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Bergman completeness of Zalcman type domains

by

Piotr Jucha (Kraków)

Abstract. We give an equivalent condition for Bergman completeness of Zalcman
type domains. This also solves a problem stated by Pflug.

The main subject of this paper is a class of planar domains—the so-called
Zalcman type domains. We give an equivalent condition for the Bergman
completeness of a wide class of such domains. This answers a question raised
in [10]. Moreover, this gives a rich collection of domains which are Bergman
complete but not Bergman exhaustive, i.e. which are counterexamples to
Kobayashi’s conjecture (see [7]).

To begin with, let us recall some necessary notions and properties con-
nected with potential theory in the complex plane (see e.g. [12]).

Let P(K) be the set of all probability Borel measures µ with supports
in a compact set K⊂C. We define the logarithmic potential of µ∈P(K) by

pµ(z) :=
�
K

log |z − w| dµ(w), z ∈ C.

A measure ν ∈ P(K) is called the equilibrium measure of the set K if

I(ν) = sup{I(µ) : µ ∈ P(K)},
where I(µ) := �

K
pµ(z) dµ(z) is the energy of µ. The logarithmic capacity of

a set E ⊂ C is the number

capE := exp(sup{I(µ) : µ ∈ P(K), K is a compact subset of E}).
For a compact set K ⊂ C and ζ ∈ C \K, let

fK(ζ) :=





�
K

dµK(λ)
ζ − λ if capK > 0,

0 if capK = 0,
where µK denotes the equilibrium measure of K.
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We set ∆(z0, r) := {z ∈ C : |z − z0| < r} for z0 ∈ C, r > 0.
We will need the following properties:

(1) If E1 ⊂ E2 ⊂ C, then capE1 ≤ capE2.
(2) If B =

⋃N
k=1 Bk, where Bk are Borel sets in C and diamB ≤ d

(d > 0, N = 1, 2, . . . ,∞), then

1
log
(

d
capB

) ≤
N∑

k=1

1
log
(

d
capBk

) .

(3) cap∆(z, r) = cap ∂∆(z, r) = r.
(4) (Frostman’s Theorem) Let µ be the equilibrium measure of a compact

set K such that capK > 0. Then pµ ≥ log capK on C and pµ =
log capK on K \F , where F is an Fσ-subset of ∂K such that capF
= 0. Moreover, if z ∈ ∂K is regular for the Dirichlet problem for the
unbounded connected component of C \K, then pµ(z) = log capK.

(5) (Wiener’s criterion) Let D ⊂ C be a bounded domain and let z0 ∈
∂D. Fix θ ∈ (0, 1). Define Fk := {z ∈ C \D : θk+1 ≤ |z − z0| < θk}.
Then z0 is a regular point for the Dirichlet problem for D if and only
if
∑∞
k=1−k/log capFk =∞.

Let L2
h(D) be the Hilbert space of square integrable functions holomor-

phic on D ⊂ Cn with the standard scalar product induced from L2(D) and
norm ‖ · ‖D. We define the Bergman kernel KD and the function MD for a
bounded domain D by

KD(z) := sup
{ |f(z)|2
‖f‖2D

: f ∈ L2
h(D), f 6≡ 0

}
,

MD(z;X) := sup
{ |f ′(z)X|2
‖f‖2D

: f ∈ L2
h(D), f 6≡ 0, f(z) = 0

}

for z ∈ D and X ∈ Cn. The Bergman metric βD is given by the formula

β2
D(z;X) :=

n∑

j,k=1

∂2 logKD(z)
∂zj∂zk

XjXk, z ∈ D, X ∈ Cn,

and the Bergman distance of z, w ∈ D is

bD(z, w) := inf{LβD(α) | α : [0, 1]→ D piecewise C1, α(0) = z, α(1) = w},
where LβD(α) := � 1

0 βD(α(t), α′(t)) dt.
If D is a planar domain, then MD(z;X) = |X|2MD(z; 1) and βD(z;X) =

|X|βD(z; 1). For simplicity, we write MD(z) := MD(z; 1) and βD(z) :=
βD(z; 1). Recall that

β2
D(z) =

MD(z)
KD(z)

, z ∈ D.
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Let us also define, for D ⊂ C,

(6) γD(z) :=
1/4�
0

dδ

δ3(− log cap(∆(z, δ) \D))
, z ∈ D.

A bounded domain D ⊂ Cn is called Bergman exhaustive at a point
z0 ∈ ∂D if limD3z→z0 KD(z) =∞. We say that D is Bergman exhaustive if
it is Bergman exhaustive at each of its boundary points.

A bounded domain D is said to be Bergman complete if any Cauchy se-
quence with respect to the Bergman distance (a Cauchy–Bergman sequence)
is convergent in the standard topology to a point of D.

We refer the reader to other publications for more properties of the
Bergman kernel and metric (see e.g. [5]) and the function γD (see [14], [11]).

It is known that hyperconvexity implies both exhaustiveness (see [8])
and Bergman completeness (see [1] and [4]). But the converse is not true
(see e.g. [2], [4]).

On the complex plane, if a domain is Bergman exhaustive, then it is also
Bergman complete (see [3]). A classification of Bergman exhaustive planar
domains is also known:

Theorem 1 (see [14]). Let D be a bounded domain in C, z0 ∈ ∂D. Then

(7) lim
D3z→z0

γD(z) =∞

if and only if D is Bergman exhaustive at z0.

Kobayashi [7] asked whether exhaustiveness is necessary for complete-
ness. After a long period of uncertainty, the answer turned out to be negative
(see [13]).

Let us now define a special type of plane domains—the so-called Zalcman
type domains:

(8) D := ∆(0, 1) \
( ∞⋃

k=1

∆(xk, rk) ∪ {0}
)
,

where xk > xk+1 > 0, limk→∞ xk = 0, ∆(xk, rk) ⊂ ∆(0, 1) and ∆(xk, rk) ∩
∆(xl, rl) = ∅ for k 6= l.

We also consider additional conditions for such domains:

∃θ1 ∈ (0, 1) ∀k ≥ 1 : θ1 ≤
xk+1

xk
;(9)

∃θ2 ∈ (θ1, 1) ∀k ≥ 1 :
xk+1

xk
≤ θ2.(10)

The following useful corollary follows from Theorem 1.
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Corollary 2. Let D be a domain given by (8) and satisfying (9) and
(10). Then D is Bergman exhaustive if and only if

(11)
∞∑

k=1

−1
x2
k log rk

=∞.

We prove the following

Theorem 3. Let D be a domain given by (8) and satisfying (9) and
(10). Then the following are equivalent :

(i) D is Bergman complete,
(ii)

∑∞
k=1 1/(xk

√− log rk) =∞.
The following problem was stated in [10]: which domains satisfying (8)

with

(12) xk := 1/2k

are Bergman complete? Theorem 3 gives an answer to that question.
Regarding the hyperconvexity and exhaustiveness of these domains, we

know everything.

Theorem 4. If D is a domain given by (8) and satisfying (12), then:

(a) D is hyperconvex if and only if

(13)
∞∑

k=1

k

− log rk
=∞.

(b) D is Bergman exhaustive if and only if
∞∑

k=1

22k

− log rk
=∞.

Theorem 4 together with Theorem 3 gives us a rich collection of do-
mains which are Bergman complete but not hyperconvex and, furthermore,
Bergman complete but not Bergman exhaustive (they are simpler than those
in [13]).

Incidentally, as a by-product of Theorem 3, we obtain (cf. Corollary 5
in [11])

Corollary 5. Let D be a planar domain given by (8).

(a) If D satisfies (10) then
∞∑

N=1

1
x2
N

√− log rN
<∞ ⇒ lim sup

0>x→0
βD(x) <∞.
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(b) If D satisfies (9) and (10) then

lim sup
0>x→0

βD(x) <∞ ⇒ lim sup
N→∞

1
x2
N

√− log rN
<∞.

For the proofs, we need the following lemma which is a straightforward
corollary of Lemma 2 in [11].

Lemma 6. Given a bounded domain D ⊂ C and a number α ∈ (0, 1),
there is a constant C > 0 such that for any compact set K ⊂ ∆(0, α) with
K ∩D = ∅,

‖fK‖D ≤ C
√
− log cap(K).

Proof of Corollary 2. Notice that (7) holds for any z0 ∈ ∂D \ {0}. By
Theorem 1, we only need to prove that (11) is equivalent to limD3z→0 γD(z)
=∞.

We have ∆
(
xk+1 − 1

2rk+1,
1
2rk+1

)
⊂ ∆(0, δ) \D for δ ∈ (xk+1, xk). Con-

sequently, from the definition of γD and using (9) and (10), we obtain

γD(0) ≥
∞∑

k=k0

xk�
xk+1

dδ

δ3(− log cap(∆(0, δ) \D))
≥

∞∑

k=k0

xk�
xk+1

dδ

−δ3 log 1
2rk+1

≥
∞∑

k=k0

(xk − xk+1)
−1

x3
k log 1

2rk+1
≥ C

∞∑

k=k0

−1
x2
k+1 log rk+1

.

Above, k0 is an integer such that xk0 < 1/4 and C is a numerical constant.
Now, the divergence of the series in (11) implies that γD(0) =∞. Due to the
lower semicontinuity of γD (see [14]) we deduce that limD3z→0 γD(z) =∞.

On the other hand, we have

γD(0) =
( 1/4�
x1

+
∞∑

k=1

xk�
xk+1

) dδ

δ3(− log cap(∆(0, δ) \D))

≤ C1 +
∞∑

k=1

xk − xk+1

x3
k+1

∞∑

j=k

1
− log rj

(9)
≤ C1 + C2

∞∑

j=1

j∑

k=1

1
x2
k

1
− log rj

(10)
≤ C1 + C3

∞∑

j=1

−1
x2
j log rj

.

Above, C1 ≥ 0 and C2, C3 > 0 are constants. The last inequality holds due
to (10):

j∑

k=1

1
x2
k

≤
j∑

k=1

θ
2(j−k)
2

x2
j

<
1

1− θ2
2

1
x2
j

.

Thus, if the series in (11) is convergent, then γD(0) <∞. We can deduce
directly from the definition of γD that γD(y1) ≤ γD(y2) for −1/4 ≤ y1 ≤
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y2 ≤ 0. Hence, if γD(0) < ∞, then also lim sup0>z→0 γD(z) < ∞. This
finishes the proof.

Proof of Theorem 3. (i)⇒(ii) (cf. the proof of Theorem 3 in [11]). Sup-
pose that

(14)
∞∑

k=1

1
xk
√− log rk

<∞.

It is sufficient to show that there exists a δ > 0 such that � 0
−δ βD(x) dx <∞.

Let us introduce some notations:

K0 := ∆(0, 1) \∆(0, 1− ε0), Kj := ∆(xj , rj), j ≥ 1,

Lj :=
∞⋃

k=j+1

∆(xk, rk) ∪∆(0, εj), j ≥ 1,

D̃j := (D ∪∆(0, εj)) ∩∆(0, 1− ε0),

where ε0 < 1/4 is fixed. We choose εj ∈ (0, xj+1) so small that

(15)
1

− log capLj
< 2

∞∑

k=j+1

1
− log rk

(apply (2) and (3)) and such that ∂∆(0, εj) ⊂ D. For a compact set B ⊂ C,
let pB := pµB be the logarithmic potential. If cap B > 0, we choose a
function χB ∈ C∞ (R, [0, 1]) such that

(16) χB(t) =
{ 1 if t ≤ log capB,

0 if t ≥ 1
2 log capB,

and

|χ′B(t)| ≤ 4
− log capB

, t ∈ R.

Let ϕB := χB ◦ pB. Then ϕB ≡ 1 on B by Frostman’s theorem. We will use
the following lemma which will be proven later.

Lemma 7. Given a domain D as in Theorem 3 satisfying (14), there
exists an integer N0 such that for j ≥ N0:

suppϕKj ⊂ ∆(0, 1− 2ε0), suppϕLj ⊂ ∆(0, 1− 2ε0);(17)

suppϕKj ∩ suppϕKj+1 = ∅;(18)

suppϕKj ∩ suppϕLj = ∅;(19)

dist(−xj , suppϕLj ) ≥ 1
2 (1− θ2)xj .(20)

The behavior of the Bergman kernel and metric is a local property (see
e.g. Theorem 6.3.5 in [5]). So, without loss of generality, we may assume
that (17)–(20) hold for all j ≥ 1.
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Choose one more function ϕ0 ∈ C∞(R, [0, 1]) such that ϕ0 ≡ 1 on K0

and suppϕ0 ⊂ ∆(0, 1 + ε0) \ ∆(0, 1 − 2ε0). Then, by (17), we also have
suppϕ0 ∩

⋃∞
j=1(suppϕKj ∪ suppϕLj ) = ∅.

Now,
∣∣∣∣
∂ϕB
∂z

(z)
∣∣∣∣ =

∣∣∣∣χ′B(pB(z))
∂pB(z)
∂z

∣∣∣∣ ≤
4|fB(z)|
− log capB

, z ∈ D,

where B = Kj or B = Lj for j ≥ 1, and
∣∣∣∣
∂ϕ0

∂z
(z)
∣∣∣∣ ≤M, z ∈ D,

where M > 0 is a constant.
Now, take any N ∈ N, choose x ∈ [−xN−1,−xN ], and put

ϕ := ϕ0 + ϕK1 + . . .+ ϕKN + ϕLN .

Then ϕ ≡ 1 on ∂D̃N .
Take any f ∈ L2

h(D), f 6≡ 0. Using the Cauchy integral formula and the
Green formula, we obtain

|f ′(x)| = 1
2π

∣∣∣∣
�

∂D̃N

f(λ) dλ
(λ− x)2

∣∣∣∣ =
1

2π

∣∣∣∣
�

∂D̃N

f(λ)ϕ(λ) dλ
(λ− x)2

∣∣∣∣

=
1
π

∣∣∣∣
�
D̃N

f(λ)
(λ− x)2

∂ϕ

∂λ
(λ) dL2(λ)

∣∣∣∣

≤ 1
π

�
D̃N

|f(λ)|
|λ− x|2

∣∣∣∣
∂ϕ0

∂λ
(λ)
∣∣∣∣ dL2(λ)

+
N∑

j=1

1
π

�
D̃N

|f(λ)|
|λ− x|2

∣∣∣∣
∂ϕKj

∂λ
(λ)
∣∣∣∣ dL2(λ)

+
1
π

�
D̃N

|f(λ)|
|λ− x|2

∣∣∣∣
∂ϕLN
∂λ

(λ)
∣∣∣∣ dL2(λ).

Now, we use the Cauchy–Schwarz inequality and the estimates 1/|λ− x| ≤
C1/xj for λ ∈ suppϕKj , j = 1, . . . , N , and 1/|λ− x| ≤ C1/xN for λ ∈
suppϕLN (due to (20)):

|f ′(x)| ≤ C2‖f‖D
(

1 +
N∑

j=1

1
x2
j

‖fKj‖D
− log capKj

+
1
x2
N

‖fLN‖D
− log capLN

)
.



78 P. Jucha

Finally, using Lemma 6, we obtain

|f ′(x)| ≤ C3‖f‖D
(

1 +
N∑

j=1

1
x2
j

√
− log capKj

+
1

x2
N

√− log capLN

)
.

The constants C1, C2, C3 > 0 above do not depend on N .
Thus

(21)
√
MD(x) ≤ C3

(
1 +

N∑

j=1

1
x2
j

√
− log rj

+

√
2

x2
N

∞∑

j=N+1

1√
− log rj

)

owing to (15).
Now, let us move on to the final estimations:

0�
−x1

√
MD(x) dx =

∞∑

N=2

−xN�
−xN−1

√
MD(x) dx

(9)
≤

∞∑

N=2

C4 xN sup
x∈[−xN−1,−xN ]

√
MD(x)

≤ C5

( ∞∑

N=2

xN +
∞∑

N=2

xN

N∑

j=1

1
x2
j

√
− log rj

+
∞∑

N=2

1
xN

∞∑

j=N+1

1√
− log rj

)
,

where C4, C5 > 0 are some constants. The first series in brackets is finite
because of (10). For the second series, we have

∞∑

N=1

xN

N∑

j=1

1

x2
j

√
− log rj

=
∞∑

j=1

( ∞∑

N=j

xN

) 1

x2
j

√
− log rj

≤ 1
1− θ2

∞∑

j=1

1
xj
√
− log rj

(14)
< ∞

because (10) implies
∑∞
N=j xN ≤

∑∞
s=0 θ

s
2xj = xj/(1− θ2). Notice also that

j−1∑

N=1

1
xN
≤

j−1∑

s=1

θs2
1
xj

<
θ2

1− θ2

1
xj
.

Thus,
∞∑

N=1

1
xN

∞∑

j=N+1

1√
− log rj

=
∞∑

j=2

( j−1∑

N=1

1
xN

)
1√
− log rj

≤ θ2

1− θ2

∞∑

j=1

1
xj
√
− log rj

(14)
< ∞.

As a consequence, � 0
−x1

βD(x) dx <∞ because KD is separated from 0 on D.
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(ii)⇒(i) (cf. the proof of Theorem 5 in [13]). Suppose that D is Bergman
exhaustive at 0. Since D is Bergman exhaustive at any other point, it is
Bergman complete by the result of Chen (see [3]).

Thus, we can assume that D is not Bergman exhaustive at 0. In view of
Corollary 2, the series (11) is convergent. Hence, limj→∞ 1/(xj

√
− log rj)

= 0.
We are going to use an auxiliary lemma which will be proven later.

Lemma 8. Let D be a domain as in Theorem 3 with
∞∑

j=1

1
xj
√
− log rj

=∞ and lim
j→∞

1
xj
√
− log rj

= 0.

If γ : [0, 1)→ D is a curve such that limt→1 γ(t) = 0 and γ|[0,t] is piecewise
C1 for all t ∈ (0, 1), then �

γ

√
MD(z) dl(z) =∞.

Suppose that D is not Bergman complete. Then there exists a Cauchy–
Bergman sequence (zk)∞k=1 ⊂ D such that limk→∞ zk = 0. We can choose
the sequence such that bD(zk, zk+1) < 1/2k+1. We join each pair of points
zk, zk+1 by a C1-curve of LβD -length not greater than 1/2k. The curve which
we obtain by gluing all the small pieces, say γ : [0, 1)→ D, has a finite length
with respect to the Bergman metric. We set γ? := γ([0, 1)).

Notice that the Bergman kernel KD must be bounded on γ?. In fact,
suppose the opposite. Then there is a sequence (wk)∞k=1 ⊂ γ? such that
limk→∞ wk = 0 and limk→∞KD(wk) =∞. This sequence is also a Cauchy–
Bergman sequence. Then, by the results of Pflug ([9]) and Chen (see [2],
[3]), there is a subsequence (wkj )

∞
j=1 and a function f ∈ L2

h(D) such that

|f(wkj )|√
KD(wkj )

→ 1, j →∞.

Because the functions from L2
h(D) bounded in a neighborhood of 0 are dense

in L2
h(D) (see [3]), there exists a g ∈ L2

h(D) such that ‖g − f‖D ≤ 1/2 and
g is bounded near 0. Thus, also by the general properties of the Bergman
kernel KD, we have

|g(wkj )|√
KD(wkj )

≥ |f(wkj )|√
KD(wkj )

− ‖f − g‖D ≥
|f(wkj )|√
KD(wkj )

− 1
2
.

Letting j →∞ yields a contradiction and we conclude that KD is bounded
on γ?.

Finally, we use Lemma 8, which leads to a contradiction:

∞ >
�
γ?

βD(z) dl(z) ≥ 1
supγ?

√
KD

�
γ?

√
MD(z) dl(z) =∞.

As a consequence, the domain D is Bergman complete.
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Proof of Lemma 7. We see that

suppϕB ⊂
{
z ∈ C : pB(z) ≤ 1

2 log capB
}
⊂ {z ∈ C : dist(z,B) ≤

√
capB}

for a compact set B with capB > 0.
Let δ0 > 0 be small. For sufficiently large j (say j ≥ N0 = N0(δ0)), we

have

capKj = rj
(∗)
≤ δ2

0x
2
j ,

capLj ≤
−1

log capLj

(15)
≤ 2

∞∑

k=j+1

−1
log rk

(∗)
≤ 2δ2

0x
2
j+1.

Both the inequalities marked with (∗) hold since
∑∞
k=1−1/(x2

k log rk) is
convergent (by (14)). The latter inequality is true because

1
x2
j+1

∞∑

k=j+1

−1
log rk

≤
∞∑

k=j+1

−1
x2
k log rk

≤ δ2
0

if j ≥ 1 is large enough.
Thus, we have

suppϕKj ⊂ Kj +∆(0, δ0xj),

suppϕLj ⊂ Lj +∆(0,
√

2δ0xj+1), j ≥ N0.

Therefore, the conditions (17)–(20) are fulfilled provided that δ0 is chosen
small enough and N0 is sufficiently large. Indeed, (17) is straightforward
whereas (18), (19) and (20) follow from the inequalities, respectively:

rj + δ0xj + rj+1 + δ0xj+1 < xj − xj+1,

rj + δ0xj + rj+1 +
√

2δ0xj+1 < xj − xj+1,

εj +
√

2δ0xj+1 + 1
2 (1− θ2)xj < xj .

The above inequalities can be obtained by the use of (10), lowering δ0 if
necessary. Recall that we have chosen εj < xj+1 and rj ≤ δ2

0x
2
j .

Proof of Lemma 8. Without loss of generality, we may assume that
|γ(0)| > x1 and

(23) x1

√
− log r1 < xj

√
− log rj , j > 1.

Fix N ≥ 2 and take z0 ∈ D such that xN+2 ≤ |z0| ≤ xN+1. Define

f := f∆(x1,r1) −
xN − z0

x1 − z0
f∆(xN ,rN ).

For a disk, we have the following formula:

f∆(x,r)(z) =
1

2π

2π�
0

dt

z − x− reit =
1

x− z .
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So, we can explicitly compute that

f(z0) = 0, f ′(z0) =
xN − x1

(x1 − z0)2(xN − z0)
.

Using Lemma 6, we obtain the estimate

‖f‖D ≤ ‖f∆(x1,r1)‖+
|xN − z0|
|x1 − z0|

‖f∆(xN ,rN )‖

≤ C1

(√
− log r1 +

|xN − z0|
|x1 − z0|

√
− log rN

)

(10),(23)
≤ C2

|xN − z0|
|x1 − z0|

√
− log rN ,

where C1, C2 > 0 are constants independent of N . Hence,

√
MD(z0) ≥ |f

′(z0)|
‖f‖D

≥ x1 − xN
C2|x1 − z0| |xN − z0|2

√− log rN
(24)

(10)
≥ C3

x2
N

√− log rN
,

where C3 > 0 is a constant. Finally,

�
γ

√
MD(z) dl(z) ≥

∞∑

N=2

inf
|z|∈[xN+2,xN+1]

√
MD(z) (xN+1 − xN+2)

≥ C3

∞∑

N=2

xN+1 − xN+2

x2
N

√− log rN

(9),(10)
≥ C4

∞∑

N=2

1
xN
√− log rN

=∞.

This finishes the proof.

Proof of Theorem 4. (a) We know that hyperconvexity of a bounded
domain is equivalent to the regularity of the Dirichlet problem (see e.g.
[6, 12]). Applying Wiener’s criterion (5) to the point z0 = 0, we also get
equivalence to (13). Note that for θ = 1/2 in (5), due to the properties
(1)–(3), we have

1
− log

(
1
2rk
) ≤ 1

− log capFk
≤ 1
− log rk

+
1

− log rk+1

because

∆

(
1
2k
− 1

2
rk,

1
2
rk

)
⊂ Fk ⊂ ∆

(
1

2k+1 , rk+1

)
∪∆

(
1
2k
, rk

)
.
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Then also

1
2

∞∑

k=1

k

− log rk
≤
∞∑

k=1

k

− log capFk
≤ 2

∞∑

k=1

k

− log rk
.

(b) That is a consequence of Corollary 2.

Proof of Corollary 5. (a) By (21), the convergence of the series∑∞
N=1 1/(x2

N

√− log rN ) implies that
√
MD(x) < C for all x ∈ [−1/2, 0)

and some numerical constant C > 0. Thus, the Bergman metric βD is also
bounded on [−1/2, 0) because the Bergman kernel KD is separated from 0
on D. Notice that we do not use (9) in the proof of (21).

(b) Suppose that lim sup0>x→0 βD(x) <∞. Then KD must be bounded
on [−1/2, 0) and (23) holds (reason as in the proof of Theorem 3, second
part). To complete the proof, use (24).
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