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Bergman completeness of Zalcman type domains
by

ProTr JucHA (Krakéw)

Abstract. We give an equivalent condition for Bergman completeness of Zalcman
type domains. This also solves a problem stated by Pflug.

The main subject of this paper is a class of planar domains—the so-called
Zalcman type domains. We give an equivalent condition for the Bergman
completeness of a wide class of such domains. This answers a question raised
in [10]. Moreover, this gives a rich collection of domains which are Bergman
complete but not Bergman exhaustive, i.e. which are counterexamples to
Kobayashi’s conjecture (see [7]).

To begin with, let us recall some necessary notions and properties con-
nected with potential theory in the complex plane (see e.g. [12]).

Let P(K) be the set of all probability Borel measures p with supports
in a compact set K C C. We define the logarithmic potential of peP(K) by

pu(z) == S log |z — w|dp(w), =z € C.
K
A measure v € P(K) is called the equilibrium measure of the set K if
I(v) = sup{I(p) : p € P(K)},
where (1) == §, pu(2) du(z) is the energy of p. The logarithmic capacity of
a set £ C C is the number
cap E := exp(sup{I(p) : p € P(K), K is a compact subset of E}).

For a compact set K C C and ( € C\ K, let

SM if cap K > 0,
fre(©) =4 L 7¢C=a
0 if cap K =0,

where px denotes the equilibrium measure of K.
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We set A(zg,r) :={2z€ C:|z— 2| <r} for zo € C, r > 0.
We will need the following properties:
(1) If By C E5 C C, then cap Ey < cap Es.
(2) If B = Uszl By, where By, are Borel sets in C and diam B < d
(d>0, N=1,2,...,00), then

N
log (cap B Z:1 log (Cap By, )

(3) capA(z,r) =cap0A(z,r) =r.

(4)  (Frostman’s Theorem) Let p be the equilibrium measure of a compact
set K such that cap K > 0. Then p, > logcap K on C and p, =
logcap K on K\ F, where F is an F,-subset of 0K such that cap F’
= 0. Moreover, if z € K is regular for the Dirichlet problem for the
unbounded connected component of C\ K, then p,(z) = logcap K.

(5)  (Wiener’s criterion) Let D C C be a bounded domain and let zg €
OD. Fix 6 € (0,1). Define Fj, := {z € C\ D : 0F1 < |z — z| < 0F}.
Then zg is a regular point for the Dirichlet problem for D if and only
if Y272, —k/log cap Fy, = oo

Let L2(D) be the Hilbert space of square integrable functions holomor-
phic on D C C" with the standard scalar product induced from L?(D) and

norm || - ||p. We define the Bergman kernel Kp and the function Mp for a

bounded domain D by

(@R
Kp(z) = p{ ol .feLh<D>,f¢o},

ey G 2 2) =
Mp(z: X) = p{ L ~f€Lh(D),fs‘é0,f()—0}

for z € D and X € C™. The Bergman metric Bp is given by the formula

zn: 0%log Kp(z)

X. X D, XeC"
02,07z, itk ZEL, A e

Bh(z X) =
k=1

and the Bergman distance of z,w € D is
bp(z,w) := inf{LgD( ) | a: [0,1] — D piecewise C*, a(0) = z, a(1) = w},

where Lg, (o) := So Bp(a(t),a(t)) dt.

IfDisa planar domaln then Mp(z;X) = |X|?Mp(z;1) and Bp(z; X) =
| X|8p(z;1). For simplicity, we write Mp(z) := Mp(z;1) and Bp(z) =
Bp(z;1). Recall that
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Let us also define, for D C C,

(©) B= - P
T B Clean(aG 0\ D))

A bounded domain D C C" is called Bergman erhaustive at a point
2o € 0D if limps,_.,, Kp(z) = co. We say that D is Bergman erhaustive if
it is Bergman exhaustive at each of its boundary points.

A bounded domain D is said to be Bergman complete if any Cauchy se-
quence with respect to the Bergman distance (a Cauchy—Bergman sequence)
is convergent in the standard topology to a point of D.

We refer the reader to other publications for more properties of the
Bergman kernel and metric (see e.g. [5]) and the function vp (see [14], [11]).

It is known that hyperconvexity implies both exhaustiveness (see [8])
and Bergman completeness (see [1] and [4]). But the converse is not true
(see e.g. [2], [4]).

On the complex plane, if a domain is Bergman exhaustive, then it is also
Bergman complete (see [3]). A classification of Bergman exhaustive planar
domains is also known:

THEOREM 1 (see [14]). Let D be a bounded domain in C, zg € OD. Then

(7) pam  vp(2) =0

if and only if D is Bergman exhaustive at zg.

Kobayashi [7] asked whether exhaustiveness is necessary for complete-
ness. After a long period of uncertainty, the answer turned out to be negative
(see [13]).

Let us now define a special type of plane domains—the so-called Zalcman
type domains:

(8) D := ( @ (g, 7)) U {0})

where zj, > 41 > 0, limgoo 2 = 0, A(x, 7)) C A0,1) and A(zy,75) N
A(zy,r) =0 for k # 1.
We also consider additional conditions for such domains:

9) 36, € (0,1) VE>1: 6, < L,
Tk
(10 0, € (0,1) VEk>1: L g,
Tk

The following useful corollary follows from Theorem 1.
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COROLLARY 2. Let D be a domain given by (8) and satisfying (9) and
(10). Then D is Bergman exhaustive if and only if

o0

-1
11 — =
(11) Zmzlogrk o

k=1

We prove the following

THEOREM 3. Let D be a domain given by (8) and satisfying (9) and
(10). Then the following are equivalent:

(i) D is Bergman complete,

(i) 325, 1/ (w/~Tog 1) = oc.

The following problem was stated in [10]: which domains satisfying (8)
with

(12) T i— 1/2k

are Bergman complete? Theorem 3 gives an answer to that question.
Regarding the hyperconvexity and exhaustiveness of these domains, we
know everything.

THEOREM 4. If D is a domain given by (8) and satisfying (12), then:
(a) D is hyperconvez if and only if

= k
(13) Z —log g -

k=1

(b) D is Bergman exhaustive if and only if

oo 22k

Z —logry, -

Theorem 4 together with Theorem 3 gives us a rich collection of do-
mains which are Bergman complete but not hyperconvex and, furthermore,
Bergman complete but not Bergman exhaustive (they are simpler than those
in [13]).

Incidentally, as a by-product of Theorem 3, we obtain (cf. Corollary 5
in [11])

COROLLARY 5. Let D be a planar domain given by (8).
(a) If D satisfies (10) then

- 1
< oo = limsupfp(x) < oo.

2/
f Y logry 0>z—0
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(b) If D satisfies (9) and (10) then

1
limsup fp(z) < o0 = limsup —F———= < .

0>2—0 Nooo Thv/—logry
For the proofs, we need the following lemma which is a straightforward

corollary of Lemma 2 in [11].

LEMMA 6. Given a bounded domain D C C and a number o € (0,1),
there is a constant C' > 0 such that for any compact set K C A(0, o) with

KnD =0,
I fxllp < Cy/—logcap(K).

Proof of Corollary 2. Notice that (7) holds for any zg € 9D \ {0}. By
Theorem 1, we only need to prove that (11) is equivalent to limps.—.0vp(2)
= 00.

We have Z(mkH — %rk+1, %rk+1) c A(0,0)\ D for § € (zp41,2r). Con-
sequently, from the definition of yp and using (9) and (10), we obtain

= dé = dé
0) > - > -
w022 | S e B0D) Z &) sl

k=ko Tk+1 k=ko Tk+1
oo o0
-1 -1
> Z (x) — Thy1) log Lrry >C Z 22 Togrins
kzkto k 2 k:ko k—‘rl

Above, kg is an integer such that xg, < 1/4 and C is a numerical constant.

Now, the divergence of the series in (11) implies that vp(0) = co. Due to the

lower semicontinuity of vp (see [14]) we deduce that limps. .o yp(z) = oo.
On the other hand, we have

1/4 s
(0= S ! kz w,i ) “logcap(A(0,8) \ D))
T — l’kJrl 1 9) < I
<01+kz:1 k+1 ]z: IOg Cl—i-CQZkz:l —logr
(10) > -1
gcn+@22355;

Above, C7 > 0 and Cy,C3 > 0 are constants. The last inequality holds due
o (10):
J J 2(J k)
1 1
IE )L

k=1 ]

wm|’_‘

< 00. We can deduce
y2) for —1/4 < y; <

Thus, if the series in (11) is convergent, then vp (0
directly from the definition of yp that yp(y1) < vp

—
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y2 < 0. Hence, if yp(0) < oo, then also limsupg., o vp(2) < oo. This
finishes the proof. =

Proof of Theorem 3. (1)=-(ii) (cf. the proof of Theorem 3 in [11]). Sup-
pose that

- 1
14 — < 0.
(14) kz:;xk\/—logrk

It is sufficient to show that there exists a 6 > 0 such that 80_5 Bp(x)dr < oo.
Let us introduce some notations:

KO = Z(O, 1) \ A(O, 1-— 50), j = Z(I’j,?"j), ] Z 1,

K
Lj = U Z(mkark) U Z(O7Ej)7 .7 > 17
k=j+1
D; = (DU A(0,g;)) N A(0,1 — &),
where g9 < 1/4 is fixed. We choose ¢; € (0, 2z;41) so small that
1 - 1

15 — <
(15) — log cap L;

—logr
ki +1 gTk

(apply (2) and (3)) and such that dA(0, ;) C D. For a compact set B C C,

let pp := pu, be the logarithmic potential. If cap B > 0, we choose a
function xp € C* (R, [0, 1]) such that

16 . 1 if t <logcap B,
(16) xa( _{0 iftZ%logcapB,
and A
L) £ ———, teR.
o) <

Let ¢ := xpopp. Then pop =1 on B by Frostman’s theorem. We will use
the following lemma which will be proven later.

LEMMA 7. Given a domain D as in Theorem 3 satisfying (14), there
exists an integer Ny such that for j > Ny:

(17) supp ¢r; C A(0,1 —2¢g), supp or; C A(0,1 — 2¢9);
(18) supp ¢, Nsupp vk, = 0;

(19) supp ¢k, Nsupp pr, = 0;

(20) dist(—z;,suppr,) > 3(1 — 62)z;.

The behavior of the Bergman kernel and metric is a local property (see
e.g. Theorem 6.3.5 in [5]). So, without loss of generality, we may assume
that (17)—(20) hold for all j > 1.
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Choose one more function ¢y € C*(R,[0,1]) such that 9 = 1 on Ky
and supp g C A(0,1 + &) \ A(0,1 — 2¢¢). Then, by (17), we also have
supp o N UJ;2, (supp ¢, Usupp ¢r;) = 0.

Now,

ps(2)| _
0z

where B = K; or B = L; for j > 1, and

4|f5(2)|
—logcap B’

= xB(pB(2)) 2 €D,

8QOB
‘ 9z ?)

90
0z

(Z)‘ <M, zeD,
where M > 0 is a constant.

Now, take any N € N, choose = € [—zny_1, —zn], and put

pi=po+Yr, +... QKN T PLy-

Then ¢ =1 on dDy.
Take any f € LZ(D), f # 0. Using the Cauchy integral formula and the
Green formula, we obtain

1

@)= 5
8D N

S fA)  0e
(A —z)? OX

1

S FA) dX
27| )
8Dy

(A —x)2|

S fN)e(N) d)\‘
(A —2)?

—Z(\) dLQ(A)‘

%(
OX

1o O
Sﬂ' S A — x|?

/\)‘ dL*(\)

&PK
o\

2 | azon

\f(/\)!
X A — 2|2

+ 8SOLN

N

Y1
Z_:; S |)\—:17|2
1

T

(A)‘ dL*(\).

Now, we use the Cauchy—Schwarz inequality and the estimates 1/|A — x| <
Cyp/xzj for A € suppyk,, j = 1,...,N, and 1/|]A—z| < Ci/xy for A €
supp ¢, (due to (20)):

N
1 fxllp 1 | foyllD
'(z)] < C — — ” :
(@)l < 2||f||D( +Zx§ —logcap K + N —logcap Ly

Jj=1
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Finally, using Lemma 6, we obtain

1
<C 1+ '
@)l < il Z T v )

The constants C7, Cy, C3 > O above do not depend on N.
Thus

N
(1) Mp(=) <CS( +]z:1 logrg ]%;1 W)

owing to (15).
Now, let us move on to the final estimations:

0 o] —TN
S VMp(x)de = Z S VMp(x)dx
—I1 NZQ—IN_l
9 &
< 204.1']\[ sup Mp(zx)
N=2 rz€[—xN_1,—ZN]

<C5<Zx1v+z szl \/m Z ]%;rlm)

where Cy,Cs > 0 are some constants. The first series in brackets is finite
because of (10). For the second series, we have

oo oo o0 1
ZxNZ x3/— logrj:jzzl<Nz::ij)x?\/—logrj

1 Z 1 (1<4)oo
- 1—92 zj\/—logr;

because (10) implies vao_j xy < Zs—O ong = z;/(1 — 63). Notice also that

j—1 1
N§:1_<ZH2 1—02 37]

Thus,

N 1) 1
0y ~— 1 (14)
_1_922 f]ogr] < o0.

As a consequence, S(iwl Bp(x) dr < oo because Kp is separated from 0 on D.
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(ii)=-(i) (cf. the proof of Theorem 5 in [13]). Suppose that D is Bergman
exhaustive at 0. Since D is Bergman exhaustive at any other point, it is
Bergman complete by the result of Chen (see [3]).

Thus, we can assume that D is not Bergman exhaustive at 0. In view of
Corollary 2, the series (11) is convergent. Hence, lim;_,o 1/(z;1/—logr;)
=0.

We are going to use an auxiliary lemma which will be proven later.

LEMMA 8. Let D be a domain as in Theorem 3 with

1
oo and lim ——— = 0.

S N
If v:[0,1) — D is a curve such that lim; .1 y(t) = 0 and ~|jo 4 is piecewise
C! for allt € (0,1), then S,y VMp(2)dl(z) =

Suppose that D is not Bergman complete. Then there exists a Cauchy—
Bergman sequence (z;)5>; C D such that limj_,o 2z = 0. We can choose
the sequence such that bp(zg, zk41) < 1/2k+1. We join each pair of points
2k, 2k+1 by a Cl-curve of Lg, -length not greater than 1/2%. The curve which
we obtain by gluing all the small pieces, say v : [0,1) — D, has a finite length
with respect to the Bergman metric. We set v* := ([0, 1)).

Notice that the Bergman kernel Kp must be bounded on 'y*. In fact,
suppose the opposite. Then there is a sequence (wg)3>,; C 7* such that
limg 00 wr = 0 and limy_, o K p(wy) = oo. This sequence is also a Cauchy—
Bergman sequence. Then, by the results of Pflug ([9]) and Chen (see [2],
[3]), there is a subsequence (wy; )32, and a function f € Lj (D) such that

|f (wkj)|
KD (U}kj)
Because the functions from L (D) bounded in a neighborhood of 0 are dense
in LZ(D) (see [3]), there exists a g € L2(D) such that ||g — f||p < 1/2 and
g is bounded near 0. Thus, also by the general properties of the Bergman
kernel Kp, we have
o)l A )L
KD(wkj) - KD(wkj) - KD(wkj) 2
Letting j — oo yields a contradiction and we conclude that Kp is bounded
on y*.
Finally, we use Lemma 8, which leads to a contradiction:

>7§* Bp(z)dl(z) > = \/_ | VMp(2)di(z

As a consequence, the domain D is Bergman complete. m

—1, j— o0
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Proof of Lemma 7. We see that

supp pp C {z €C:pp(z) < llogcaupB} C {z € C: dist(z, B) < y/cap B}
for a compact set B with cap B > 0.

Let §p > 0 be small. For sufficiently large j (say j > No = No(dp)), we
have

) 5 5
cap K;j =r; < g7,

-1 (15) <. -1
LS T, S 2 2T
ogcap L; kg1 Og Tk
Both the inequalities marked with (x) hold since Y ;o —1/(2%logry) is
convergent (by (14)). The latter inequality is true because

()
< 258x32-+1.

< — <2
2 § : = § : 2 =%
Tin 51 log 7 iy log ri

if 7 > 1 is large enough.
Thus, we have
supp vx; C Kj + A(0, do;),
suppr, C Lj + A(0, \/550.%'j+1), j > Np.

Therefore, the conditions (17)—(20) are fulfilled provided that d¢ is chosen
small enough and Ny is sufficiently large. Indeed, (17) is straightforward
whereas (18), (19) and (20) follow from the inequalities, respectively:

i+ 0% + i1+ 00Tj41 < Tj — Tja,
T + (50:L’j + Tji+1 + \/5(50$j+1 <Zj—Tjt1,
€5+ \/5501‘]'4_1 + %(1 — 92)1‘]' <zj.

The above inequalities can be obtained by the use of (10), lowering dq if
necessary. Recall that we have chosen €; < ;41 and r; < 583}?. "

Proof of Lemma 8. Without loss of generality, we may assume that
|7(0)| > z; and

(23) xz1y/ —logr < xj\/—logr;, j>1.
Fix N > 2 and take zp € D such that xny2 < |20] < xn41. Define
f _IN T
f T fA(acl,rl) 1 — 2o fA(LIZN,’I"N)
For a disk, we have the following formula:

1 dt 1
S (#) = 2 (S) z—x—reit -z

2m
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So, we can explicitly compute that

IN — I
20) =0, "(20) = :

f(z0) f'(0) (1 = 202 (2n — 20)

Using Lemma 6, we obtain the estimate

[zNn — 20|
1flp < 1 f Al + ﬁ [Fe—
SC’1< logr1+ ZO|\/—long)
(10),(23) —
< ’xN 2] v/ —logry,

!$1 — 2o

where C1,C5 > 0 are constants independent of V. Hence,

/" (20)] T — TN
24 Mp(z >
2 %)= 1o = Cafor — zallaw — lPv=Tog 7w
(g) Cs
- a:?vx/—long’
where C3 > 0 is a constant. Finally,
\VMp(2)di(z) = ) inf Mp(2) (EN+1 — TN42)
5 Neg [?I€[EN+2,2N 1]

o0
> Oy Z TN+1 — TN+42
- 2 \/_7
= eV —logry

(9), (10) ad

4
NZQ xN\/—logTN

= OQ.

This finishes the proof. m

Proof of Theorem 4. (a) We know that hyperconvexity of a bounded
domain is equivalent to the regularity of the Dirichlet problem (see e.g.
[6, 12]). Applying Wiener’s criterion (5) to the point zg = 0, we also get
equivalence to (13). Note that for 8 = 1/2 in (5), due to the properties
(1)-(3), we have

1 < 1 < 1 L+ 1
—log(% ) ~ —logcap Fy = —logry —logriy

because

1 1 1 1 1
A(Q_k_§rk’2 >CFkCA<2k+1,Tk+1>UA(Q—kﬂ“k)-
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Then also
o0 o0 k

Ie- & k
— — < — <2 _
2]§—logrk _;—logcaka . ;—logm

(b) That is a consequence of Corollary 2. m

Proof of Corollary 5. (a) By (21), the convergence of the series
S ne11l/(@%+v/—Togry) implies that /Mp(z) < C for all z € [-1/2,0)
and some numerical constant C' > 0. Thus, the Bergman metric §p is also
bounded on [—1/2,0) because the Bergman kernel Kp is separated from 0
on D. Notice that we do not use (9) in the proof of (21).

(b) Suppose that limsupy,_,o Bp(z) < co. Then Kp must be bounded
on [—1/2,0) and (23) holds (reason as in the proof of Theorem 3, second
part). To complete the proof, use (24). =
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