On a theorem of Vesentini

by

Gerd Herzog and Christoph Schmoeger (Karlsruhe)

Abstract

Let \mathcal{A} be a Banach algebra over \mathbb{C} with unit 1 and $f: \mathbb{C} \rightarrow \mathbb{C}$ an entire function. Let $\mathbf{f}: \mathcal{A} \rightarrow \mathcal{A}$ be defined by $$
\mathbf{f}(a)=f(a) \quad(a \in \mathcal{A})
$$ where $f(a)$ is given by the usual analytic calculus. The connections between the periods of f and the periods of \mathbf{f} are settled by a theorem of E . Vesentini. We give a new proof of this theorem and investigate further properties of periods of \mathbf{f}, for example in C^{*}-algebras.

Throughout this paper \mathcal{A} denotes a complex unital Banach algebra with unit 1. For $a \in \mathcal{A}$ we write

$$
\sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda \mathbf{1} \text { is not invertible in } \mathcal{A}\}
$$

for the spectrum of a. The center of \mathcal{A} is the subset $\mathcal{A}^{\text {c }}$ of \mathcal{A} given by

$$
\mathcal{A}^{\mathrm{c}}=\{x \in \mathcal{A}: x a=a x \text { for all } a \in \mathcal{A}\} .
$$

By $H(\mathbb{C})$ we denote the collection of all entire functions $f: \mathbb{C} \rightarrow \mathbb{C}$. If $f \in H(\mathbb{C})$ and $a \in \mathcal{A}$, then $f(a)$ is defined by the well known analytic calculus (see [3]). If

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{C})
$$

is the power series representation of f, then by [3],

$$
f(a)=\sum_{n=0}^{\infty} a_{n} a^{n}=a_{0} \mathbf{1}+a_{1} a+a_{2} a^{2}+\ldots
$$

for $a \in \mathcal{A}$. Therefore, given $f \in H(\mathbb{C})$, we define the mapping $\mathbf{f}: \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\mathbf{f}(a)=f(a)
$$

Hence $\mathbf{f}^{\prime}: \mathcal{A} \rightarrow \mathcal{A}$ is given by

$$
\mathbf{f}^{\prime}(a)=f^{\prime}(a)=\sum_{n=1}^{\infty} n a_{n} a^{n-1}
$$

(thus \mathbf{f}^{\prime} does not denote the derivative of the mapping \mathbf{f}).

For $f \in H(\mathbb{C})$ put

$$
\begin{aligned}
& P(f)=\{\omega \in \mathbb{C}: f(z+\omega)=f(z) \text { for all } z \in \mathbb{C}\} \\
& P(\mathbf{f})=\{p \in \mathcal{A}: \mathbf{f}(a+p)=\mathbf{f}(a) \text { for all } a \in \mathcal{A}\}
\end{aligned}
$$

Observe that $0 \in P(f)$ and $0 \in P(\mathbf{f})$.
Throughout this paper f will denote an element of $H(\mathbb{C})$ with power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad\left(a_{0}, a_{1}, \ldots \in \mathbb{C}\right)
$$

Proposition 1. Let $\omega \in \mathbb{C}, q \in \mathcal{A}$ and $q^{2}=q$.
(1) $\mathbf{f}(\omega q)=a_{0} \mathbf{1}+\left(f(\omega)-a_{0}\right) q$.
(2) If $\omega \in P(f)$, then $\mathbf{f}(\omega q)=a_{0} \mathbf{1}$.

Proof. (1) We have

$$
\mathbf{f}(\omega q)=\sum_{n=0}^{\infty} a_{n} \omega^{n} q^{n}=a_{0} \mathbf{1}+\left(\sum_{n=1}^{\infty} a_{n} \omega^{n}\right) q=a_{0} \mathbf{1}+\left(f(\omega)-a_{0}\right) q
$$

(2) Since $f(\omega)=f(0)=a_{0}$, it follows from (1) that $\mathbf{f}(\omega q)=a_{0} \mathbf{1}$.

Proposition 2. Suppose that $a, b \in \mathcal{A}, a b=b a$ and that $\phi: \mathbb{C} \rightarrow \mathcal{A}$ is defined by $\phi(z)=\mathbf{f}(z a+b)(z \in \mathbb{C})$. Then ϕ is an \mathcal{A}-valued analytic function and

$$
\phi^{\prime}(z)=\mathbf{f}^{\prime}(z a+b) a \quad \text { for all } z \in \mathbb{C}
$$

Proof. We have

$$
\phi(z)=\sum_{n=0}^{\infty} a_{n}(z a+b)^{n} \quad(z \in \mathbb{C})
$$

It follows from $[3, \S 59, \S 97]$ that ϕ is analytic and

$$
\phi^{\prime}(z)=\sum_{n=0}^{\infty} a_{n} \frac{d}{d z}(z a+b)^{n} \quad(z \in \mathbb{C})
$$

Since $a b=b a$,

$$
\frac{d}{d z}(z a+b)^{n}=n(z a+b)^{n-1} a \quad \text { for } n \geq 1
$$

thus

$$
\phi^{\prime}(z)=\left(\sum_{n=1}^{\infty} n a_{n}(z a+b)^{n-1}\right) a=\mathbf{f}^{\prime}(z a+b) a
$$

for $z \in \mathbb{C}$.
Theorem 1. Let $\omega \in P(f), q \in \mathcal{A}^{\mathrm{c}}$ and $q^{2}=q$. Then $\omega q \in P(\mathbf{f})$.

Proof. Fix $a \in \mathcal{A}$ and define $\phi, \psi: \mathbb{C} \rightarrow \mathcal{A}$ by

$$
\phi(z)=\mathbf{f}(z a+\omega q), \quad \psi(z)=\mathbf{f}(z a) .
$$

Proposition 2 gives

$$
\phi^{(k)}(z)=\mathbf{f}^{(k)}(z a+\omega q) a^{k}, \quad \psi^{(k)}(z)=\mathbf{f}^{(k)}(z a) a^{k}
$$

for $z \in \mathbb{C}$ and $k=0,1, \ldots$ Hence

$$
\phi^{(k)}(0)=\mathbf{f}^{(k)}(\omega q) a^{k}, \quad \psi^{(k)}(0)=\mathbf{f}^{(k)}(0) a^{k}
$$

for $k \geq 0$. Since $\omega \in P\left(f^{(k)}\right)$ for $k \geq 0$, Proposition 1 shows that

$$
\phi^{(k)}(0)=f^{(k)}(0) a^{k}=\mathbf{f}^{(k)}(0) a^{k}=\psi^{(k)}(0)
$$

for $k=0,1, \ldots$ Therefore $\phi=\psi$ on \mathbb{C}. Hence

$$
\mathbf{f}(a+\omega q)=\phi(1)=\psi(1)=\mathbf{f}(a) .
$$

Since $a \in \mathcal{A}$ was arbitrary, $\omega q \in P(\mathbf{f})$.
Corollary 1. $\{\omega \mathbf{1}: \omega \in P(f)\} \subseteq P(\mathbf{f})$.
Theorem 2. Let $p \in P(\mathbf{f})$ and suppose that f is non-constant. Then:
(1) $\sigma(p) \subseteq P(f)$.
(2) $p \in \mathcal{A}^{\mathrm{c}}$.
(3) $p \in P\left(\mathbf{f}^{\prime}\right)$.

Proof. (1) We have $f(p)=\mathbf{f}(p)=\mathbf{f}(0)=a_{0} \mathbf{1}$. Put $g(z)=f(z)-a_{0}$. Then $g(p)=0$. The spectral mapping theorem ([3, Satz 99.2]) gives

$$
g(\sigma(p))=\sigma(g(p))=\{0\} .
$$

Since $\sigma(p)$ is compact and g is non-constant, $\sigma(p)$ is finite, say $\sigma(p)=$ $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, and $g\left(\omega_{j}\right)=0(j=1, \ldots, n)$. Therefore $f\left(\omega_{j}\right)=f(0)$. Fix $z_{0} \in \mathbb{C}$ and define $h \in H(\mathbb{C})$ by $h(z)=g\left(z+z_{0}\right)$. Then

$$
\begin{aligned}
\mathbf{h}(a+p) & =\mathbf{g}\left(a+p+z_{0} \mathbf{1}\right)=\mathbf{f}\left(\left(a+z_{0} \mathbf{1}\right)+p\right)-a_{0} \mathbf{1} \\
& =\mathbf{f}\left(a+z_{0} \mathbf{1}\right)-a_{0} \mathbf{1}=\mathbf{g}\left(a+z_{0} \mathbf{1}\right)=\mathbf{h}(a)
\end{aligned}
$$

for all $a \in \mathcal{A}$. This shows that $p \in P(\mathbf{h})$. As above, $h\left(\omega_{j}\right)=h(0)(j=$ $1, \ldots, n)$. Thus

$$
f\left(z_{0}\right)-a_{0}=g\left(z_{0}\right)=h(0)=h\left(\omega_{j}\right)=g\left(\omega_{j}+z_{0}\right)=f\left(\omega_{j}+z_{0}\right)-a_{0}
$$

for $j=1, \ldots, n$. Consequently, $\omega_{j} \in P(f)(j=1, \ldots, n)$.
(2) Since f is non-constant, there is some $z_{0} \in \mathbb{C}$ such that $f^{\prime}\left(z_{0}\right) \neq 0$. Without loss of generality we can assume that $z_{0}=0$, so $a_{1} \neq 0$. Now take $a \in \mathcal{A}$. Then

$$
(a+p) \mathbf{f}(a)=(a+p) \mathbf{f}(a+p)=\mathbf{f}(a+p)(a+p)=\mathbf{f}(a)(a+p) .
$$

So $p \mathbf{f}(a)=\mathbf{f}(a) p$ for all $a \in \mathcal{A}$. Therefore

$$
p \mathbf{f}(z a)=\mathbf{f}(z a) p \quad \text { for } a \in \mathcal{A} \text { and } z \in \mathbb{C} .
$$

This gives

$$
\sum_{n=0}^{\infty} a_{n} z^{n} p a^{n}=\sum_{n=0}^{\infty} a_{n} z^{n} a^{n} p
$$

for $a \in \mathcal{A}$ and $z \in \mathbb{C}$. Comparing coefficients yields

$$
a_{n} p a^{n}=a_{n} a^{n} p \quad \text { for } a \in \mathcal{A} \text { and } n \geq 0 .
$$

For $n=1$ we get $a_{1} p a=a_{1} a p(a \in \mathcal{A})$. Since $a_{1} \neq 0, p \in \mathcal{A}^{c}$.
(3) We have $\mathbf{f}(z a+p)=\mathbf{f}(z a)$ for $z \in \mathbb{C}$ and $a \in \mathcal{A}$. According to Proposition 2,

$$
\mathbf{f}^{\prime}(z a+p) a=\mathbf{f}^{\prime}(z a) a \quad(z \in \mathbb{C}, a \in \mathcal{A}) .
$$

Thus for $z=1$,

$$
\begin{equation*}
\mathbf{f}^{\prime}(a+p) a=\mathbf{f}^{\prime}(a) a \quad \text { for each } a \in \mathcal{A} . \tag{*}
\end{equation*}
$$

Now fix $a \in \mathcal{A}$ and define $\phi: \mathbb{C} \rightarrow \mathcal{A}$ by

$$
\phi(z)=\mathbf{f}^{\prime}(a-z \mathbf{1}+p)-\mathbf{f}^{\prime}(a-z \mathbf{1}) .
$$

By $(*), \phi(z)(a-z \mathbf{1})=0$ for every $z \in \mathbb{C}$. If $|z|>\|a\|$, then $z \notin \sigma(a)$, thus $a-z \mathbf{1}$ is invertible in \mathcal{A}. Therefore $\phi(z)=0$ for $z \in \mathbb{C}$ with $|z|>\|a\|$. Since ϕ is analytic on \mathbb{C}, we get $\phi(z)=0$ for each $z \in \mathbb{C}$. Consequently,

$$
\mathbf{f}^{\prime}(a-z \mathbf{1}+p)=\mathbf{f}^{\prime}(a-z \mathbf{1}) \quad(z \in \mathbb{C}) .
$$

Thus, for $z=0, \mathbf{f}^{\prime}(a+p)=\mathbf{f}^{\prime}(a)$. Since $a \in \mathcal{A}$ was arbitrary, $p \in P\left(\mathbf{f}^{\prime}\right)$.
Proposition 3. Suppose that f is non-constant. Then there exists $z_{0} \in \mathbb{C}$ such that the function $h \in H(\mathbb{C})$ given by $h(z)=f\left(z+z_{0}\right)-f\left(z_{0}\right)$ has only simple zeros.

Proof. First we show that there is some $c \in f(\mathbb{C})$ such that $f-c$ has only simple zeros. To this end assume to the contrary that for each $c \in f(\mathbb{C})$ the function $f-c$ has a zero of order ≥ 2. Therefore for each $c \in f(\mathbb{C})$ there is $z_{c} \in \mathbb{C}$ with

$$
f\left(z_{c}\right)=c, \quad f^{\prime}\left(z_{c}\right)=0 .
$$

It follows that $z_{c_{1}} \neq z_{c_{2}}$ if $c_{1} \neq c_{2}$. Since f is non-constant, $f(\mathbb{C})$ is a region in \mathbb{C}, hence $f(\mathbb{C})$ is uncountable. This shows that the set $\left\{z_{c}: c \in f(\mathbb{C})\right\}$ is uncountable. Hence the set of zeros of f^{\prime} is uncountable, a contradiction. Thus we have shown that there is some $z_{0} \in \mathbb{C}$ such that $f-f\left(z_{0}\right)$ has only simple zeros. If $h \in H(\mathbb{C})$ is defined by $h(z)=f\left(z+z_{0}\right)-f\left(z_{0}\right)$, then h has the desired property.

The following theorem contains a characterization of the periods of \mathbf{f}, and is due to E. Vesentini [5]. Vesentini's proof makes extensive use of the Dunford functional calculus and is essentially different from the proof given here.

Theorem 3 (Vesentini). Suppose that f is non-constant. Then the following assertions are equivalent:
(1) $p \in P(\mathbf{f})$.
(2) There are $\omega_{1}, \ldots, \omega_{n} \in P(f)$ and $q_{1}, \ldots, q_{n} \in \mathcal{A}^{c}$ such that

$$
\mathbf{1}=q_{1}+\ldots+q_{n}, \quad 0 \neq q_{j}^{2}=q_{j} \quad(j=1, \ldots, n), \quad q_{j} q_{k}=0 \quad(j \neq k)
$$

and

$$
p=\omega_{1} q_{1}+\ldots+\omega_{n} q_{n} .
$$

Proof. (1) $\Rightarrow(2)$. By Proposition 3 there is $z_{0} \in \mathbb{C}$ such that the entire function $h(z)=f\left(z+z_{0}\right)-f\left(z_{0}\right)$ has only simple zeros. It is clear that $P(h)=P(f)$. As in the proof of Theorem 2, $p \in P(\mathbf{h})$. By Theorem 2(1) we derive $\sigma(p)=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \subseteq P(h)=P(f)$. Since $h(p)=\mathbf{h}(p)=\mathbf{h}(0)=$ $h(0) \mathbf{1}=0$ and h has only simple zeros, Proposition 8.11 in [2] shows that there are idempotents $q_{1}, \ldots, q_{n} \in \mathcal{A} \backslash\{0\}$ with

$$
q_{j} q_{k}=0 \quad(j \neq k), \quad q_{1}+\ldots+q_{n}=\mathbf{1}, \quad p q_{j}=\omega_{j} q_{j} \quad(j=1, \ldots, n)
$$

Thus $p=p\left(q_{1}+\ldots+q_{n}\right)=\omega_{1} q_{1}+\ldots \omega_{n} q_{n}$. From [2, Remark (2), p. 37] it follows that

$$
q_{j} b=b q_{j} \quad \text { for each } b \in \mathcal{A} \text { with } p b=b p
$$

$(j=1, \ldots, n)$. By Theorem 2(2) we derive $q_{j} \in \mathcal{A}^{c}(j=1, \ldots, n)$.
$(2) \Rightarrow(1)$. Use Theorem 1 to get $\omega_{j} q_{j} \in P(\mathbf{f})$ for $j=1, \ldots, n$. Thus $p \in P(\mathbf{f})$.

Examples. (1) If

$$
f(z)=\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!},
$$

then $p \in P(\exp)$ if and only if there are $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ and $q_{1}, \ldots, q_{n} \in \mathcal{A}^{c}$ with $q_{j}^{2}=q_{j}(j=1, \ldots, n)$ and $p=2 k_{1} \pi i q_{1}+\ldots+2 k_{n} \pi i q_{n}$.
(2) If

$$
f(z)=\cos (z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!},
$$

then $p \in P(\mathbf{c o s})$ if and only if there are $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ and $q_{1}, \ldots, q_{n} \in \mathcal{A}^{\text {c }}$ with $q_{j}^{2}=q_{j}(j=1, \ldots, n)$ and $p=2 k_{1} \pi q_{1}+\ldots+2 k_{n} \pi q_{n}$.
(3) Let $w \in \mathbb{C}^{m}$ denote the vector $(1, \ldots, 1)$, and consider the Banach algebra

$$
\mathcal{A}=\left\{A \in \mathbb{C}^{m \times m}: \exists \lambda \in \mathbb{C}: A^{\mathrm{T}} w=A w=\lambda w\right\} .
$$

Put

$$
Q=\frac{1}{m}\left(\begin{array}{ccc}
1 & \ldots & 1 \\
\vdots & \vdots & \vdots \\
1 & \ldots & 1
\end{array}\right)
$$

Then $1 \neq Q=Q^{2}$ and $Q \in \mathcal{A}^{\text {c }}$. Therefore $2 \pi i Q \in P(\exp)$ and $2 \pi Q \in$ $P(\cos)$.
(4) Let X be a complex Banach space and let $\mathcal{B}(X)$ be the Banach algebra of all bounded linear operators on X. Assume that $P_{0} \in \mathcal{B}(X)$ and $x \in X, x \neq 0$ are such that $\exp \left(P_{0}\right) x=x$. We consider the following P_{0}-invariant closed subspace of X :

$$
Y=\overline{\left[P_{0}^{k} x: k \in \mathbb{N}_{0}\right]}
$$

Let $P: Y \rightarrow Y$ be the restriction of P_{0} to Y, and consider the commutative subalgebra of $\mathcal{B}(Y)$ defined by

$$
\mathcal{A}=\overline{\left[P^{k}: k \in \mathbb{N}_{0}\right]}
$$

Obviously $\exp (A+P)=\exp (A)$ for all $A \in \mathcal{A}$, that is, $P \in P(\exp)$. Hence there exist $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ and $Q_{1}, \ldots, Q_{n} \in \mathcal{A}^{\text {c }}$ with $Q_{j}^{2}=Q_{j}(j=1, \ldots, n)$ and

$$
P=2 k_{1} \pi i Q_{1}+\ldots+2 k_{n} \pi i Q_{n}
$$

Moreover $v_{j}:=Q_{j} x$ satisfies $P v_{j}=2 k_{j} \pi i v_{j}(j=1, \ldots, n)$, and

$$
x=v_{1}+\ldots+v_{n} .
$$

Therefore, the eigenvector x of $\exp \left(P_{0}\right)$ can be written as a finite sum of eigenvectors of P_{0}.

In this context, let X be a normable complete topological subspace of the Fréchet space $H(\mathbb{C})$ with $f^{\prime} \in X$ for each $f \in X$. Let $D: X \rightarrow X$ denote the differential operator $D f=f^{\prime}$, and let $g \in X$ with $\omega \in P(g), \omega \neq 0$. Then

$$
(\exp (\omega D) g)(z)=g(z+\omega)=g(z) \quad(z \in \mathbb{C})
$$

Thus $g=f_{1}+\ldots+f_{n}$ with $f_{1}, \ldots, f_{n} \in X$ satisfying $\omega D f_{j}=2 k_{j} \pi i f_{j}$. Therefore g has the form

$$
g(z)=\sum_{j=1}^{n} \gamma_{j} \exp \left(\frac{2 k_{j} \pi i}{\omega} z\right)
$$

with $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ and $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{C}$.
In particular, there is no normable complete topological subspace X of $H(\mathbb{C})$ such that $f^{\prime} \in X$ for all $f \in X$, containing the function

$$
\sum_{k=0}^{\infty} \frac{1}{k!} \exp (2 k \pi i z)
$$

for example.
The next result contains further characterizations of periods of \mathbf{f}.
Theorem 4. If f is non-constant and $p \in \mathcal{A}$ then the following assertions are equivalent:
(1) $p \in P(\mathbf{f})$.
(2) $p \in \mathcal{A}^{c}, \sigma(p) \subseteq P(f)$ and each $\omega \in \sigma(p)$ is a simple pole of the resolvent $r(\lambda, p)=(\lambda \mathbf{1}-p)^{-1}$.
(3) $p \in \mathcal{A}^{\mathrm{c}}$ and there are $\omega_{1}, \ldots, \omega_{n} \in P(f)$ such that $\omega_{j} \neq \omega_{k}(j \neq k)$ and

$$
\left(p-\omega_{1} \mathbf{1}\right) \ldots\left(p-\omega_{n} \mathbf{1}\right)=0
$$

Proof. (1) $\Rightarrow(2)$. By Theorems 2 and $3, p \in \mathcal{A}^{\text {c }}, \sigma(p)=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \subseteq$ $P(f)$ and there are $q_{1}, \ldots, q_{n} \in \mathcal{A}^{\mathrm{c}}$ such that

$$
\mathbf{1}=q_{1}+\ldots+q_{n}, \quad 0 \neq q_{j}^{2}=q_{j}, \quad q_{j} q_{k}=0 \quad(j \neq k)
$$

and

$$
p=\omega_{1} q_{1}+\ldots+\omega_{n} q_{n}
$$

We can assume that $\omega_{j} \neq \omega_{k}$ for $j \neq k$. Define the analytic function ϕ : $\mathbb{C} \backslash \sigma(p) \rightarrow \mathcal{A}$ by

$$
\phi(\lambda)=\sum_{j=1}^{n} \frac{q_{j}}{\lambda-\omega_{j}}
$$

Since $p \in \mathcal{A}^{\text {c }}$ and $p q_{j}=\omega_{j} q_{j}(j=1, \ldots, n)$,

$$
(\lambda \mathbf{1}-p) \phi(\lambda)=\phi(\lambda)(\lambda \mathbf{1}-p)=\sum_{j=1}^{n} \frac{\lambda q_{j}-p q_{j}}{\lambda-\omega_{j}}=\sum_{j=1}^{n} q_{j}=\mathbf{1}
$$

This shows that $\phi(\lambda)=r(\lambda, p)(\lambda \in \mathbb{C} \backslash \sigma(p))$. Since $q_{j} \neq 0$, it follows that each ω_{j} is a simple pole of $r(\lambda, p)$.
$(2) \Rightarrow(1)$. We have $\sigma(p)=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \subseteq P(f)$ with $\omega_{j} \neq \omega_{k}$ for $j \neq k$. By [2, Proposition 7.9] there exist $q_{1}, \ldots, q_{n} \in \mathcal{A}$ such that

$$
\mathbf{1}=q_{1}+\ldots+q_{n}, \quad q_{j} q_{k}=0 \quad(j \neq k), \quad 0 \neq q_{j}^{2}=q_{j} \quad(j=1, \ldots, n)
$$

and

$$
\sigma\left(p q_{j}\right)=\left\{0, \omega_{j}\right\} \quad(j=1, \ldots, n) \quad \text { if } n>1
$$

Furthermore (see [2, Remark (2), p. 37]), $q_{j} a=a q_{j}$ for each $a \in \mathcal{A}$ with $p a=a p$. Since $p \in \mathcal{A}^{c}$, we derive $q_{j} \in \mathcal{A}^{c}(j=1, \ldots, n)$. Next we show that $p q_{1}=\omega_{1} q_{1}$. Let $r>0$ be so small that $\omega_{2}, \ldots, \omega_{n} \notin U=\left\{\lambda \in \mathbb{C}:\left|\lambda-\omega_{1}\right|\right.$ $<r\}$. Put $\gamma(t)=\omega_{1}+r e^{i t}(t \in[0,2 \pi])$. Then $($ see $[2, \operatorname{Remark}(1), \mathrm{p} .37])$

$$
q_{1}=\frac{1}{2 \pi i} \int_{\gamma} r(z, p) d z
$$

Since ω_{1} is a simple pole of $r(\lambda, p)$, the Laurent expansion of $r(\lambda, p)$ on $U \backslash\left\{\omega_{1}\right\}$ has the form

$$
r(\lambda, p)=\frac{q_{1}}{\lambda-\omega_{1}}+g(\lambda)
$$

where $g: U \rightarrow \mathcal{A}$ is analytic (see [3, Satz 97.4]). For $\lambda \in U \backslash\left\{\omega_{1}\right\}$ it follows that

$$
\mathbf{1}=(\lambda \mathbf{1}-p) r(\lambda, p)=\frac{(\lambda \mathbf{1}-p) q_{1}}{\lambda-\omega_{1}}+(\lambda \mathbf{1}-p) g(\lambda),
$$

thus

$$
\left(\lambda-\omega_{1}\right) \mathbf{1}=(\lambda \mathbf{1}-p) q_{1}+\left(\lambda-\omega_{1}\right)(\lambda \mathbf{1}-p) g(\lambda) .
$$

If $\lambda \rightarrow \omega_{1}$ it follows that $p q_{1}=\omega_{1} q_{1}$. A similar proof shows that $p q_{j}=\omega_{j} q_{j}$ for $j=2, \ldots, n$. Then we have

$$
p=p\left(q_{1}+\ldots+q_{n}\right)=\omega_{1} q_{1}+\ldots+\omega_{n} q_{n} .
$$

Theorem 3 shows now that $p \in P(\mathbf{f})$.
$(1) \Rightarrow(3)$. Let $h \in H(\mathbb{C})$ be as in the proof of Theorem 3. Then $P(h)=$ $P(f)=\sigma(p)=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and $h(p)=0$. Since h has only simple zeros, Proposition 8.11 in [2] shows that

$$
\left(p-\omega_{1} \mathbf{1}\right) \ldots\left(p-\omega_{n} \mathbf{1}\right)=0 .
$$

From $p \in P(\mathbf{f})$, we get $p \in \mathcal{A}^{\text {c }}$ (Theorem 2).
$(3) \Rightarrow(1)$. Let $\varphi(z)=\left(z-\omega_{1}\right) \ldots\left(z-\omega_{n}\right)(z \in \mathbb{C})$. Then $\varphi \in H(\mathbb{C}), \varphi$ has only simple zeros and $\varphi(p)=0$. Again by [2, Proposition 8.11], there exist non-zero idempotents $q_{1}, \ldots, q_{n} \in \mathcal{A}$ such that

$$
\mathbf{1}=q_{1}+\ldots+q_{n}, \quad q_{j} q_{k}=0 \quad(j \neq k), \quad p q_{j}=\omega_{j} q_{j} \quad(j=1, \ldots, n) .
$$

It follows from $\left[2, \operatorname{Remark}(2)\right.$, p. 37] that $q_{j} a=a q_{j}$ for each $a \in \mathcal{A}$ with $a p$ $=p a$. Since $p \in \mathcal{A}^{\mathrm{c}}$, also $q_{j} \in \mathcal{A}^{\mathrm{c}}(j=1, \ldots, n)$. From $p=p\left(q_{1}+\ldots+q_{n}\right)=$ $\omega_{1} q_{1}+\ldots+\omega_{n} q_{n}$ we see now that $p \in P(\mathbf{f})$ (Theorem 3).

Now we consider special types of Banach algebras.
A representation of \mathcal{A} on a normed linear space X is a homomorphism of \mathcal{A} into the algebra $\mathcal{B}(X)$ of all bounded linear operators on X. A representation T is said to be strictly irreducible if $T \neq 0$ and if $\{0\}$ and X are the only invariant subspaces of X for T (i.e. Y with $T(a) Y \subseteq Y$ for all $a \in \mathcal{A}$). We call \mathcal{A} primitive if there is an injective strictly irreducible representation of \mathcal{A} on a Banach space.

Example. If X is a complex Banach space, then $\mathcal{B}(X)$ is a primitive Banach algebra (see [1, F.2.2]).

Proposition 4. If \mathcal{A} is primitive, then $\mathcal{A}^{c}=\{\alpha \mathbf{1}: \alpha \in \mathbb{C}\}$.
Proof. [4, Corollary 2.4.5].
Theorem 5. Let \mathcal{A} be a primitive Banach algebra and suppose that $f \in$ $H(\mathbb{C})$ is non-constant. Then

$$
P(\mathbf{f})=\{\omega \mathbf{1}: \omega \in P(f)\} .
$$

Proof. That $\{\omega \mathbf{1}: \omega \in P(f)\} \subseteq P(\mathbf{f})$ follows from Corollary 1. Now take $p \in P(\mathbf{f})$. By Theorem $2(2)$ and Proposition $4, p=\omega \mathbf{1}$ for some $\omega \in \mathbb{C}$. Theorem 2(1) gives

$$
\{\omega\}=\sigma(p) \subseteq P(f)
$$

Thus $\omega \in P(f)$.
Remark. There is an elementary proof of Theorem 5 if \mathcal{A} is the Banach algebra $\mathcal{B}(X)$ (X a complex Banach space): Because of Theorem 3 it suffices to show that if $0 \neq Q^{2}=Q \in \mathcal{B}(X)^{\mathrm{c}}$, then $Q=I$ (where I denotes the identity on $X)$. Therefore let $0 \neq Q^{2}=Q \in \mathcal{B}(X)^{\text {c }}$. Then

$$
X=Q(X) \oplus N(Q)
$$

where $Q(X)=\{Q x: x \in X\}=\{x \in X: Q x=x\}$ and $N(Q)=\{x \in X:$ $Q x=0\}$. We have to show that $N(Q)=\{0\}$. Assume to the contrary that there is $z_{0} \in N(Q)$ with $z_{0} \neq 0$. Since $Q \neq 0$ there exists $y_{0} \in Q(X)$ such that $y_{0} \neq 0$. Now put $x_{0}=y_{0}+z_{0}$. Since $z_{0} \neq 0, x_{0} \notin Q(X)$. Furthermore, $Q(X)$ is a closed subspace of X, thus, by the Hahn-Banach Theorem, there is a bounded linear functional φ on X with

$$
\varphi\left(x_{0}\right) \neq 0, \quad \varphi(Q x)=0 \quad \text { for all } x \in X
$$

Now define the operator $A \in \mathcal{B}(X)$ by

$$
A x=\varphi(x) x_{0} \quad(x \in X)
$$

Then $A Q x_{0}=\varphi\left(Q x_{0}\right) x_{0}=0$ and $Q A x_{0}=\varphi\left(x_{0}\right) Q x_{0}$. Since $Q \in \mathcal{B}(X)^{c}$ and $\varphi\left(x_{0}\right) \neq 0$, we get $Q x_{0}=0$. From $x_{0}=y_{0}+z_{0}$ and $z_{0} \in N(Q)$ it follows that $Q y_{0}=0$, thus $y_{0}=Q y_{0}=0$, a contradiction.

Proposition 5. Let \mathcal{A} be a C^{*}-algebra and let $q \in \mathcal{A}^{c}$ and $q^{2}=q$. Then $q^{*}=q$.

Proof. By [1, BA.4.3] there exists $e=e^{2}=e^{*} \in \mathcal{A}$ such that $q e=e$ and $e q=q$. Since $q \in \mathcal{A}^{\text {c }}$, we have $q e=e q$, thus $q=e$ and therefore $q^{*}=q$.

For the next result observe that by Corollary 1 and Theorem 2, we have $P(f)=\{0\} \Leftrightarrow P(\mathbf{f})=\{0\}$.

Corollary 2. Let \mathcal{A} be a C^{*}-algebra and suppose that f is non-constant and that $P(f) \neq\{0\}$. Then:
(1) Each $p \in P(\mathbf{f})$ is normal.
(2) $P(f) \subseteq \mathbb{R} \Leftrightarrow p=p^{*}$ for each $p \in P(\mathbf{f})$.
(3) $P(f) \subseteq i \mathbb{R} \Leftrightarrow p=-p^{*}$ for each $p \in P(\mathbf{f})$.

Proof. For (1), notice that since $p \in \mathcal{A}^{\text {c }}$ (Theorem 2), $p p^{*}=p^{*} p$. For (2) and (3) let $\omega_{0} \in P(f) \backslash\{0\}$ with $\left|\omega_{0}\right|$ minimal. If $p \in P(\mathbf{f})$ then, by

Theorem 3 , there are $k_{1}, \ldots, k_{n} \in \mathbb{Z}$ and $q_{1}, \ldots, q_{n} \in \mathcal{A}^{\text {c }}$ with $q_{j}^{2}=q_{j}(j=$ $1, \ldots, n$) and

$$
p=\omega_{0}\left(k_{1} q_{1}+\ldots+k_{n} q_{n}\right)
$$

Proposition 5 gives $p^{*}=\bar{\omega}_{0}\left(k_{1} q_{1}+\ldots+k_{n} q_{n}\right)$, thus

$$
\begin{aligned}
& p-p^{*}=\left(\omega_{0}-\bar{\omega}_{0}\right)\left(k_{1} q_{1}+\ldots+k_{n} q_{n}\right) \\
& p+p^{*}=\left(\omega_{0}+\bar{\omega}_{0}\right)\left(k_{1} q_{1}+\ldots+k_{n} q_{n}\right)
\end{aligned}
$$

This shows that (2) and (3) hold.
Corollary 3. Let \mathcal{A} and f be as in Corollary 2. Then the following assertions are equivalent:
(1) $P(\mathbf{f})$ is $a *$-subset (i.e., $p \in P(\mathbf{f})$ implies $p^{*} \in P(\mathbf{f})$).
(2) $P(f) \subseteq \mathbb{R}$ or $P(f) \subseteq i \mathbb{R}$.

Proof. (1) $\Rightarrow(2)$. Take $\omega_{0} \in P(f) \backslash\{0\}$. By Corollary 1, $\omega_{0} \mathbf{1} \in P(\mathbf{f})$, hence $\bar{\omega}_{0} \mathbf{1} \in P(\mathbf{f})$. Theorem $2(1)$ gives

$$
\sigma\left(\bar{\omega}_{0} \mathbf{1}\right) \subseteq P(f)
$$

thus $\bar{\omega}_{0} \in P(f)$. It follows that $\bar{\omega}_{0}=\omega_{0}$ or $\bar{\omega}_{0}=-\omega_{0}$.
$(2) \Rightarrow(1)$. Use Corollary 2 .
Corollary 4. Assume that \mathcal{A} and f are as in Corollary 2. If the coefficients a_{0}, a_{1}, \ldots of f are real, then $P(\mathbf{f})$ is $a *$-subset.

Proof. For $a \in \mathcal{A}$ we have $\mathbf{f}\left(a^{*}\right)=\sum_{n=0}^{\infty} a_{n}\left(a^{*}\right)^{n}$, thus $\mathbf{f}\left(a^{*}\right)^{*}=\mathbf{f}(a)$. Now take $p \in P(\mathbf{f})$. Then, for each $a \in \mathcal{A}$,

$$
\mathbf{f}\left(a+p^{*}\right)=\mathbf{f}\left(\left(a^{*}\right)^{*}+p^{*}\right)=\mathbf{f}\left(\left(a^{*}+p\right)^{*}\right)=\mathbf{f}\left(a^{*}+p\right)^{*}=\mathbf{f}\left(a^{*}\right)^{*}=\mathbf{f}(a)
$$

thus $p^{*} \in P(\mathbf{f})$.
In C^{*}-algebras each $p \in P(\mathbf{f})$ is normal. The following corollary shows that in a general Banach algebra, elements in $P(\mathbf{f})$ share some properties of normal operators (on complex Hilbert spaces) with closed range.

Corollary 5. For $p \in P(\mathbf{f})$ we have:
(1) There is $q \in \mathcal{A}$ with $p q p=p$ and $q p q=q$ (hence p has a pseudoinverse).
(2) $p \mathcal{A}=\{p a: a \in \mathcal{A}\}$ is closed.
(3) $\mathcal{A}=p \mathcal{A} \oplus\{a \in \mathcal{A}: p a=0\}$.
(4) If $a \in \mathcal{A}$ and $p^{2} a=0$, then $p a=0$ (hence the ascent of p is ≤ 1).
(5) $p^{2} \mathcal{A}=p \mathcal{A}$ (hence the descent of p is ≤ 1).

Proof. By Theorems 2 and $3, p \in \mathcal{A}^{\text {c }}, \sigma(p)=\left\{\omega_{1}, \ldots, \omega_{n}\right\} \subseteq P(f)$ $\left(\omega_{j} \neq \omega_{k}\right.$ for $\left.j \neq k\right)$ and there are $q_{1}, \ldots, q_{n} \in \mathcal{A}^{\text {c }}$ with

$$
\begin{gathered}
\mathbf{1}=q_{1}+\ldots+q_{n}, \quad 0 \neq q_{j}=q_{j}^{2} \quad(j=1, \ldots, n) \\
q_{j} q_{k}=0 \quad(j \neq k), \quad p=\omega_{1} q_{1}+\ldots+\omega_{n} q_{n}
\end{gathered}
$$

If $0 \notin \sigma(p)$, then we are done. Hence let $0 \in \sigma(p)$. We can assume that $\omega_{1}=0$. Thus $p=\omega_{2} q_{2}+\ldots+\omega_{n} q_{n}$.
(1) Put $q=\omega_{2}^{-1} q_{2}+\ldots+\omega_{n}^{-1} q_{n}$. Then $p q=q_{2}+\ldots+q_{n}=\mathbf{1}-q_{1}$. Thus $p q p=\left(\mathbf{1}-q_{1}\right) p=p-p q_{1}=p-\omega_{1} q_{1}=p$ and $q p q=q\left(\mathbf{1}-q_{1}\right)=q-q q_{1}=q$.
(2) Put $r=p q$. Then $r^{2}=p q p q=p q=r$, thus $r \mathcal{A}$ is closed. But

$$
r \mathcal{A}=p q \mathcal{A} \subseteq p \mathcal{A}=p q p \mathcal{A} \subseteq p q \mathcal{A}=r \mathcal{A},
$$

hence $p \mathcal{A}=r \mathcal{A}$.
(3) Since $r^{2}=r$, we have $\mathcal{A}=r \mathcal{A} \oplus(\mathbf{1}-r) \mathcal{A}=p \mathcal{A} \oplus(\mathbf{1}-r) \mathcal{A}$. It is easy to see that $(\mathbf{1}-r) \mathcal{A}=\{a \in \mathcal{A}: p a=0\}$.
(4) Let $a \in \mathcal{A}$ and $p^{2} a=0$. Then $p a \in p \mathcal{A} \cap(\mathbf{1}-r) \mathcal{A}=\{0\}$.
(5) It is clear that $p^{2} \mathcal{A} \subseteq p \mathcal{A}$. Since $p q p=p$ and $p \in \mathcal{A}^{\text {c }}$, it follows that $p \mathcal{A}=p^{2} q \mathcal{A} \subseteq p^{2} \mathcal{A}$.

References

[1] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras, Pitman, 1982.
[2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
[3] H. Heuser, Funktionalanalysis, Teubner, 1986.
[4] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960.
[5] E. Vesentini, Periodic entire functions and reducible Banach algebras, in: Several Complex Variables I (College Park, MD, 1970), Springer, 1970, 203-211.

Mathematisches Institut I
Universität Karlsruhe
D-76128 Karlsruhe, Germany
E-mail: gerd.herzog@math.uni-karlsruhe.de christoph.schmoeger@math.uni-karlsruhe.de

