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Noncommutative uniform algebras

by

Mati Abel (Tartu) and Krzysztof Jarosz (Edwardsville, IL)

Abstract. We show that a real Banach algebra A such that ‖a2‖ = ‖a‖2 for a ∈ A
is a subalgebra of the algebra CH(X) of continuous quaternion-valued functions on a
compact set X.

1. Introduction. The well known Hirschfeld–Żelazko Theorem [5] (see
also [7]) states that for a complex Banach algebra A the condition

‖a2‖ = ‖a‖2 for a ∈ A(1.1)

implies that (i) A is commutative, and further that (ii) A must be of a very
specific form, namely it must be isometrically isomorphic to a uniformly
closed subalgebra of CC(X). We denote here by CC(X) the complex Banach
algebra of all continuous functions on a compact space X. The obvious ques-
tion about the validity of the same conclusion for real Banach algebras is im-
mediately dismissed with an obvious counterexample: the non-commutative
algebra H of quaternions. However it turns out that the second part (ii)
above is essentially also true in the real case. We show that the condition
(1.1) implies, for a real Banach algebra A, that A is isometrically isomorphic
to a subalgebra of CH(X), the algebra of continuous quaternion-valued func-
tions on a compact spaceX. That result is in fact a consequence of a theorem
by Aupetit and Zemánek [1]. We will also present several related results and
corollaries valid for real and complex Banach and topological algebras. To
simplify the notation we assume that the algebras under consideration have
units, however, as in the case of the Hirschfeld–Żelazko Theorem, the anal-
ogous results can be stated for non-unital algebras as one can formally add
a unit to such an algebra.

We use standard notation, as can be found for example in [6]. For a
real Banach algebra A with a unit e we denote by A−1 the set of invertible
elements of A; for a ∈ A we define the real and complex spectra and the
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corresponding spectral radii by well known formulas:

σR(a) = {s ∈ R : a− se 6∈ A−1},
σC(a) = {s+ it ∈ C : (a− se)2 + t2e 6∈ A−1},
%R(a) = sup{|λ| : λ ∈ σR(a)},
%C(a) = sup{|λ| : λ ∈ σC(a)},

where we put %R(a) = 0 if the set σR(a) is empty. It is well known [6] that
σC(a) = {λ ∈ C : a−λe 6∈ A−1

C }, where AC is the complexification of A, and
that %C(a) = lim n

√
‖an‖.

2 The results

Theorem 1. Assume A is a real Banach algebra such that ‖a‖ ≤ C%C(a)
for some positive constant C and all a ∈ A. Then A is isomorphic to a
uniformly closed subalgebra of CH(X) for some compact space X.

To prove the theorem we need the following special case of the main
result of [1].

Theorem 2 (Aupetit–Zemánek). Let A be a real Banach algebra with
unit. If there is a constant β such that %C(ab) ≤ β%C(a)%C(b) for all a, b
in A then for every irreducible representation π : A → L(E), the algebra
π(A) is isomorphic to its commutant Cπ in the algebra L(E) of all linear
transformations on E.

Proof of Theorem 1. It is clear that our condition ‖a‖ ≤ C%C(a) implies
that %C(ab) ≤ γ%C(a)%C(b), with γ = C2. Since the commutant Cπ is a
normed real division algebra ([3, p. 127]) it is isomorphic to R,C, or H.
Hence by Theorem 2 any irreducible representation of A in an algebra of
linear maps on a Banach space is equivalent to a representation into H; let X
be the set of all such equivalence classes of irreducible representations of A.
For x ∈ X and a ∈ A put J(a)(x) = x(a) ∈ H. The map J is an isomorphism
of A into the algebra of H-valued functions on X. One could introduce a
compact topology on X making all functions J(a) continuous by referring to
the structure space topology on the space of all irreducible representations;
we would like to give a more direct and elementary argument.

Let τ be the topology on X generated by J(a), a ∈ A, that is, the
weakest topology such that all the functions J(a), a ∈ A, are continuous.
By the definition of X, for any two distinct points x1, x2 ∈ X there is
an a ∈ A such that J(a)(x1) 6= J(a)(x2), so τ is Hausdorff. By [4, Ex.
1.5.E(a), p. 72] a topological Hausdorff space is completely regular if and
only if its topology is generated by a family of real-valued functions. Since an
H-valued function is continuous if and only if all four of its coordinates are,
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X is completely regular and consequently has a maximum compactification
βX ([4]). Assume βX \X is not empty and let x0 ∈ βX\X. The operator
A 3 a 7→ (J(a))(x0) ∈ H is an irreducible representation on A so x0 ∈ X;
this contradiction shows that X is compact.

To show that J is injective we need to show that A is semisimple. Fix
0 6= a0 ∈ A and let A0 be the closed subalgebra of A generated by all
the elements of the form q(a0), where q is a rational function with real
coefficients and with poles outside σC(a0). Notice that A0 is a commutative
Banach algebra such that, by our assumption, the spectrum of each nonzero
element is not trivial, so radA0 = {0}. If b ∈ A−1∩A0 then b−1, being given
by a rational function, is in A0; that means that A−1 ∩ A0 = A−1

0 . Hence
by [8, p. 476], A0 ∩ radA ⊂ radA0 = {0}, so a0 6∈ radA, and since a0 was
arbitrary, A is semisimple.

Corollary 1. Assume A is a real Banach algebra such that ‖a‖2 ≤
C‖a2‖ for some positive constant C and all a ∈ A. Then A is isomorphic to
a uniformly closed subalgebra of CH(X) for some compact set X; if C = 1
then the isomorphism is also an isometry.

Corollary 2. Assume A is a real m-convex Hausdorff algebra with the
topology given by a family {pα : α ∈ Λ} of m-convex seminorms. If for every
α ∈ Λ there is a constant Cα such that (pα(a))2 ≤ Cαpα(a2) for all a ∈ A
then A is a subalgebra of CH(X) for some Hausdorff space X.

Proof. Fix α ∈ Λ and let Aα be the completion of the normed algebra
A/ker pα; we denote by qα the norm on Aα generated by pα. Since pα is
continuous we have (qα(f))2 ≤ Cαqα(f2) for all f ∈ Aα. By the previous
corollary, Aα is a uniformly closed subalgebra of CH(Xα) for some compact
space Xα. We now obtain the promised representation of A as a subalgebra
of CH(X) by taking the projective limit of the algebras Aα ⊂ CH(Xα).

Theorem 3. Assume A is a real Banach algebra such that ‖a‖ ≤ C%R(a)
for some positive constant C and all a ∈ A. Then A is isomorphic to the
algebra CR(X) for some compact space X.

Proof. Since ‖a‖ ≤ C%R(a) ≤ C%C(a), it follows from Theorem 1 that
A ⊂ CH(X) for some compact space X. We show that for any f ∈ A we
actually have f ∈ CR(X). Let Af be the closed subalgebra of A generated
by f ; since Af is commutative we have Af ⊂ CC(X). For any g ∈ Af
we have σR(g) ⊂ {Re g(x) : x ∈ X} and consequently by our assumption
‖g‖ ≤ C‖Re g‖. Hence for any sequence (gn) in Af if (Re gn) is a Cauchy
sequence in CR(X), then (gn) is a Cauchy sequence in Af ⊂ CC(X), so ReA
is uniformly closed. By [6, Th. 2.3.3] Af = C(X, τ) for some topological
involution τ : X → X. Assume there is a point x0 in X such that τ(x0) 6= x0
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and let U be a neighborhood of x0 such that τ(U) ∩ U = ∅. Let h0 6= 0 be
a real-valued continuous function with support in U and define

h1(x) =





ih0(x) for x ∈ U,
−ih0(τ−1(x)) for x ∈ τ(U),

0 for x ∈ X \ (U ∪ τ(U)).

We have h1 ∈ C(X, τ) = Af but %R(h1) = 0, which contradicts our assump-
tion. Hence τ = idX and consequently f is real-valued.

Corollary 3. If K is a compact subset of the complex plane not fully
contained in the real line then for any C > 0 there is a polynomial p with
real coefficients such that

sup{|Re(p(z))| : z ∈ K} < 1 while sup{|p(z)| : z ∈ K} > C.

Proof. Let A be the uniform closure of the subalgebra of CR(K) consist-
ing of all polynomials with real coefficients. Let z0 ∈ K\R. Since f(z0) =
f(z0) for all f ∈ A it follows that A is not of the form CR(X), for any
compact space X. By the last theorem for any C > 0 there is f ∈ A such
that

sup{|Re f(z)| : z∈K} = %R(f)< 1 while sup{|f(z)| : z∈K}=%C(f)>C,

and since the polynomials with real coefficients are dense in A we get the
corollary.

Corollary 4. If A is a real algebra then there is a constant C such
that

%C(a) ≤ C%R(a) for all a ∈ A
if and only if

σR(a) = σC(a) for all a ∈ A.
Proof. One implication is obvious. To prove the other assume there is

a0 ∈ A such that K = σC(a0) 6⊆ R and let p be a polynomial with real
coefficients given by the previous corollary. We have %C(p(a0))=sup{|p(z)| :
z ∈ K} > C while %R(p(a0)) ≤ sup {|Re p(z)| : z ∈ K} < 1 contrary to our
assumptions.

The above results show that certain inequalities between the real spec-
trum, the complex spectrum, and the norm in a topological algebra can
provide very strong conclusions concerning the structure of the algebra. An-
other example of a similar situation is provided by the Kulkarni Theorem
[6]: if ‖a‖2 ≤ ‖a2 + b2‖ for all a, b with ab = ba in a real algebra A, then
the algebra is commutative. It is natural to ask what conclusion could be
obtained from the assumption that ab is related by a specific inequality to
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ba, for arbitrary elements of a noncommutative topological algebra. Some
results in this direction can be obtained by using the well known technique
(see e.g. [2, p. 330]) of analyzing the entire function

λ
ϕ7−→ exp(λa)b exp(−λa) ∈ A.

For example if A is a complex m-convex Hausdorff algebra with the topology
given by a family {pα : α ∈ Λ} of m-convex seminorms, and if for any α ∈ Λ
there is a constant Cα such that

pα(ab) ≤ Cαpα(ba) for all a, b ∈ A
then A is commutative. Indeed, in this case for any λ and α we have
pα(ϕ(λ)) ≤ Cαpα(b) <∞ so the function

ϕ(λ) = e+ (ab− ba)λ+ (. . .)λ2 + . . .

is bounded in all the algebras Aα, α ∈ Λ, where Aα is the completion of
the normed algebra A/ker pα. Since the continuous linear functionals on Aα
separate the points of this algebra, we get ab−ba ∈ ker pα, and consequently
ab = ba. The are two crucial elements in the proof: we consider the com-
plex case, and there are enough continuous linear functionals to separate
the points. Hence basically the same proof works for the complex ample
p-algebras or Mackey complete locally normed algebras. However it is an
open problem whether a similar result can be obtained for complex topo-
logical algebras without continuous functionals, for example for the class of
p-algebras, or for real algebras.

Below we state another problem asking if an almost commutative mul-
tiplication must be close to a commutative one.

Conjecture 1. Assume A is a Banach algebra, ε > 0 and that

‖ab− ba‖ ≤ ε‖a‖ ‖b‖, a, b ∈ A.(2.2)

Then there is a commutative multiplication × on A with ‖ab − a × b‖ ≤
ε′‖a‖‖b‖ where ε′ = ε′(ε)→ 0 as ε→ 0.

Notice that the condition (2.2) does not imply that the original multi-
plication is commutative. Indeed, if we take an arbitrary Banach algebra A
we can define a new multiplication · on the Banach space A by a · b = ε

2ab.
The Banach algebra (A, ·) satisfies (2.2) but need not be commutative. The
situation does not change if we add the assumption that A has a unit—we
can add it artificially to (A, ·). This example does not however contradict
the conjecture since · is close to the zero multiplication.

The authors would like to thank S. H. Kulkarni for a number of valuable
comments on the first draft of the paper.
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