can find a compact
Z̃ ⊂ Ω with Z̃ ⊃ Z (using (AΩ) for ω1 ⊃ Z as above) such that for suitable
compacts Y1 ⊂ Ỹ ⊂ (Rn × I(2γ)) \ (Z̃ × J(γ)) (use (3.3)), sufficiently small
γ > 0 and V2 := (V1 ∪ ω)× R,

(4.27) sup
(x,y)∈Y

|wµ(x, y)|

≤ C4 sup
(x,y)∈Y1

|wµ(x, y)| ≤ C5 sup
(x,y)∈Ỹ

|P (−D)wµ(x, y)|

≤ C6( sup
f∈B∪B̃

|〈P (−D)µ, f〉|+ sup
(x,y)∈Ỹ \V2

|P (−D)uµ(x, y)|

+ sup
(x,y)∈Ỹ ∩V1

|P (−D)(ϕuµ)(x, y)|)

≤ C7 sup
f∈B̂
|〈P (−D)µ, f〉|

for some bounded set B̂ ⊂ C∆(Q), where the last estimates follow from
(4.24), the choice of ϕ, (4.21) and (4.22). The claim in (a) now follows from
(4.25)–(4.27) by Remark 3.1.

(b) Let ω ⊂⊂ ω1 ⊂⊂ Ω and set K := ω1. Choose K̃ for K by (a) and
ω̃ ⊂⊂ Ω such that ω̃ ⊃⊃ K̃. Fix ω̂ ⊂⊂ Ω with ω̂ ⊃ ω̃ and set Z := ω̂.
Choose δ > 0 by (a), fix 0 < γ < δ and choose 0 < γ1 < γ. Finally, choose
0 < β < γ1 for γ1 by (a). Then the mapping

P (D)−1 : C∆((ω̃ × R) ∪ (Rn × I(γ)))→ C∆(W )/NP (W ),

W := (ω1× I(δ))∪ (ω̂1× I(β)), is defined and linear by (a). It is continuous
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by the closed graph theorem. Let

L2,∆ := L2(W̃ ) ∩ C∆(W̃ ), W̃ := (ω × I(δ/2)) ∩ (ω̂ × I(β/2)).

Then L2,∆ is a Hilbert space and NP,L2 := L2,∆ ∩ kerP (D) is a closed
subspace. Let

L : L2,∆/NP,L2 → (NP,L2)⊥

be the canonical topological isomorphism. Let

J : C∆(W )/NP (W )→ L2,∆/NP,L2

be defined by restriction. Since J is continuous,

S := L ◦ J ◦ P (D)−1 : C∆((ω̃ × R) ∪ (Rn × I(γ)))→ C∆(W̃ )

is continuous and P (D)(S(f)) = f on W̃ = (ω × I(δ/2)) ∪ (ω̂ × I(β/2)).

Theorem 4.5 (semiglobal decomposition with bounds). Let P (D) sat-
isfy (AΩ).

(a) For any compact K ⊂ Ω there is a compact K̃ ⊂ Ω with K ⊂ K̃

such that for any compact Q ⊂ Ω with K̃ ⊂ Q there is n ∈ N such that for
any m ≥ n there are N ≥ m and a continuous linear operator

L = (L1, L2) : NBP ((K̃ × {0}) + V1/m)

→ NBP ((Q× {0}) + V1/N )×NBP ((K × {0}) + V1/n)

such that L1(f) + L2(f) = f on (K × {0}) + V1/N .
(b) NΩ

P satisfies (P3).

Proof. (b) This follows directly from (a) by the definitions of NΩ
P and

(P3).
(a) Notice that we have the continuous restrictions

% : NP (ω × I(γ))→ NBP ((K × {0}) + Vδ) if δ < γ and K + V δ ⊂ ω,
%̃ : NBP ((K × {0}) + Vδ)→ NP (ω × I(γ)) if γ ≤ δ and ω ⊂ K.

The claim in (a) thus follows if we show the following

Claim. For any ω ⊂⊂ Ω there are ω̃ ⊂⊂ Ω such that for any ω̂ ⊂⊂ Ω
there is δ > 0 such that for any 0 < γ < δ there are 0 < β < γ and a
continuous linear operator

L = (L1, L2) : NP (ω̃ × I(γ))→ NP (ω̂ × I(β))×NP (ω × I(δ))

such that L1(f) + L2(f) = f on ω × I(β).

To prove the Claim, choose ω̃ for ω by Theorem 4.4(b).
(i) Let ω̃ ⊂⊂ ω̃1 ⊂⊂ Ω and γ > 0. There is a continuous linear operator

R = (R1, R2) : C∆(ω̃1 × I(γ))→ C∆(ω̃ × R)× C∆(Rn × I(γ/2))
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such that R1(f) +R2(f) = f on ω̃ × I(γ/2). Indeed, let ϕ ∈ D(ω̃1) be such
that ϕ = 1 near ω̃. For f ∈ C∆(ω̃1×I(γ)), the function f̃ := ∆(ϕf)|Rn×I(γ/2)

defines a function f1 on Rn+1 (by trivial extension) which is bounded and
has compact support. Then

R1(f) := G ∗ f1|ω̃×R and R2(f) := (ϕf −G ∗ f1)|Rn×I(γ/2)

have the required properties.
(ii) For f ∈ NP (ω̃1 × I(γ)) we have P (D)R1(f) = −P (D)R2(f) on

ω̃ × I(γ/2). Thus

R̃(f) :=
{
P (D)R1(f) on ω̃ × R,

−P (D)R2(f) on Rn × I(γ/2),
defines a linear and continuous operator

R̃ : NP (ω̃1 × I(γ))→ C∆(W ), W := (ω̃ × R) ∪ (Rn × I(γ/2)).

Fix ω̂ ⊂⊂ Ω with ω̃1 ⊂ ω̂ and choose δ > 0 by Theorem 4.4(b). Let 0 < γ < δ
and choose 0 < β for γ/2 by Theorem 4.4(b). For f ∈ NP (ω̃1 × I(γ)) let

L1(f) := (R2(f) + S ◦ R̃(f))|ω̂×I(β), L2(f) := (R1(f)− S ◦ R̃(f))|ω×I(δ),
with the operator S from Theorem 4.4(b). Then L has the properties stated
in the Claim for ω̃1 in place of ω̃ (use also (i)).

Summarizing the results proved so far, we get the following characteri-
zation which proves the first part of the Main Theorem 2.1.

Theorem 4.6. The following statements are equivalent :

(i) P (D) is surjective on A(Ω).
(ii) For any V ∈ U(Ω) there is W ∈ U(Ω) with W ⊂ V such that

P (D)C∆(W ) ⊃ C∆(V )|W .
(iii) P (D) satisfies (AΩ).
(iv) P (D) satisfies (AΩ).

Proof. (i)⇒(iv). This was proved in Theorem 3.4.
(iv)⇒(iii) and (ii)⇒(i). These are trivial.
(iii)⇒(ii). The sequence (1.3) of spectra is exact by Lemma 4.1(a). The

projective (DFS)-spectrum NΩ
P is sw-reduced by Proposition 4.3(b). Fur-

thermore, NΩ
P satisfies (P3) by Theorem 4.5(b). The claim thus follows from

Theorem 1.5.

5. Regular hyperfunction elementary solutions. In this section
the proof of Theorem 2.1 will be completed. The main point is to prove
that the hyperfunction criterion (BΩ) from Theorem 2.1(e) is necessary for
the surjectivity of P (D) on A(Ω). For this we have to solve the equation
P (D)f = g for g ∈ C∆(W ), where W is a nonconvex open set in Rn+1
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(see Theorem 5.4 below). We thus need a variant of Remark 3.1 for open
sets, which is provided by the following lemma. Notice that the assumptions
are stronger as compared with Remark 3.1, due to the more complicated
topology of C∆(W )′b.

Similarly to Section 3 we will need the fact that C∆(Rn+1) is dense in
C∆(W ) for the open sets W ⊂ Rn+1 used in this section. This again follows
from Hörmander [14, Corollary 10.5.3] if W satisfies (3.1), i.e.

Rn+1 \W does not have a bounded component.

This condition holds for the open sets W needed here since always

W ∩ ({x} × R) is an interval for any x ∈ Rn.
In particular, the neighbourhoods V ∈ U(Ω × {T}) can be chosen in this
way (e.g. as the union of sets ωj × ]T − εj , T + εj [).

Lemma 5.1. Let W ⊂ V ⊂ Rn+1 be open sets satisfying (3.1). Then

P (D)C∆(W ) ⊃ C∆(V )|W
if for any bounded set B ⊃ C∆(W )′b the set

B̃ := {µ ∈ C∆(V )′b | P (−D)µ ∈ B} is bounded in C∆(V )′b.(5.1)

Proof. Let E := C∆(W )′b and F := C∆(V )′b. Then (3.1) and (5.1) imply
that H := P (−D)F ∩ E is sequentially closed in E since F is a (DFS)-
space. Thus, H is closed in E (by Komatsu [19, Theorem 6′]) since E is a
(DFS)-space. Therefore, H is a (DFS)-space. Since P (−D) is injective on
{µ ∈ F | P (−D)µ ∈ E} by (5.1),

tRWV ◦ P (−D)−1 : H → F

is defined, linear and continuous by the closed graph theorem. The proof is
now completed as in Remark 3.1.

The assumptions of Lemma 5.1 will be checked in two steps: roughly
speaking, we will first give bounds for the “supports” of µ ∈ C∆(W )′ in
terms of supp(P (−D)µ) (see Lemma 5.3, this step plays the role of P (D)-
convexity for supports). In the second step, we then estimate uµ in terms of
uP (−D)µ. For the first step, the following remark is useful: Let

[ω]T := ω × ]T,∞[ for T ∈ R.
Remark 5.2. Let P (D) satisfy (AΩ). For any ω ⊂⊂ Ω there are ω̃ ⊂⊂

Ω with ω̃ ⊃⊃ ω and δ > 0 such that for any ξ ∈ Ω \ ω̃ and any 0 < T ≤ 1
there are Fξ ∈ C∆(Y ), Y := [Ω]T ∪ [ω]T−δ, and hξ ∈ C∆(Ω × R) such that

P (D)Fξ = (G(· − ξ, ·) + hξ)|Y .
Proof. Choose ω̃ ⊂⊂ Ω and δ > 0 by (AΩ). For ξ ∈ Ω \ ω̃ choose

V ∈ U(Ω ×{T}) and Eξ ∈ C∆(W ), W := V ∪ (ω× ]T − δ, T + δ[), by (AΩ).
Take ϕ ∈ C∞(Ω × R) such that ϕ = 1 near Ω × ]−∞, T ] and suppϕ ⊂
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V ∪ (Ω × ]−∞, T ]). Then ∆(Eξϕ) is defined on W and can be extended
trivially to g ∈ C∞(Ω×R). Since ∆ is elliptic, there is g1 ∈ C∞(Ω×R) such
that ∆g1 = g. Moreover, Eξϕ is defined on W and can be extended trivially
to E1 ∈ C∞(W ∪ [Ω]T ). Set Y := [Ω]T ∪ [ω]T−δ and Fξ := (E1−g1)|Y . Then
Fξ ∈ C∆(Y ) and P (D)Fξ = Hξ|Y , where

Hξ := G(· − ξ, ·)ϕ− P (D)g1 +
∑

a6=0

P (a)(D)EξDaϕ/a! ∈ D′(ω × R)

(the last terms are again extended trivially). Since

∆(P (D)Fξ) = ∆Hξ = δ(ξ,0) = ∆G(· − ξ, 0) on ω × R,
the remark is proved.

Lemma 5.3. Let P (D) satisfy (AΩ). Then there are a relatively compact
exhaustion {ωj | j ∈ N} of Ω and a decreasing sequence δj > 0 such that for
any decreasing sequence 0 < τj < δj and any µ ∈ C∆(Ω × R)′,

µ ∈ C∆
(⋃

j∈N
(ωj+1 × I(τj))

)′
if P (−D)µ ∈ C∆

(⋃

j∈N
(ωj × I(τj))

)′
.

Proof. With ω ⊂⊂ Ω fixed set ω1 := ω. For j ∈ N choose ω̃ =: ωj+1 and
δ := δj for ωj by (AΩ). We may assume that {ωj | j ∈ N} is a relatively
compact exhaustion of Ω. Let 0 < τj < δj and µ ∈ C∆(Ω × R)′ with
P (−D)µ ∈ C∆(

⋃
j∈N(ωj × I(τj)))′. Then

µ ∈ C∆(K × J(C))′ and P (−D)
(⋃

j≤J
(Kj × J(τj − εj))

)′

for suitable C, J ∈ N, 0 < εj < τj and compacts K ⊂ Ω and Kj ⊂ ωj . We
may assume that

Kj + Uεj ⊂ ωj and K + Uε1 ⊂ Ω.
For ξ ∈ Ω \ ω2 and 0 < T ≤ 1 we choose Fξ ∈ C∆([Ω]T ∪ [ω1]T−δ1) and
hξ ∈ C∆(Ω × R) by Remark 5.2. Then we have, for y < −C and x ∈ Uε1 ,

uµ(x+ ξ, y − T )

= 〈µ(s,t), G(s− ξ − x, t+ T − y)〉
= 〈µ(s,t), P (Ds)Eξ(s− x, t+ T − y)− hξ(s− x, t+ T − y)〉
= 〈P (−D)µ(s,t), Eξ(s− x, T + t− y)〉 − 〈µ(s,t), h(s− x, t+ T − y)〉
:= vµ(x, y).

Now, vµ is a harmonic function on Uε1(ξ)× ]−∞,−τ2 + ε2[. With the same
argument applied to uµ(·,−·) we see that µ ∈ C∆((ω2× I(τ1))∪ ((Ω \ω2)×
I(τ2))′. As in part (a)(II)(ii) of the proof of Theorem 4.4 we now decompose
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µ as µ = µ1 + µ2 with µ1 ∈ C∆(ω2 × I(τ1))′ and µ2 ∈ C∆(Ω × R)′, with

P (−D)µ2 ∈ C∆
( ⋃

j≥2

ωj × I(τj)
)′
.

The lemma is thus proved by applying the same argument to µ2, µ3, . . .
inductively.

The hyperfunction criterion (BΩ) in Theorem 2.1 will be a consequence
of the result below. For Z ⊂ Rn+1 let

Z+ := {(x, y) ∈ Z | y > 0}.
Theorem 5.4. Let P (D) be surjective on A(Ω). Then there is Z ∈ U(Ω)

such that for any ω ⊂⊂ Ω there are ω̃ ⊂⊂ Ω with ω ⊂⊂ ω̃ and δ > 0 such
that for any 0 < δ̃ ≤ δ,

P (D)C∆(Z+ ∪ (ω × I(δ̃))) ⊃ C∆([Ω]0 ∪ [ω̃]−6δ̃)|Z+∪(ω×I(δ̃)).

Proof. (a) We will apply Lemma 5.1 for W := Z+ ∪ (ω × I(δ̃)) and
V := [Ω]0 ∪ [ω̃]−6δ̃. Let B ⊂ C∆(W )′b be bounded and

B̃ := {µ ∈ C∆(V )′ | ν := P (−D)µ ∈ B}.
Choose an increasing relatively compact exhaustion {ωj | j ∈ N} of Ω and
a decreasing sequence δj > 0 by Lemma 5.3. By Theorem 4.6(ii) for Ω × R
there is X ∈ U(Ω) such that

P (D)C∆(X) ⊃ C∆(Ω × R)|X .(5.2)

We may assume that

X =
⋃

j≥1

ωj+1 × I(τj)

for a decreasing sequence 0 < τj < δj . Let

Z :=
∞⋃

j=1

ωj × I(τj).

We may assume that ω × I(δ̃) ⊂ Z, and therefore

W := Z+ ∪ (ω × I(δ̃)) =
∞⋃

j=1

(ωj × ]0, τj [) ∪ (ω × I(δ̃)).

Since
B ⊂ C∆(W )′ ⊂ C∆(Z)′,

we have B̃ ⊂ C∆(X)′ by Lemma 5.3, and therefore

B̃ = {µ ∈ C∆(X)′ | ν := P (−D)µ ∈ B}.(5.3)
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(b) There are J ∈ N and % ≥ τ1 such that

B̃ is bounded in C∆(ωJ × I(%))′.(5.4)

To prove this, we will use Bonet and Galbis [5, Lemma 2]. The corre-
sponding assumptions are easily checked: The restriction

j : F := C∆(Ω × R)→ E := C∆(X)

is injective with dense range since C∆(Rn+1) is dense in C∆(X) by (3.1).
Also P (D)C∆(Ω × R) ⊂ C∆(Ω × R) and P (D)C∆(X) ⊂ C∆(X) are both
dense since P (D)C∆(Rn+1) = C∆(Rn+1). Therefore (5.2) and (5.3) imply
by [5, Lemma 2] that B̃ is bounded in C∆(Ω×R)′b, since B is also bounded
in C∆(X)′b. This proves (5.4).

(c) We may assume that ω ⊂⊂ ωJ and that B is bounded in C∆(K)′b,
where

K :=
J⋃

j=1

(ωj × [γ, τj ]) ∪ (ω × I(δ̃))

for some 0 < γ < τJ+1.
Let µ ∈ B̃ and ω ⊂⊂ ω1 ⊂⊂ Ω. With 0 < β < min(γ, τJ+1 − γ) to

be fixed later, we now decompose uµ just as in the proof of Theorem 4.4:
Take ϕ ∈ C∞0 ((ωJ+1 × ]γ − β, % + 1[) ∪ (ω1 × I(2δ̃))) such that ϕ = 1

near (ωJ × [γ, %]) ∪ (ω × I(δ̃)). Let fµ,+ be the trivial extension of f̃µ,+ :=
∆(ϕuµ)|L+, where L+ := Rn × ]γ + β,∞[. Set

uµ,+ := (G ∗ fµ,+)|Rn+1\K+ , K+ := ωJ+1 × [γ + β, %+ 1].

Similarly, let fµ,− be the trivial extension of f̃µ,− := ∆(ϕuµ)|L− , where
L− := (Rn × ]−∞, γ + β[), and

uµ,− := (G ∗ fµ,−)|Rn+1\K− ,

K− := (ωJ+1 × [γ − β, γ + β]) ∪ (ω1 × [−2δ̃, γ + β]).

Since fµ,+ and fµ,− are bounded,

uµ,+ ∈ C∆,0(Rn+1 \K+) and uµ,− ∈ C∆,0(Rn+1 \K−).(5.5)

Moreover,

uµ = uµ,+ + uµ,− on Rn+1 \ (K+ ∪K−),(5.6)

since
ϕuµ −G ∗ fµ,− −G ∗ fµ,+ ∈ C∆,0(Rn+1) = {0}

by (5.5) and the relevant definitions. By (5.4) and (3.3),

{uµ | µ ∈ B̃} is bounded in C∆(Rn+1 \ (ωJ × I(%))).

Therefore, by the choice of ϕ,

{fµ,+ | µ ∈ B̃} is uniformly bounded,
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hence

{uµ,+ | µ ∈ B̃} is uniformly bounded in C∆(Rn+1 \K+).(5.7)

Since P (−D)uµ,− = P (−D)uµ − P (−D)uµ,+ by (5.6),

{P (−D)uµ,− | µ ∈ B̃} is bounded in C∆,0(Rn+1 \K−)

by (5.7) and by the fact that

{P (−D)µ | µ ∈ B̃} = B is bounded in C∆(W )′b and in C∆(ωJ × I(δ̃))′b
(the claim in the preceding line holds by assumption and (5.4)). The proof
of Theorem 4.4(a) then shows that

(5.8) {uµ,− | µ ∈ B̃} is bounded in

C∆(Rn+1 \ ((Q× [γ/2, 3γ/2]) ∪ (K̃ × J(5δ̃))))

for suitable compacts Q ⊂ Ω and K̃ ⊂ Ω, if β > 0 is sufficiently small.
Notice that δ > 0 in (AΩ) only depends on ω, and that (AΩ) clearly also
holds for δ̃ > 0 instead of δ if δ̃ ≤ δ.

The proof of the theorem is finished by choosing ω̃ ⊂⊂ Ω with ω̃ ⊃ K̃
and applying Lemma 5.1 and (5.6)–(5.8).

The proof of the Main Theorem 2.1 is now completed by the following
result:

Theorem 5.5. The following statements are equivalent :

(i) P (D) is surjective on A(Ω).
(ii) For any g ∈ A(Ω) and any ω ⊂⊂ Ω there is f ∈ A(ω) such that

P (D)f = g|ω,(5.9)

and P (D) satisfies the following condition (BΩ): for any ω ⊂⊂ Ω there is
ω̃ ⊂⊂ Ω with ω̃ ⊃ ω such that for any ω̂ ⊂⊂ Ω and any ξ ∈ ∂ω̃ there is
F ∈ B(ω̂) such that

P (D)F = δξ on ω̂ and F |ω ∈ A(ω).

(iii) P (D) satisfies (5.9) and the following condition (BΩ): for any ω ⊂⊂
Ω there are ω̃ ⊂⊂ Ω with ω̃ ⊃ ω and δ > 0 such that for any ξ ∈ Ω \ ω̃ there
is F ∈ B(Ω) such that

P (D)F = δξ on Ω and F |ω ∈ Aδ(ω).

(iv) P (D) satisfies (5.9) and the following condition: for any ω ⊂⊂ Ω

there are ω̃ ⊂⊂ Ω with ω̃ ⊃ ω and δ > 0 such that for any 0 < δ̂ ≤ δ there
is γ > 0 such that for any H ∈ B(Ω) with H|ω̃ ∈ Aδ̂(ω̃) there is F ∈ B(Ω)
such that

P (D)F = H on Ω and F |ω ∈ Aγ(ω).
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Proof. (i)⇒(iv). (5.9) is clearly satisfied. P (D) satisfies (AΩ) by Theo-
rem 4.6. To prove the claim, we take ω1 ⊂⊂ Ω with ω1 ⊃⊃ ω and then choose
ω̃1 with ω̃1 ⊃⊃ ω1 and δ > 0 for ω1 by Theorem 5.4. Let ω̃1 ⊂⊂ ω̃ ⊂⊂ Ω and
chooseH ∈ B(Ω) as above. ThenH is defined by H̃ ∈ C̃∆(Ω×(R\{0})), and
H̃|[Ω]0 can be extended to H1 ∈ C∆([Ω]0∪ [ω̃1]−6γ̃) for some 0 < γ̃ ≤ δ̂ with
γ̃ ≤ δ/6. By Theorem 5.4 there are Z ∈ U(Ω) and E1 ∈ C∆(Z+∪(ω1×I(γ̃)))
such that

P (D)E1 = G(· − ξ, ·)|Z+∪(ω1×I(γ̃)).(5.10)

We may assume that Z = {(x, y) | (x, |y|) ∈ Z+}∪(Ω×{0}). Set E2(x, y) :=
E1(x, |y|) for (x, y) ∈ Z \(Ω×{0}). Then E2 satisfies (5.10) on Z \(Ω×{0})
since H̃ is even with respect to y. Thus, E2 defines F ∈ B(Ω) with P (D)F =
H, and F |ω ∈ Aγ(ω) for some γ > 0, since E1 ∈ C∆(ω1 × I(γ̃)) and ∆ is
elliptic (use (4.11)).

(iv)⇒(iii)⇒(ii). This is trivial.
(ii)⇒(i). By Theorem 4.6 it suffices to prove (AΩ). Choose ω1 ⊂⊂ Ω

such that ω1 ⊃⊃ ω. Choose ω̃ ⊂⊂ Ω for ω1, fix ω̂ ⊂⊂ Ω and choose
ω̂1 ⊂⊂ Ω with ω̂1 ⊃⊃ ω̂. For ξ ∈ ∂ω̃ choose F ∈ B(ω̂1) by (BΩ). Then F is
defined by E1 ∈ C̃∆(ω̂1 × (R \ {0})) with

P (D)E1 = H on ω̂1 × (R \ {0}),(5.11)

where H ∈ D′(ω̂1 × R) satisfies ∆H = δ(ξ,0) on ω̂1 × R. Therefore,

H = G(· − ξ, ·) + h for some h ∈ C∆(ω̂1 × R).(5.12)

For sufficiently large ω̂1, by (5.9), Proposition 3.3 (and extension via the
Cauchy problem) and Grothendieck’s lemma there is δ1 > 0 such that

P (−D)C∆(ω̂ × I(δ)) ⊃ C∆(ω̂1 × R)|ω̂×I(δ1).

We thus get g ∈ C∆(ω̂ × I(δ1)) such that

P (D)g = h|ω̂×I(δ1).(5.13)

Since F |ω1 ∈ A(ω1), E1|[Ω]0 can be extended as a harmonic function (via
the Cauchy problem) to [ω]−δ2 for some 0 < δ2 ≤ δ1. Equation (5.11) also
holds on [ω]−δ2 by analytic continuation. Then

E := (E1 − g)|W , W := (ω̂ × ]0, δ1[) ∪ (ω × I(δ2)),

satisfies
P (D)E = G(· − ξ, ·) on W

by (5.11)–(5.13). Obviously, W ∈ U(ω̂ × {T}) and W ⊃ ω × ]T − δ, T + δ[
for δ := δ2/2 and 0 < T ≤ δ. This shows (AΩ).

In the statement of Theorem 5.5, (5.9) can be substituted by any of the
equivalent conditions from Proposition 3.3.
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By the results of this paper, it would be interesting to give precise bounds
on the analytic singular support of hyperfunction elementary solutions of
P (D), especially for nonhomogeneous operators or operators with nonlocally
hyperbolic principal part.
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mén–Lindelöf, Scuola Norm. Sup. Pisa, 1980.

[4] G. Bengel, Das Weylsche Lemma in der Theorie der Hyperfunktionen, Math. Z. 96
(1967), 373–392.

[5] J. Bonet and A. Galbis, The range of non-surjective convolution operators on Beur-
ling spaces, Glasgow Math. J. 38 (1996), 125–135.

[6] R. W. Braun, The surjectivity of a constant coefficient homogeneous differential
operator on the real analytic functions and the geometry of its symbol, Ann. Inst.
Fourier (Grenoble) 45 (1995), 223–249.

[7] R. W. Braun, R. Meise and B. A. Taylor, The geometry of analytic varieties sat-
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[9] R. W. Braun and D. Vogt, A sufficient condition for Proj1 X = 0, Michigan Math.
J. 44 (1997), 149–156.

[10] E. De Giorgi and L. Cattabriga, Una dimostrazione diretta dell’esistenza di soluzioni
analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll.
Un. Mat. Ital. (4) 4 (1971), 1015–1027.

[11] L. Frerick and J. Wengenroth, A sufficient condition for vanishing of the derived
projective limit functor, Arch. Math. (Basel) 67 (1996), 296–301.

[12] A. Grothendieck, Sur les espaces des solutions d’une classe générale d’équations aux
derivées partielles, J. Anal. Math. 2 (1952/53), 243–280.
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