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Weyl’s and Browder’s theorems for
operators satisfying the SVEP

by

Mourad Oudghiri (Lille)

Abstract. We study Weyl’s and Browder’s theorem for an operator T on a Banach
space such that T or its adjoint has the single-valued extension property. We establish the
spectral mapping theorem for the Weyl spectrum, and we show that Browder’s theorem
holds for f(T ) for every f ∈ H(σ(T )). Also, we give necessary and sufficient conditions
for such T to obey Weyl’s theorem. Weyl’s theorem in an important class of Banach space
operators is also studied.

1. Introduction. Throughout this paper, X denotes an infinite-dimen-
sional complex Banach space, L(X) the algebra of all bounded linear op-
erators on X and K(X) its ideal of compact operators. For an operator
T ∈ L(X), write T ∗ for its adjoint; N(T ) for its null space; R(T ) for its
range; σ(T ) for its spectrum; σsu(T ) for its surjective spectrum; σap(T ) for
its approximate spectrum; and σp(T ) for its point spectrum.

From [29] we recall that for T ∈ L(X), the ascent a(T ) and the descent
d(T ) are given by a(T ) = inf{n ≥ 0 : N(T )n = N(T )n+1} and d(T ) =
inf{n ≥ 0 : R(T )n = R(T )n+1}, respectively; the infimum over the empty
set is taken to be ∞. If the ascent and descent of T ∈ L(X) are both finite,
then a(T ) = d(T ) = p, X = N(T )p ⊕R(T )p and R(T )p is closed.

An operator T ∈ L(X) is called semi-Fredholm if R(T ) is closed and
either dimN(T ) or codimR(T ) is finite. For such an operator the index is
defined by ind(T ) = dimN(T )− codimR(T ), and if the index is finite, T is
said to be Fredholm. Also, an operator T ∈ L(X) is said to be Weyl if it is
Fredholm of index zero, and Browder if it is Fredholm of finite ascent and
descent. For T ∈ L(X), the essential spectrum σe(T ), the Weyl spectrum
σw(T ) and the Browder spectrum σb(T ) are defined by

σe(T ) = {λ ∈ C : T − λ is not Fredholm},
σw(T ) = {λ ∈ C : T − λ is not Weyl},
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σb(T ) = C \ {λ ∈ C : T − λ is not Browder}.
The Weyl and Browder spectra have the important property of being the
largest subsets of the spectrum remaining invariant under arbitrary com-
pact and commuting compact perturbations, respectively. Indeed, for every
operator T ∈ L(X) we have ([27] and [18])

σw(T ) =
⋂
{σ(T +K) : K ∈ K(X)}

σb(T ) = {σ(T +K) : K ∈ K(X) and KT = TK};
consequently,

σe(T ) ⊆ σw(T ) ⊆ σb(T ).

For a subset K of C, we shall write isoK for its isolated points and
accK = K \ isoK for its accumulation points.

A complex number λ is said to be a Riesz point of T ∈ L(X) if λ ∈
isoσ(T ) and the spectral projection corresponding to the set {λ0} has finite-
dimensional range. The set of all Riesz points of T will be denoted by Π0(T ).
It is known that if T ∈ L(X) and λ ∈ σ(T ), then λ ∈ Π0(T ) if and only
if T − λ is Fredholm of finite ascent and descent (see [4]); consequently,
σb(T ) = σ(T ) \Π0(T ).

The set of complex numbers λ ∈ isoσ(T ) for which N(T −λ) is non-zero
and finite-dimensional is denoted by Π00(T ) .

Now, let us introduce some basic notions from local spectral theory. Let
T be a bounded linear operator on X. We say that T has the single-valued
extension property, SVEP for brevity, if for every non-empty open set U ⊆ C,
the only analytic solution of the equation (T − λ)f(λ) = 0 for λ ∈ U is the
zero function. For an element x ∈ X, let %T (x) be the local resolvent set
of T at x, defined as the union of all open subsets U of C such that there
exists an analytic function f : U → C which satisfies (T − λ)f(λ) = x for
all λ ∈ U . The local spectrum of T at x is defined by σT (x) = C \ %T (x).
Also, for a subset F of C, the corresponding analytic spectral subspace of
T is the linear subspace XT (F ) = {x ∈ X : σT (x) ⊆ F}. The operator T
is said to satisfy Dunford’s condition (C) if for every closed subset F of C,
XT (F ) is closed. We note that every operator satisfying (C) has the SVEP
(Proposition 1.2.19 of [17]).

Definition. Let T be a bounded operator on X. We will say that

(i) Weyl’s theorem holds for T if σw(T ) = σ(T ) \Π00(T ),
(ii) Browder’s theorem holds for T if σw(T ) = σb(T ) = σ(T ) \Π0(T ).

We note that if Weyl’s theorem holds for T ∈ L(X), then so does Brow-
der’s theorem. More precisely, A. Barnes has proved in [2] that

σw(T ) ⊆ σ(T ) \Π00(T ) if and only if Π00(T ) = Π0(T )(1.1)
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and
σw(T ) ⊇ σ(T ) \Π00(T ) if and only if σw(T ) = σb(T ).(1.2)

The investigation of operators obeying Weyl’s theorem was initiated by
Hermann Weyl, who proved that for a self-adjoint operator T on Hilbert
space we have σ(T ) = σw(T ) \ Π00(T ). Later, many mathematicians have
been interested in this problem and Weyl’s result was extended to Toeplitz
operators by L. A. Coburn [6], to p-hyponormal operators [5], and to some
Banach space operators [24]. Weyl’s theorem may fail for the square of an
operator T when it holds for T (see Example 1 of [25]). In [10], it was
shown that if T is p-hyponormal then f(T ) satisfies Weyl’s theorem for every
f ∈ H(σ(T )), where H(σ(T )) denotes the space of all analytic functions on
an open neighbourhood of σ(T ). Moreover, if for an operator T there exists a
non-zero complex polynomial p such that p(T ) is p-hyponormal then Weyl’s
theorem holds for T (see [9]).

In the present paper, we study Weyl’s and Browder’s theorem for an
operator T such that T or T ∗ has the SVEP. In Section 2, we prove that for
such an operator the spectral mapping theorem for σw(T ) holds, and f(T )
satisfies Browder’s theorem for every f ∈ H(σ(T )); also we give several nec-
essary and sufficient conditions for T to obey Weyl’s theorem. In Section 3,
we consider an important class of operators on a Banach space X, P(X),
that contains most of the operators studied in the literature in connection
with Weyl’s and Browder’s theorems, and we prove that if there exists a
function h ∈ H(σ(T )) not identically constant on any connected component
of its domain, and such that h(T ) ∈ P(X), then Weyl’s theorem holds for
both f(T ) and f(T ∗) for every f ∈ H(σ(T )).

2. Weyl’s and Browder’s theorems. Before stating our results, we
need to introduce the following notions.

We shall say that an operator T ∈ L(X) is semi-regular if R(T ) is closed
and N(T ) ⊆ R(Tn) for every n ∈ N. The semi-regular resolvent set is defined
by s-reg(T ) = {λ ∈ C : T − λ is semi-regular}; we note that s-reg(T ) =
s-reg(T ∗) is an open subset of C ([22]). As an immediate consequence of
Theorem 2.7 of [22], we derive the following lemma.

Lemma 2.1. Let T ∈ L(X).

(i) If T has the SVEP then s-reg(T ) = %ap(T ) := C \ σap(T ).
(ii) If T ∗ has the SVEP then s-reg(T ) = %su(T ) := C \ σsu(T ).

(iii) If both T and T ∗ have the SVEP then s-reg(T ) = %(T ) := C \ σ(T ).

For an operator T ∈ L(X), we let

%SF(T ) := {λ ∈ C : T − λ is semi-Fredholm}
denote the semi-Fredholm resolvent set.
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Proposition 2.2. Let T ∈ L(X).

(i) If T has the SVEP then ind(T − λ) ≤ 0 for every λ ∈ %SF(T ).
(ii) If T ∗ has the SVEP then ind(T − λ) ≥ 0 for every λ ∈ %SF(T ).

Proof. (i) Let λ ∈ %SF(T ). From the Kato decomposition [14, Theo-
rem 4], it follows that there exists δ > 0 for which {µ ∈ C : 0 < |µ − λ|
< δ} ⊆ s-reg(T ). Since T has the SVEP, s-reg(T ) = %ap(T ). Therefore,
N(T − µ) = {0}, and so ind(T − µ) ≤ 0, for 0 < |µ− λ| < δ. Thus, by the
continuity of the index we get ind(T − λ) ≤ 0.

(ii) By duality.

Before stating our next theorem, we recall that the spectral mapping
theorem holds for the Browder spectrum, but may fail to hold for the Weyl
spectrum. However, if T ∈ L(X) and f ∈ H(σ(T )) we have the inclusion
σw(f(T )) ⊆ f(σw(T )), by Theorem 2 of [12].

Theorem 2.3. If T or its adjoint has the SVEP , then f(σw(T )) =
σw(f(T )) for every f ∈ H(σ(T )).

Proof. This follows from Proposition 2.2 and [28, Theorem 2].

Let T ∈ L(X) be an operator. The analytic core of T is the subspace

K(T ) := {x ∈ X : ∃(xn)n≥0 ⊆ X and ∃c > 0 such that x = x0,

Txn+1 = xn and ‖xn‖ ≤ cn‖x‖ for all n ≥ 0}.
The quasi-nilpotent part of T is the subspace

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖1/n = 0}.
Both subspaces, which will be of particular importance in this paper, have
been introduced in [20] and were thoroughly studied by M. Mbekhta in
[20], [22] and [23] (see also [1] and [11]). The following facts are easy to
verify: T (K(T )) = K(T ); N(T n) ⊆ H0(T ) for every n ∈ N; if x ∈ X, then
x ∈ H0(T ) if and only if Tx ∈ H0(T ); if T is invertible then H0(T ) = {0}.

Theorem 2.4 ([20, Théorème 1.6]). For T ∈ L(X), the following con-
ditions are equivalent :

(i) λ is an isolated point of σ(T ).
(ii) X = H0(T − λ)⊕K(T − λ), where H0(T − λ) 6= {0} and the direct

sum is topological.

Moreover , λ is a pole of the resolvent of T of order d if and only if
H0(T − λ) = N(T − λ)d and K(T − λ) = R(T − λ)d.

In [21], M. Mbekhta introduced and studied an important subclass of
L(X) defined as those operators T ∈ L(X) for which K(T ) = {0}. It was
shown that for such operators, the spectrum is connected and the SVEP
holds.
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Theorem 2.5. Let T ∈ L(X). If there exists a complex number λ0 ∈
accσ(T ) such that K(T − λ0) = {0} or K(T ∗ − λ0) = {0}, then both f(T )
and f(T ∗) satisfy Weyl’s theorem, for every f ∈ H(σ(T )).

Proof. Since Weyl’s theorem is translation-invariant, we may assume
that λ0 = 0. Suppose that K(T ) = {0} or K(T ∗) = {0}. Then from [21,
Propositions 2.1 and 2.6], it follows that T or T ∗ has the SVEP, and σ(T ) =
σw(T ) = σw(T ∗) is connected and contains 0. In particular, σ(T ) does not
have any isolated point, because otherwise, σ(T ) = {0}, which contradicts
the fact that 0 ∈ accσ(T ). Let f ∈ H(σ(T )). Since the identity operator
obeys Weyl’s theorem, we may assume that the function f is non-constant.
Hence f(σ(T )) = σ(f(T )) = σ(f(T ∗)) is a connected subset of C without
isolated points, and therefore Π00(f(T )) = Π00(f(T ∗)) = isoσ(f(T )) = ∅.
Moreover, by Theorem 2.3, we also have

σ(f(T )) = f(σ(T )) = f(σw(T )) = σw(f(T )) = σw(f(T ∗)).

Consequently, f(T ) and f(T ∗) obey Weyl’s theorem.

Much of what follows is based on the following lemma:

Lemma 2.6. Let T ∈ L(X) be a semi-Fredholm operator. Then H0(T )
is closed if and only if dimH0(T ) is finite.

Proof. Assume that H0(T ) is closed. Since T is semi-Fredholm, the Kato
decomposition provides two closed T -invariant subspaces X1, X2 such that
X = X1 ⊕X2, X1 is finite-dimensional, T|X1 is nilpotent and T|X2 is semi-
regular. Therefore X1 ⊆ H0(T ) and H0(T ) = X1 ⊕ H0(T ) ∩ X2. Since
H0(T ) ∩ X2 = H0(T|X2) is closed and T|X2 is semi-regular, it follows that
H0(T ) ∩ X2 = {0} (see [20]). Thus H0(T ) = X1 is finite-dimensional. The
other implication is trivial.

Remark. Let T ∈ L(X). As immediate consequences of Theorem 2.4
and Lemma 2.6 we derive the following well known assertions:

(i) Π0(T ) = isoσ(T ) ∩ %e(T ) ⊆ Π00(T ), where %e(T ) = C \ σe(T ).
(ii) σb(T ) = σe(T ) ∪ accσ(T ).

(iii) If Weyl’s theorem holds for T then so does Browder’s theorem. In-
deed, if T satisfies Weyl’s theorem, then Π00(T ) ⊆ C \ σw(T ) ⊆ %e(T )
and so Π00(T ) ⊆ isoσ(T ) ∩ %e(T ) = Π0(T ). Thus, Π0(T ) = Π00(T ) and
σw(T ) = σb(T ).

We recall that if T ∈ L(X) and H0(T ) is closed, then T|H0(T ) is quasi-
nilpotent (see [23]).

Lemma 2.7. Let T ∈ L(X) be a non-invertible Fredholm operator of
index 0. Then H0(T ) is closed if and only if 0 ∈ Π0(T ).
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Proof. Suppose that H0(T ) is closed. Then T|H0(T ) is quasi-nilpotent.
Moreover, from Lemma 2.6 it follows that H0(T ) is finite-dimensional, and
hence T|H0(T ) is nilpotent. Therefore, there exists an integer d ≥ 1 for
which H0(T ) = N(T )d, and consequently, T has finite ascent. Since T d

and T d+1 are Fredholm of index 0, we get codimR(T )d = dimN(T )d =
dimN(T )d+1 = codimR(T )d+1, which implies that R(T )d = R(T )d+1. Now,
T has finite ascent and descent, so 0 ∈ isoσ(T )∩%e(T ) = Π0(T ). Conversely,
if 0 ∈ Π0(T ), then H0(T ) is closed by Theorem 2.4.

Let T ∈ L(X). We denote by σf
p(T ) the set of all eigenvalues of T of

finite multiplicity; evidently Π00(T ) ⊆ σf
p(T ).

Proposition 2.8. Let T be a bounded operator on X.

(i) If H0(T−λ) is closed for every λ ∈ σf
p(T ), then T satisfies Browder’s

theorem.
(ii) If H0(T − λ) is finite-dimensional for every λ ∈ σf

p(T ), then T sat-
isfies Weyl’s theorem.

Proof. (i) Since σ(T ) \ σw(T ) ⊆ σf
p(T ), it follows from the preceding

lemma that σ(T ) \ σw(T ) ⊆ Π0(T ), and hence σb(T ) = σ(T ) \ Π0(T ) ⊆
σw(T ). The other inclusion is obvious. Therefore, σb(T ) = σw(T ) and Brow-
der’s theorem holds for T .

(ii) From part (i), T satisfies Browder’s theorem, and hence it suffices
to show that Π00(T ) = Π0(T ). Let λ ∈ Π00(T ). Then λ ∈ σf

p(T ), and by
hypothesis, H0(T − λ) is finite-dimensional. Moreover, by Theorem 2.4, we
have X = H0(T − λ) ⊕ K(T − λ), and since the restriction of T − λ to
K(T − λ) is invertible, we deduce that T − λ is Fredholm. Thus λ ∈ Π0(T )
by part (i) of the preceding Remark. The other inclusion is clear, therefore
T satisfies Weyl’s theorem.

In general, Weyl’s theorem need not hold for an operator satisfying the
SVEP:

Example 1. Consider the operator T1 defined on the Hilbert space
`2(N) by T1(x1, x2, . . .) = (x2/2, x3/3, . . .). Then T1 is quasi-nilpotent, and
hence has the SVEP, and Π00(T1) = {0}. Consequently, T1 does not satisfy
Weyl’s theorem, because σ(T1) \Π00(T1) = ∅ and σw(T1) = {0}.

However, for Browder’s theorem we have the following result.

Theorem 2.9. If T ∈ L(X) or its adjoint has the SVEP , then Brow-
der’s theorem holds for f(T ), for every f ∈ H(σ(T )).

Proof. Let us show first that Browder’s theorem holds for T . Let λ0 ∈
σ(T )\σw(T ). Then T−λ0 is Fredholm and by the Kato decomposition we can
choose δ > 0 for which U := {λ ∈ C : 0 < |λ− λ0| < δ} ⊆ s-reg(T ) ∩ %e(T ).
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From the continuity of the index and the fact that ind(T−λ0) = 0, it follows
that

ind(T − λ) = 0 if |λ− λ0| < δ.(2.1)

If T (resp. T ∗) has the SVEP then s-reg(T ) = %ap(T ) (resp. s-reg(T ) =
%su(T )) and so U ⊆ %(T ), by (2.1). Hence λ0 ∈ isoσ(T ) ∩ %e(T ) = Π0(T ).
The other inclusion is trivial. Thus Browder’s theorem holds for T .

Now, if f ∈ H(σ(T )) then Theorem 2.3 implies that

σw(f(T )) = f(σw(T )) = f(σb(T )) = σb(f(T )).

Therefore Browder’s theorem holds for f(T ).

In [2], Barnes showed that Browder’s theorem holds for an operator if
and only if it holds for its adjoint. Therefore, we can add to the conclusion
of Theorem 2.9 that also f(T ∗) satisfies Browder’s theorem.

It is interesting to note that in contrast to Browder’s theorem, Weyl’s
theorem does not pass from an operator to its adjoint even if it has the SVEP.
Indeed, if we consider the operator T2 on `2(N) defined by T2(x1, x2, . . .) =
(0, x1/2, x2/3, . . .), then T2 is the adjoint of the operator T1 introduced in
Example 1. Being quasi-nilpotent, T2 has the SVEP, and since Π00(T2) = ∅,
it follows that T2 satisfies Weyl’s theorem. However, as we have shown,
T ∗2 = T1 does not satisfy Weyl’s theorem.

Corollary 2.10. If T ∈ L(X) or its adjoint has the SVEP , then

(i) Weyl’s theorem holds for T if and only if Π0(T ) = Π00(T ),
(ii) Weyl’s theorem holds for T ∗ if and only if Π0(T ∗) = Π00(T ∗).

Proof. This is a straightforward consequence of Theorem 2.9, [2, Theo-
rem 6] and the equivalences (1.1) and (1.2).

The following lemma, which is required to obtain a useful characteriza-
tions of Riesz points, was established in [3], and we give here the proof for
completeness.

Lemma 2.11. Let T ∈ L(X) be an operator of finite descent. The fol-
lowing assertions are equivalent :

(i) H0(T ) is closed.
(ii) There exists a positive integer p for which H0(T ) = N(T p).

(iii) T has finite ascent.

Proof. (i)⇒(ii). Assume that H0(T ) is closed. Then T0 = T|H0(T ) is
quasi-nilpotent. On the other hand, R(T )d = R(T )d+1 where d = d(T ),
hence if x ∈ R(T0)d then x = T dy = T d+1z, for y ∈ H0(T ) and z ∈ X,
therefore y− Tz ∈ N(T )d ⊆ H0(T ) and so Tz ∈ H0(T ), i.e. z ∈ H0(T ); this
implies that R(T0)d = R(T0)d+1. It follows that T0 is a quasi-nilpotent op-
erator of finite descent, and hence, by Corollary 10.6 of [29], T0 is nilpotent.
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(ii)⇒(i) and (ii)⇒(iii) are obvious.
(iii)⇒(ii). If a(T ) is finite, we have X = N(T )p ⊕ R(T )p, where p =

a(T ) = d(T ), and R(T )p is closed. Since T|R(T )p is invertible, we have
H0(T|R(T )p) = {0}, and hence H0(T ) = N(T )p.

For an operator T ∈ L(X), the reduced modulus is defined by

γ(T ) = inf{‖Tx‖ : x ∈ X and d(x,N(T )) = 1};
obviously γ(T ) > 0 if and only if R(T ) is closed, and γ(T ) = ‖T−1‖−1 if T
is invertible (see [14]).

Proposition 2.12. For T ∈ L(X), the following conditions are equiva-
lent :

(i) λ ∈ Π0(T ).
(ii) λ ∈ Π00(T ) and R(T − λ) is closed.
(iii) λ ∈ isoσ(T ) and H0(T − λ) is finite-dimensional.
(iv) λ ∈ isoσ(T ) and K(T − λ) is finite-codimensional.
(v) λ ∈ Π00(T ) and there is d ≥ 1 for which H0(T − λ) = N(T − λ)d.

(vi) λ ∈ Π00(T ) and there is d ≥ 1 for which K(T − λ) = R(T − λ)d.
(vii) λ ∈ Π00(T ) and T − λ has finite descent.

(viii) λ ∈ Π00(T ) and λ is a pole of the resolvent of T .
(ix) λ ∈ Π00(T ) and γ is discontinuous at λ.

Proof. Without loss of generality, we may consider λ = 0.
(i)⇒(ii). This is straightforward.
(ii)⇒(iii). If we assume (ii), it follows that T is semi-Fredholm and

H0(T ) is closed. Thus dimH0(T ) is finite, by Lemma 2.6.
(iii)⇔(iv). This follows easily from Theorem 2.4.
(iii)⇒(v). Since dimH0(T ) is finite, T|H0(T ) is nilpotent and henceH0(T )

= N(T )d for some integer d ≥ 1. Moreover, H0(T ) is not trivial, because
0 ∈ isoσ(T ), therefore N(T ) is non-zero and finite-dimensional. Thus 0 ∈
Π00(T ).

(v)⇒(vi). This is an immediate consequence of Theorem 2.4 and the
fact that T (K(T )) = K(T ).

(vi)⇒(vii). If R(T )d = K(T ) then R(T )d+1 = T (R(T )d) = T (K(T )) =
K(T ) = R(T )d.

(vii)⇒(viii). We have H0(T ) closed and d(T ) finite, and Lemma 2.11
shows that a(T ) is finite. Thus, 0 is a pole of the resolvent by Theorem 10.2
of [29].

(viii)⇒(i). By Theorem 2.4, X = N(T −λ)d⊕R(T −λ)d and R(T −λ)d

is closed. Since N(T − λ) is finite-dimensional, we can show easily that also
N(T −λ)d is finite-dimensional, therefore (T −λ)d is Fredholm. Thus, T −λ
is Fredholm and λ ∈ %e(T ) ∩ isoσ(T ) = Π0(T ).
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(ii)⇒(ix). If we assume (ii), and hence (v) and (vi), then N(T ) is non-
zero and N(T ) ∩ R(T )d = {0}. Therefore T is not semi-regular, and Theo-
rem 4.1 of [22] ensures that γ is discontinuous at 0.

(ix)⇒(ii). Let δ > 0 be such that T − λ is invertible if 0 < |λ| < δ. We
have γ(T − λ) = ‖(T − λ)−1‖−1 for 0 < |λ| < δ. Since T is not invertible,
limλ→0 γ(T − λ) = 0. But γ is discontinuous at 0, thus γ(T ) > 0, and hence
R(T ) is closed.

The following theorem follows immediately from Corollary 2.10 and
Proposition 2.12.

Theorem 2.13. For T ∈ L(X) such that T or its adjoint has the SVEP ,
the following conditions are equivalent :

(i) Weyl’s theorem holds for T .
(ii) R(T − λ) is closed for every λ ∈ Π00(T ).
(iii) H0(T − λ) is finite-dimensional for every λ ∈ Π00(T ).
(iv) K(T − λ) is finite-codimensional for every λ ∈ Π00(T ).
(v) For every λ ∈ Π00(T ), there exists d ≥ 1 for which H0(T − λ) =

N(T − λ)d.
(vi) For every λ ∈ Π00(T ), there exists d ≥ 1 for which K(T − λ) =

R(T − λ)d.
(vii) T − λ has finite descent for every λ ∈ Π00(T ).

(viii) Every λ ∈ Π00(T ) is a pole of the resolvent of T .
(ix) γ is discontinuous at every λ ∈ Π00(T ).

For an operator satisfying the SVEP, the equivalence between (i), (ii),
(iii) and (ix) has been established recently by R. Curto and Y. Han in [8].
However, the arguments we have used are different.

We recall that an operator T ∈ L(X) is said to be isoloid if isolated
points of σ(T ) are eigenvalues of T .

Corollary 2.14. Let T be a bounded operator on X for which there
exist an integer d ≥ 1 and a constant c > 0 such that

‖(T − λ)−1‖ ≤ c

dist(λ, σ(T ))d
for all λ 6∈ σ(T ).(2.2)

If T or T ∗ has the SVEP then Weyl’s theorem holds for f(T ), for every
f ∈ H(σ(T )).

Proof. First we claim that for all µ ∈ isoσ(T ), H0(T − µ) = N(T − µ)d.
To show this, let µ ∈ isoσ(T ). Then H0(T − µ) is closed, by Theorem 2.4.
Let T0 be the restriction of T to H0(T − µ). From (2.2), we can easily see
that for λ in a small deleted neighbourhood of µ, we have

|λ− µ|d‖(T0 − λ)−1‖ ≤ c.(2.3)
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Consider a sufficiently small circle C of radius ε and centre µ. Since T0 − µ
is quasi-nilpotent, the Riesz functional calculus gives

(T0 − µ)d =
1

2πi

�

C

(λ− µ)d(λ− T0)−1 dλ,

and hence, by (2.3), ‖(T0 − µ)d‖ ≤ cε, for every small ε > 0. This implies
that H0(T−µ) = N(T0−µ)d ⊆ N(T−µ)d ⊆ H0(T−µ), and so H0(T−µ) =
N(T − µ)d. Therefore, we deduce that T is isoloid and satisfies Weyl’s the-
orem, by assertion (v) of the preceding theorem. Consequently, by Theo-
rem 2.3 and [28, Proposition 2], it follows that, for f ∈ H(σ(T )),

σw(f(T )) = f(σ(Tw)) = f(σ(T ) \Π00(T )) = σ(f(T )) \Π00(f(T )),

and therefore f(T ) obeys Weyl’s theorem.

3. Applications. Now let us introduce the class P(X) formed by the
operators T ∈ L(X) such that for every complex number λ there exists an
integer dλ ≥ 1 for which H0(T − λ) = N(T − λ)dλ . This class is consid-
erably large, it contains every totally paranormal and subscalar operator,
and consequently, every M -hyponormal, p-hyponormal and log-hyponormal
operator; see the examples given at the end of this section. In [1] (see also
[16]), it was shown that if for an operator T ∈ L(X), H0(T − λ) is closed
for every complex number λ, then T has the SVEP. Therefore, the SVEP is
shared by all the operators in P(X).

The main result of this section is the following:

Theorem 3.1. Let T ∈ L(X). If there exists a function h ∈ H(σ(T ))
not identically constant in any connected component of its domain, and such
that h(T ) ∈ P(X), then Weyl’s theorem holds for both f(T ) and f(T ∗), for
every f ∈ H(σ(T )).

We note that Theorem 3.1 may fail if the function h is not assumed
to be not identically constant in any connected component of its domain.
To show this, let T1 be the quasi-nilpotent operator on `2(N) introduced in
Example 1; then T1 does not satisfy Weyl’s theorem. However, if we let h
be the identity function on C, then h(T1) = I belongs to P(`2(N)).

Before giving the proof of Theorem 3.1, some results are to be considered
first.

We recall that an operator T ∈ L(X) is called a quasi-affine transform
of S ∈ L(X) if there exists A ∈ L(X), injective with dense range, such that
SA = AT ; we then write T ≺ S. If T ≺ S and S ≺ T then we say that T
and S are quasi-similar.

Lemma 3.2. Let T and S be bounded operators on X.

(i) If S ∈ P(X) and T ≺ S then T ∈ P(X).
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(ii) If T ∈ P(X) and Y is a closed T -invariant subspace of X, then
T|Y ∈ P(Y ).

Proof. (i) Let A ∈ L(X) be injective with dense range such that AT =
SA, and let x ∈ H0(T − λ). We have

‖(S − λ)nAx‖1/n = ‖A(T − λ)nx‖1/n ≤ ‖A‖1/n‖(T − λ)nx‖1/n,
hence limn→∞ ‖(S − λ)nAx‖1/n = 0 and Ax ∈ H0(S − λ). Since S ∈ P(X),
H0(S − λ) = N(S − λ)d for some integer d ≥ 1, therefore A(T − λ)dx =
(S − λ)dAx = 0, and so x ∈ N(T − λ)d, because A is injective. Thus,
H0(T − λ) = N(T − λ)d and T ∈ P(X).

(ii) Let λ ∈ C. There exists a positive integer d such that H0(T − λ) =
N(T − λ)d. Since

H0(T|Y − λ) ⊆ H0(T − λ) ∩ Y = N(T − λ)d ∩ Y = N(T|Y − λ)d,

we get H0(T|Y − λ) = N(T|Y − λ)d, as desired.

The first assertion of the next proposition is a special case of Theorem
3.1, and it will be required for proving that theorem.

Proposition 3.3. For T ∈ P(X), the following assertions hold :

(i) Weyl’s theorem holds for both T and T ∗.
(ii) If Y is a T -invariant closed subspace of X, then Weyl’s theorem

holds for T|Y .

Proof. (i) Since T has the SVEP, Theorem 2.13 implies that Weyl’s
theorem holds for T . Let us show that T ∗ satisfies Weyl’s theorem. By
Corollary 2.10, it suffices to prove that Π00(T ∗) = Π0(T ∗). Let λ ∈ Π00(T ∗)
and let d ≥ 1 be such thatH0(T−λ) = N(T−λ)d. It follows that λ ∈ isoσ(T )
and X = N(T − λ)d⊕K(T − λ), hence R(T − λ)d = (T − λ)d(K(T − λ)) =
K(T−λ) is closed, and so is R(T ∗−λ)d. On the other hand, since N(T ∗−λ)
is finite-dimensional, we can show by an easy inductive argument that also
N(T ∗−λ)d is finite-dimensional. Therefore (T ∗−λ)d is semi-Fredholm, and
hence so is T ∗ − λ. Finally, H0(T ∗ − λ) is closed, because λ ∈ isoσ(T ∗);
then by Lemma 2.6 we deduce that H0(T ∗ − λ) is finite-dimensional. Thus
λ ∈ Π0(T ∗), by Proposition 2.12. The other inclusion is clear.

(ii) Straightforward from Lemma 3.2 and assertion (i).

The following example shows that assertion (ii) of the preceding propo-
sition may fail for an arbitrary operator even if it has the SVEP.

Example 2. Let T1 be as in Example 1, and let S be the unilateral
left shift on `2(N) given by S(x1, x2, . . .) = (x2, x3, . . .). Define T on X :=
`2(N)⊕`2(N) by T = T1⊕S. Now, T1 is quasi-nilpotent, and since S has the
SVEP and σ(S) is the closed unit disc (see [17]), it follows that also T has
the SVEP and σ(T ) is the closed unit disc. Therefore T does not have any
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isolated point, and hence, by Corollary 2.10, Weyl’s theorem holds for T .
However, the restriction T1 of T does not satisfy Weyl’s theorem.

In the next result, we establish one of the closure properties of the class
P(X).

Theorem 3.4. For T ∈ L(X), the following assertions are equivalent :

(i) T ∈ P(X).
(ii) f(T ) ∈ P(X) for every f ∈ H(σ(T )).

(iii) There exists a function f ∈ H(σ(T )) not identically constant in any
component of its domain such that f(T ) ∈ P(X).

To prove this theorem, we need the following lemma:

Lemma 3.5. Let T be a bounded operator on X, and let p be a complex
polynomial.

(i) If λ0 is a complex number such that p(λ0) 6= 0, then

H0(T − λ0) ∩N(p(T )) = {0}.
(ii) If , in addition, T has the SVEP , then

H0(p(T )) = H0(T − λ1)⊕H0(T − λ2)⊕ . . .⊕H0(T − λn),

where λ1, . . . , λn are the distinct roots of the polynomial p.

Proof. (i) Suppose that there exists a non-zero element x in H0(T−λ0)∩
N(p(T )), and let p(λ0) − p(T ) = q(T )(λ0 − T ) where q is a polynomial. It
follows that q(T )(λ0−T )x = p(λ0)x, and hence, for all n, [q(T )(λ0−T )]nx =
p(λ0)nx. Therefore

|p(λ0)| ‖x‖1/n ≤ ‖q(T )n‖1/n‖(T − λ0)nx‖1/n for all n ≥ 0.

Since x is a non-zero vector of H0(T −λ0), we obtain p(λ0) = 0, the desired
contradiction.

(ii) If x ∈ H0(p(T )), then, by Proposition 1.3 of [21], there exists an
analytic function f such that x = (p(T ) − µ)f(µ) for µ ∈ C \ {0}. Hence,
for λ ∈ C \ {λ1, . . . , λn},

x = (p(T )− p(λ))f(p(λ)) = (T − λ)Q(T, λ)f(p(λ)),

where Q is a polynomial of T and λ. Consequently, σT (x) ⊆ {λ1, . . . , λn},
and so

x ∈ XT ({λ1, . . . , λn}) =
n⊕

i=1

XT ({λi}),

by part (g) of [17, Proposition 1.2.16]. Since T has the SVEP, Proposi-
tion 1.3 of [21] implies that XT ({λi}) = H0(T − λi). Therefore H0(p(T )) ⊆⊕n

i=1H0(T −λi). Conversely, since each λi is a root of p, we can easily show
that H0(T − λi) ⊆ H0(p(T )) for 1 ≤ i ≤ n.
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Proof of Theorem 3.4. (i)⇒(ii). Suppose that T ∈ P(X), and consider
an analytic function f on Ω, where σ(T ) ⊆ Ω. Let α be an arbitrary complex
number. If α 6∈ f(σ(T )) = σ(f(T )), then f(T ) − α is invertible and hence
H0(f(T ) − α) = N(f(T ) − α) = {0}. Therefore, we may assume that α ∈
f(σ(T )). Let g := f − α on Ω. Suppose first that g has only finitely many
zeros in σ(T ). Then g(λ) = p(λ)h(λ), where h is analytic on Ω and without
zeros in σ(T ), while p is a polynomial of the form p(λ) =

∏n
i=1(λ − λi)αi

with distinct roots λ1, . . . , λn ∈ σ(T ). It follows that g(T ) = p(T )h(T ) and
h(T ) is invertible, so that

H0(g(T )) = H0(p(T )) =
n⊕

i=1

H0(T − λi),

by part (ii) of the preceding lemma. On the other hand, since T ∈ P(X),
we can choose a positive integer d such that H0(T − λi) = N(T − λi)d for
1 ≤ i ≤ n. In particular, for 1 ≤ i ≤ n, this implies that T − λi has finite
ascent, therefore H0(T − λi) = N(T − λi)dαi . Finally, we get

H0(g(T )) =
n⊕

i=1

N(T − λi)dαi = N
( n∏

i=1

(T − λi)dαi
)

= N(p(T )d) = N(g(T )d).

Thus g(T ) ∈ P(X).
Now if g has infinitely many zeros in σ(T ), then there exist two disjoint

open subsets of C, Ω1 and Ω2, such that Ω = Ω1∪Ω2, g = 0 on Ω1, and g has
only finitely many zeros on Ω2. It follows that σ(T ) = F1∪F2, where F1 and
F2 are two closed disjoint subsets of C and Fi ⊆ Ωi for i = 1, 2. Therefore,
the spectral decomposition provides two closed T -invariant subspaces X1,
X2 for which X = X1 ⊕X2, σ(T|X1) = F1 and σ(T|X2) = F2; in particular
g(T )|X1 = g(T|X1) = 0. Since T|X2 ∈ P(X2), by Lemma 3.2, and g has
only finitely many zeros in σ(T|X2), the same argument as above leads to
g(T|X2) ∈ P(X2), and consequently, H0(g(T )|X2) = N(g(T )k|X2

) for some
integer k ≥ 1. Finally,

H0(f(T )−α) = H0(g(T )) = X1⊕N(g(T )k|X2
) = N(g(T )k) = N(f(T )−α)k,

which completes the proof of (i)⇒(ii).
(ii)⇒(iii) is obvious.
(iii)⇒(i). Consider λ0 ∈ σ(T ) and let α = f(λ0). Since f is non-constant

on each connected component of its domain, it follows that f(λ) − α =
(λ − λ0)rp(λ)g(λ), where p is a complex polynomial such that p(λ0) 6= 0
and g is an analytic function which does not vanish in σ(T ). Therefore,
f(T ) − α = (T − λ0)rp(T )g(T ) and g(T ) is invertible. On the other hand,
by hypothesis, there exists d ≥ 1 such that H0(f(T )− α) = N(f(T )− α)d.
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Hence

H0(T − λ0) ⊆ H0(f(T )− α) = N(T − λ0)dr ⊕N(p(T )d),

and since N(T − λ0)dr ⊆ H0(T − λ0) and H0(T − λ0)∩N(p(T )d) = {0}, by
part (i) of the preceding lemma, we conclude that H0(T−λ0) = N(T−λ0)dr,
as desired.

Proof of Theorem 3.1. From Theorem 3.4, it follows that f(T ) ∈ P(X)
for every f ∈ H(σ(T )), and therefore Weyl’s theorem holds for both f(T )
and f(T ∗), by Proposition 3.3(i).

Corollary 3.6. If T ∈ P(X) then both f(T ) and f(T ∗) satisfy Weyl’s
theorem for every f ∈ H(σ(T )).

As an immediate consequence of Lemma 3.2 and Corollary 3.6, we have:

Corollary 3.7. If T ∈P(X), then for every S∈L(X) such that S≺T ,
Weyl’s theorem holds for both f(S) and f(S∗) whenever f ∈ H(σ(T )).

As we have shown in Example 2, Weyl’s theorem does not pass from an
operator to its restriction to a closed invariant subspace. However, for the
class P(X), by Proposition 3.3 and Corollary 3.6, we have:

Corollary 3.8. Let T ∈ P(X). If Y is a T -invariant closed subspace
of X, then Weyl’s theorem holds for f(T|Y ) and f(T|Y )∗, for every f ∈
H(σ(T )).

We end this section by these examples:

Example 3. We show that P(X) contains every subscalar operator.
First, recall from [7] and [17] that an operator T ∈ L(X) is said to be
generalized scalar if there exists a continuous algebra homomorphism Φ :
C∞(C) → L(X) such that Φ(1) = I and Φ(Z) = T , where C∞(C) denotes
the Fréchet algebra of all infinitely differentiable complex-valued functions
on C, and Z stands for the identity function on C. An operator similar to
the restriction of a generalized scalar operator to a closed invariant subspace
is called subscalar. It is well known that a subscalar operator has Dunford’s
property (C).

Now, to show that a subscalar operator T ∈ L(X) belongs to P(X),
by Lemma 3.2 we may assume that T is generalized scalar. Consider a
continuous algebra homomorphism Φ : C∞(C) → L(X) such that Φ(1) = I
and Φ(Z) = T , and let λ ∈ C. Since T satisfies Dunford’s condition (C), it
follows that T has the SVEP and H0(T − λ) = XT ({λ}) is closed (see [21]).
On the other hand, for f ∈ C∞(C), Φ(f)(H0(T − λ)) ⊆ H0(T − λ), because
T = Φ(Z) commutes with Φ(f). Now, if we consider the continuous algebra
homomorphism Φ̃ : C∞(C)→ L(H0(T −λ)) defined by Φ̃(f) = Φ(f)|H0(T−λ)
for f ∈ C∞(C), we deduce that T|H0(T−λ) is generalized subscalar. Hence, by
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[17, Proposition 1.5.10], T|H0(T−λ) − λ is nilpotent. Thus there exists d ≥ 1
such that H0(T − λ) = N(T − λ)d.

The examples that follow have received a systematic treatment in the
literature; we recapture most of the results that have been established.

Example 4. If T ∈ L(X) is a spectral operator of finite type (see [7] and
[24]), then T is generalized scalar, by Theorem 3.6 of [7], hence T ∈ P(X),
and consequently, Weyl’s theorem holds for f(T ) and f(T ∗), for every f ∈
H(σ(T )).

Example 5. Let T ∈ L(X) be a totally paranormal operator (see [15]),
i.e. ‖(T − λ)x‖2 ≤ ‖(T − λ)2x‖ ‖x‖ for all λ ∈ C and x ∈ X. By an easy
inductive argument we see that ‖(T − λ)x‖n ≤ ‖(T − λ)nx‖ ‖x‖n−1 for all
x ∈ X, λ ∈ C and n ≥ 1. Hence H0(T − λ) = N(T − λ) for all λ ∈ C,
and thus T ∈ P(X). Therefore, by Theorem 3.4, P(X) contains the class
of algebraically totally paranormal operators defined as those operators S ∈
L(X) for which there exists a non-constant polynomial p such that p(T ) is
totally paranormal.

Let H denote a complex Hilbert space.

Example 6. If T ∈ L(H) is M -hyponormal (see [10]), i.e. there exists
M > 0 such that TT ∗ ≤ MT ∗T , then it follows from Proposition 2.4.9 of
[17] that T is subscalar and so T ∈ P(H).

Example 7. If T ∈ L(H) is p-hyponormal (see [10]), i.e. there exists 0 <
p ≤ 1 such that (T ∗T )p ≥ (TT ∗)p (if p = 1, then T is called hyponormal),
then T is subscalar, by [19, Corollary 2]. Therefore, by Theorem 3.4, T ∈
P(H). More generally, P(H) contains the class of algebraically p-hyponormal
operators, i.e. those S ∈ L(H) for which there exists a non-constant complex
polynomial q such that q(S) is p-hyponormal.

Example 8. If T is log-hyponormal (see [10]), T is invertible and
log(T ∗T ) ≥ log(TT ∗), then T is subscalar, by [19, Corollary 2], and so
T ∈ P(H).

In [15], [13] (see also [9]), it was established that if T is algebraically
totally paranormal or algebraically hyponormal, then Weyl’s theorem holds
for f(T ), for every f ∈ H(σ(T )). In fact, Theorem 3.1 generalizes these
results.
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