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Operator-valued n-harmonic measure
in the polydisc

by

Anders Olofsson (Stockholm)

Abstract. An operator-valued multi-variable Poisson type integral is studied. In Sec-
tion 2 we obtain a new equivalent condition for the existence of a so-called regular unitary
dilation of an n-tuple T = (T1, . . . , Tn) of commuting contractions. Our development
in Section 2 also contains a new proof of the classical dilation result of S. Brehmer,
B. Sz.-Nagy and I. Halperin. In Section 3 we turn to the boundary behavior of this
operator-valued Poisson integral. The results obtained in this section improve upon an
earlier result proved by R. E. Curto and F.-H. Vasilescu in [3].

0. Introduction. Let H be a (not necessarily separable) Hilbert space
and denote by L(H) the space of all bounded linear operators on H. The
space L(H) is normed by the operator norm, that is, ‖T‖ = sup‖x‖≤1 ‖Tx‖
for T ∈ L(H), and the operator inequality T ≥ 0 in L(H) means that
(Tx, x) ≥ 0 for all x ∈ H. A contraction is an operator T ∈ L(H) such that
‖T‖ ≤ 1. For an n-tuple T = (T1, . . . , Tn) of commuting operators in L(H)
we denote the associated Brehmer quantities by

∆ε
T =

∑

0≤α≤ε
(−1)|α|T ∗αTα,(0.1)

where T ∗ = (T ∗1 , . . . , T
∗
n) and ε ≥ 0 is a multi-index. Standard multi-index

notation is used. For a multi-index α ∈ Zn we write

α+ = (max(α1, 0), . . . ,max(αn, 0)), α− = −(min(α1, 0), . . . ,min(αn, 0)).

In particular, α = α+ − α− and α+, α− ≥ 0.
In Theorem 2.1 we prove that with every n-tuple T = (T1, . . . , Tn) of

commuting contractions in L(H) satisfying the additional positivity condi-
tion (A) below, one can associate a positive L(H)-valued operator measure
ωT on the unit n-torus Tn such that ω̂T (α) = T ∗α

+
Tα
−

for α ∈ Zn, where
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ω̂T (α) =
�
e−iα·θ dωT (eiθ) is the αth Fourier coefficient of ωT . For definitions

of measure-theoretic concepts the reader is referred to Section 1. Let us note
in passing that if such an operator measure ωT exists, then it is uniquely
determined. This is clear by uniqueness of Fourier coefficients. When the
Tj ’s are strict contractions, that is, ‖Tj‖ < 1 for 1 ≤ j ≤ n, the operator
measure ωT is given by the formula

dωT (eiθ) = P (T ; eiθ)dσ(eiθ),

where dσ is the normalized Lebesgue measure on Tn and P (T ; eiθ) is the
L(H)-valued n-harmonic Poisson kernel defined by

P (T ; eiθ) =
n∏

j=1

(I − eiθjT ∗j )−1 ·∆(1,...,1)
T ·

n∏

j=1

(I − e−iθjTj)−1,

where eiθ = (eiθ1 , . . . , eiθn) ∈ Tn and ∆ε
T is given by (0.1). In Theorem 2.2

we turn to the converse of Theorem 2.1 and prove that if such a positive
operator measure ωT exists, then condition (B) below holds.

The development in Section 2 may be regarded as analogous to the
existence theory of so-called regular unitary dilations developed by, most
notably, S. Brehmer [2], B. Sz.-Nagy [14, 15] and I. Halperin [6, 7] in
the early 1960’s and more recently considered by R. E. Curto and F.-H.
Vasilescu [3, 4]. A standard reference for this material is Section I.9 in the
book [16] by B. Sz.-Nagy and C. Foiaş. In particular, our development in
Section 2 contains a new equivalent condition for the existence of a regular
unitary dilation of an n-tuple T = (T1, . . . , Tn) of commuting contractions
in L(H). This condition reads as follows:

(A) There exists a sequence rk = (rk1, . . . , rkn), 0 ≤ rkj < 1, such that

rk → (1, . . . , 1) as k →∞ and ∆
(1,...,1)
(rk1T1,...,rknTn) ≥ 0 in L(H) for all k.

By the work of S. Brehmer, B. Sz.-Nagy and I. Halperin, an n-tuple T of
commuting operators in L(H) has a regular unitary dilation if and only if
the following condition holds:

(B) ∆ε
T ≥ 0 in L(H) for all 0 ≤ ε ≤ (1, . . . , 1).

Note that for ε = (ε1, . . . , εn), εk = δj,k, the inequality ∆ε
T ≥ 0 means that

Tj is a contraction. It is straightforward to prove that (B) implies (A), see
Proposition 2.1. The converse implication that (A) implies (B), valid when
T is an n-tuple of commuting contractions, follows by Theorems 2.1 and 2.2
and our proof of this requires some more work. The condition using (A)
seems formally weaker than (B). Note however that when T is a 2-tuple of
contractions, (A) reduces to ∆(1,1)

T ≥ 0. Section 2 also contains a new proof
of the Brehmer–Sz.-Nagy–Halperin result referred to above.
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For an n-tuple T = (T1, . . . , Tn) of commuting strict contractions in L(H)
and ϕ ∈ C(Tn) we consider the L(H)-valued n-harmonic Poisson integral
defined by the formula

P [ϕ](T ) = �
Tn
P (T ; eiθ)ϕ(eiθ) dσ(eiθ),

where P (T ; eiθ) is as above. Let now T be an n-tuple of commuting operators
in L(H) satisfying (B). In Theorem 4.3 in [3] it is shown, under an extra
structural assumption on T , that the limit limr→1− P [ϕ](rT ) exists in the
strong operator topology of L(H). See also the last paragraph on page 793
in [3] where this result is announced. The purpose of Section 3 of this paper
is to present some stronger results concerning this limit. In particular, we
prove that

lim
rj→1

0≤rj<1

P [ϕ](r1T1, . . . , rnTn) = �
Tn
ϕ(eiθ) dωT (eiθ) in L(H).(0.2)

We emphasize that in (0.2) the limit is taken in the operator norm of L(H),
the n-tuple T of commuting operators in L(H) satisfies (B) (no extra struc-
tural assumption) and ϕ ∈ C(Tn) is arbitrary. In Theorems 3.1 and 3.2 we
give more general results formulated in terms of operator measures of the
type dωT . We also observe some closely related summability results for the
formal series

∑
ϕ̂(α)T ∗α

−
Tα

+
, where

ϕ̂(α) = �
Tn
e−iα·θϕ(eiθ) dσ(eiθ)

denotes the αth Fourier coefficient of ϕ ∈ C(Tn). In particular, the formal
series

∑
ϕ̂(α)T ∗α

−
Tα

+
is Abel summable to

�
ϕdωT in L(H).

A motivation for the study of these Poisson type integrals comes from
the von Neumann inequality [11]. Indeed, by Proposition 1.1 and (1.1), we
always have ‖

�
ϕdωT ‖ ≤ ‖ϕ‖∞. This together with the identity

�
ϕdωT =∑

ϕ̂(α)T ∗α
−
Tα

+
, valid for, say, ϕ =

∑
ϕ̂(α)eiα·θ a trigonometric polynomial

on Tn, implies the von Neumann inequality
∥∥∥
∑

α∈Zn
ϕ̂(α)T ∗α

−
Tα

+
∥∥∥ ≤ ‖ϕ‖∞.

More generally, if we interpret the formal series
∑
ϕ̂(α)T ∗α

−
Tα

+
by means

of Abel or Cesàro summation in L(H), then the same von Neumann inequal-
ity holds true for arbitrary ϕ ∈ C(Tn).

The L(H)-valued n-harmonic Poisson kernel P (T ; eiθ) seems to have first
appeared in the paper [3] by R. E. Curto and F.-H. Vasilescu. We also remark
that a similar L(H)-valued M-harmonic Poisson integral for the unit ball
in Cn has been studied by F.-H. Vasilescu in [17]. However, the proof of the
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classical von Neumann inequality (n = 1) using the Poisson integral formula
indicated in the previous paragraph is known to several people and dates
back at least to the 1970’s (private communication).

The proofs in this paper make use of measure theory including the
F. Riesz representation theorem, some basic harmonic analysis and the
operator-valued Poisson integral discussed above. This approach is differ-
ent from that used by S. Brehmer, B. Sz.-Nagy and I. Halperin.

1. Measure theory. The purpose of this section is to review some facts
about integration in Hilbert space. Let S be a set and S a σ-algebra of sub-
sets of S. By an L(H)-valued operator measure on S we mean a finitely ad-
ditive set function µ : S→ L(H) such that the set functions µx,y, x, y ∈ H,
defined by µx,y(E) = (µ(E)x, y) for E ∈ S, are all complex measures on S.
The semi-variation of µ, here denoted by |µ|, is the set function defined
by |µ|(E) = sup‖x‖≤1, ‖y‖≤1 |µx,y|(E), where |µx,y| is the total variation of
the complex measure µx,y. An operator measure µ is said to be positive if
µ(E) ≥ 0 in L(H) for every E ∈ S. A projection-valued operator measure
µ with µ(S) = I is called a spectral measure (see §36 in [5]). In the liter-
ature, a positive operator measure µ with µ(S) = I is sometimes called a
quasi-spectral measure or a semi-spectral measure.

The semi-variation of a positive operator measure is easily computed.

Proposition 1.1. Let µ be a positive L(H)-valued operator measure.
Then |µ|(E) = sup‖x‖≤1(µ(E)x, x) = ‖µ(E)‖ for every measurable set E.

Proof. It suffices to verify that
sup

‖x‖≤1,‖y‖≤1
|µx,y|(E) ≤ sup

‖x‖≤1
(µ(E)x, x).

Let {Ej} be a finite partition of E into measurable sets and let x, y ∈ H.
By the Cauchy–Schwarz inequality we have∑

|µx,y(Ej)| =
∑
|(µ(Ej)x, y)|

≤
∑

(µ(Ej)x, x)1/2(µ(Ej)y, y)1/2

≤
(∑

(µ(Ej)x, x)
)1/2(∑

(µ(Ej)y, y)
)1/2

= (µ(E)x, x)1/2(µ(E)y, y)1/2.

Thus, |µx,y|(E) = sup{Ej}
∑ |µx,y(Ej)| ≤ (µ(E)x, x)1/2(µ(E)y, y)1/2.

Next we recall the definition of the integral
�
f dµ, where f is a complex-

valued measurable function and µ is an operator measure. Let f : S → C be
a measurable function such that the scalar integrals

�
f dµx,y, x, y ∈ H, all

exist in the usual Lebesgue sense. The function f is said to be integrable with
respect to µ if (x, y) 7→

�
f dµx,y is a bounded sesquilinear map H×H → C.
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It is straightforward to see that if this holds, then there exists an operator
T ∈ L(H) (necessarily uniquely determined) such that (Tx, y) =

�
f dµx,y

for x, y ∈ H. The integral
�
f dµ is defined by

�
f dµ = T .

It is straightforward to see that if the integral
�
f dµ exists, then there is

an estimate ∥∥∥ �
S

f(s) dµ(s)
∥∥∥ ≤ ‖f‖∞|µ|(S),(1.1)

where ‖f‖∞ = inf{c > 0 : |µ|({s ∈ S : |f(s)| > c}) = 0} is the essential
supremum.

Next we observe that the integral
�
f dµ exists if f : S → C is a bounded

measurable function and µ is an operator measure of finite total semi-
variation, that is, |µ|(S) < ∞. Indeed, it is clear that the integrals�
f dµx,y, x, y ∈ H, all exist and that we have the estimate |

�
f dµx,y| ≤

‖f‖∞|µ|(S)‖x‖ ‖y‖.
Let us now specialize to the case when S is a locally compact Hausdorff

space. In this case we take S to be the σ-algebra of all Borel subsets of S. We
require of µ that the µx,y, x, y ∈ H, are all regular complex Borel measures
on S. Denote by C0(S) the space of all continuous functions on S vanishing
at infinity. If µ is of finite total semi-variation, then (1.1) shows that the
formula

Λ(f) = �
S

f(s) dµ(s) for f ∈ C0(S)(1.2)

defines a bounded linear map Λ : C0(S)→ L(H) of norm less than or equal
to |µ|(S). Since the µx,y’s are all regular we have ‖Λ‖ = |µ|(S). Next we show
that every bounded linear map Λ : C0(S)→ L(H) is obtained in this way.

Proposition 1.2. Let S be a locally compact Hausdorff space and H a
Hilbert space. Let Λ : C0(S) → L(H) be a bounded linear map. Then there
exists an L(H)-valued operator measure µ on S of finite total semi-variation
such that (1.2) holds.

Proof. For x, y ∈ H, by the F. Riesz representation theorem (see Theo-
rem 6.19 in [13]) there exists a unique complex regular Borel measure µx,y
on S such that

(Λ(f)x, y) = �
S

f dµx,y for f ∈ C0(S).

Clearly, the map (x, y) 7→ µx,y is linear in x and conjugate linear in y. It
is also clear that |µx,y|(S) ≤ ‖Λ‖ ‖x‖ ‖y‖. Let E ⊂ S be a Borel set. It is
straightforward to prove that there exists a unique operator µ(E) ∈ L(H)
such that (µ(E)x, y) = µx,y(E) for x, y ∈ H. It is clear that µ so defined is an
L(H)-valued operator measure of finite total semi-variation. By definition
of the integral, (

�
f dµx, y) =

�
f dµx,y. Thus, (1.2) holds.
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For easy reference we quote the following theorem of M. A. Naimark [9].

Theorem 1.1. Let µ be a positive L(H)-valued operator measure on S
such that µ(S) = I. Then there exists a Hilbert space K containing H as
a closed subspace and an L(K)-valued spectral measure E on S such that
µ(ω) = PE(ω)|H for ω ∈ S, where P is the orthogonal projection of K
onto H.

For a proof of Theorem 1.1, apart from [9], we also refer to Section 7
in [14] or Section 6 in [8].

2. Construction of the n-harmonic measure. Let Dn be the unit
polydisc and denote by dσ the normalized Lebesgue measure on the unit
n-torus Tn. The n-harmonic Poisson kernel for Dn is the function defined
by

P (z; eiθ) =
n∏

j=1

1− |zj|2
|eiθj − zj |2

,

where z = (z1, . . . , zn) ∈ Dn and eiθ = (eiθ1 , . . . , eiθn) ∈ Tn. Note that for
n = 1 the function P (z; eiθ) is the usual Poisson kernel for the unit disc D.
For r = (r1, . . . , rn), 0 ≤ rj < 1, we also write

Pr(eiθ) = P (r1e
iθ1 , . . . , rne

iθn; 1, . . . , 1) =
∑

α∈Zn
r
|α1|
1 · · · r|αn|n eiα·θ.

An important feature is that the n-harmonic Poisson integral

u(z) = P [ϕ](z) = Pr ∗ ϕ(eiθ)(2.1)

= �
Tn
P (z, eiτ )ϕ(eiτ ) dσ(eiτ ), zj = rje

iθj ,

solves the n-harmonic Dirichlet problem
{
∆ju = 0 in Dn (1 ≤ j ≤ n),

u = ϕ on Tn,

where ∆j = 4∂j∂j is the Laplacian in the variable zj. We note that if
ϕ ∈ C(Tn), then u = P [ϕ] ∈ C(Dn). We refer to the monograph [12] for
more details.

Let H be a Hilbert space. For an n-tuple T = (T1, . . . , Tn) of commuting
operators in L(H) and a multi-index ε ≥ 0 we consider the Brehmer quantity
defined by

∆ε
T =

∑

0≤α≤ε
(−1)|α|T ∗αTα,(2.2)

where T ∗ = (T ∗1 , . . . , T
∗
n).
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Proposition 2.1. Let 0 ≤ rj ≤ 1 for 1 ≤ j ≤ n. Let T = (T1, . . . , Tn)
∈ L(H)n be an n-tuple of commuting operators such that ∆ε

T ≥ 0 in L(H) for
0 ≤ ε ≤ (1, . . . , 1). Then ∆ε

(r1T1,...,rnTn) ≥ 0 in L(H) for 0 ≤ ε ≤ (1, . . . , 1).

Proof. It is clearly sufficient to prove that ∆ε
(r1T1,T2,...,Tn) ≥ 0. Write

T = (T1, T
′′) and α = (α1, α

′′). In proving ∆ε
(r1T1,T ′′)

≥ 0 we can clearly
assume that ε1 = 1. We have

∆ε
(r1T1,T ′′) =

∑

0≤α≤ε
(−1)|α|(r1T1)∗α1(T ′′)∗α

′′
(r1T1)α1(T ′′)α

′′

=
∑

0≤α′′≤ε′′
(−1)|α

′′|(T ′′)∗α
′′
(T ′′)α

′′

−
∑

0≤α′′≤ε′′
(−1)|α

′′|(r1T1)∗(T ′′)∗α
′′
(r1T1)(T ′′)α

′′

= ∆ε′′
T ′′ − r2

1T
∗
1∆

ε′′
T ′′T1 ≥ ∆ε′′

T ′′ − T ∗1∆ε′′
T ′′T1 = ∆ε

T ≥ 0 in L(H),

where we have used the fact that ∆ε′′
T ′′ ,∆

ε
T ≥ 0.

Let T = (T1, . . . , Tn) ∈ L(H)n be an n-tuple of commuting operators
such that the Tj ’s are strictly contractive, that is, ‖Tj‖ < 1 for 1 ≤ j ≤ n.
The L(H)-valued n-harmonic Poisson kernel is defined by the formula

P (T ; eiθ) =
n∏

j=1

(I − eiθjT ∗j )−1 ·∆(1,...,1)
T ·

n∏

j=1

(I − e−iθjTj)−1,(2.3)

where eiθ ∈ Tn and ∆ε
T is given by (2.2). Our first task is to compute the

Fourier coefficients of P (T ; ·).
Lemma 2.1. Let T = (T1, . . . , Tn) ∈ L(H)n be an n-tuple of commuting

strict contractions and let P (T ; eiθ) be as in (2.3). Then

P (T ; ·)∧(α) = �
Tn
P (T ; eiθ)e−iα·θ dσ(eiθ) = T ∗α

+
Tα
−
,

where

α+ = (max(α1, 0), . . . ,max(αn, 0)), α− = −(min(α1, 0), . . . ,min(αn, 0)).

Proof. We compute

P (T ; eiθ) =
(∑

α≥0

eiα·θT ∗α
)
∆

(1,...,1)
T

(∑

α≥0

e−iα·θTα
)

=
∑

0≤γ≤(1,...,1)

(−1)|γ|
∑

α,β≥0

ei(α−β)·θT ∗(α+γ)T β+γ .

Thus,
P (T ; ·)∧(δ) =

∑

0≤γ≤(1,...,1)

(−1)|γ|
∑

δ=α−β
α,β≥0

T ∗(α+γ)T β+γ .(2.4)
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We now note that the summation in the inner sum in (2.4) is over all pairs
of multi-indices (α, β) of the form α = δ+ + ε, β = δ− + ε, where ε ≥ 0.
Thus,

P (T ; ·)∧(δ) = T ∗δ
+
( ∑

0≤γ≤(1,...,1)

(−1)|γ|
∑

ε≥0

T ∗(ε+γ)T ε+γ
)
T δ
−
.

To complete the proof it now suffices to show that the double sum within
parentheses equals I, and we do this by induction on n ≥ 1. Let

s(T1, . . . , Tn) =
∑

0≤γ≤(1,...,1)

(−1)|γ|
∑

ε≥0

T ∗(ε+γ)T ε+γ .

Clearly, s(T1) = I. For n ≥ 2 we have

s(T1, . . . , Tn) =
∞∑

εn=0

T ∗εnn s(T1, . . . , Tn−1)T εnn

−
∞∑

εn=0

T ∗(εn+1)
n s(T1, . . . , Tn−1)T εn+1

n .

Thus, s(T1, . . . , Tn−1) = I implies s(T1, . . . , Tn) = I.

We can now prove the main result of this section.

Theorem 2.1. Let T = (T1, . . . , Tn) ∈ L(H)n be an n-tuple of commut-
ing contractions. Assume that there exists a sequence rk = (rk1, . . . , rkn),
0 ≤ rkj < 1, such that rk → (1, . . . , 1) as k → ∞ and ∆

(1,...,1)
(rk1T1,...,rknTn) ≥ 0

in L(H) for all k. Then there exists a (unique) positive L(H)-valued operator
measure ωT on Tn such that ω̂T (α) = T ∗α

+
Tα
−

for α ∈ Zn.

Proof. Clearly, by uniqueness of Fourier coefficients, the operator mea-
sure ωT is uniquely determined. We proceed to prove the existence of ωT .
Consider the linear map

Λ : ϕ 7→
∑

α∈Zn
ϕ̂(α)T ∗α

−
Tα

+ ∈ L(H)

defined for trigonometric polynomials ϕ on Tn, and with values in L(H).
By assumption, the Poisson kernel P (rk1T1, . . . , rknTn; eiθ) is defined and
by Lemma 2.1 we have

(2.5)
∑

α∈Zn
ϕ̂(α)r|α1|

k1 · · · r
|αn|
kn T ∗α

−
Tα

+

= �
Tn
P (rk1T1, . . . , rknTn; eiθ)ϕ(eiθ) dσ(eiθ).
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Now Proposition 1.1 and (1.1) yield the estimate∥∥∥
∑

α∈Zn
ϕ̂(α)r|α1|

k1 · · · r
|αn|
kn T ∗α

−
Tα

+
∥∥∥ ≤ ‖ϕ‖∞.

Letting k → ∞ we obtain ‖Λ(ϕ)‖ ≤ ‖ϕ‖∞. By approximation, the map
Λ uniquely extends to a bounded linear map Λ : C(Tn) → L(H) of norm
less than or equal to 1. By Proposition 1.2 there exists an L(H)-valued
operator measure ωT on Tn such that Λ(ϕ) =

�
ϕdωT . Clearly, ω̂T (α) =

T ∗α
+
Tα
−

. Also, by (2.5) it is clear that ϕ ≥ 0 implies Λ(ϕ) ≥ 0 in L(H)
for trigonometric polynomials ϕ. Since a general 0 ≤ ϕ ∈ C(Tn) can be
uniformly approximated by non-negative trigonometric polynomials, this
shows that 0 ≤ ϕ ∈ C(Tn) implies Λ(ϕ) ≥ 0. Thus, the operator measure
ωT is positive.

Remark 2.1. By Proposition 2.1, the positivity assumption in Theo-
rem 2.1 holds if T satisfies the Brehmer condition ∆ε

T ≥ 0 in L(H) for
0 ≤ ε ≤ (1, . . . , 1).

Remark 2.2. If an n-tuple T of commuting strict contractions in L(H)
is such that there exists an L(H)-valued operator measure ωT on Tn with
ω̂T (α) = T ∗α

+
Tα
−

for α ∈ Zn, then the relation between ωT and P (T ; eiθ)
is given by

dωT (eiθ) = P (T ; eiθ) dσ(eiθ).(2.6)

Indeed, this is clear by uniqueness of Fourier coefficients.

Next we turn to the converse of Theorem 2.1.

Theorem 2.2. Let T = (T1, . . . , Tn) ∈ L(H)n be an n-tuple of commut-
ing operators such that there exists a positive L(H)-valued operator measure
ω on Tn with ω̂(α) = T ∗α

+
Tα
−

for α ∈ Zn. Then ∆ε
T ≥ 0 in L(H) for

0 ≤ ε ≤ (1, . . . , 1).

Proof. Assume first that the Tj ’s are all strict contractions. By Re-
mark 2.2, formula (2.6) holds with ωT = ω. Since ω ≥ 0, we have�
P (T ; eiθ)ϕ(eiθ) dσ(eiθ) ≥ 0 in L(H) for 0 ≤ ϕ ∈ C(Tn). Clearly, this implies

that P (T ; eiθ) ≥ 0. By (2.3) we have ∆(1,...,1)
T ≥ 0 in L(H).

We now consider the general case. Since Tj =
�
e−iθj dω(eiθ), the operator

Tj is a contraction. We consider the convolution Pr ∗ω, r = (r1, . . . , rn), 0 ≤
rj < 1, defined by Pr ∗ ω(eiθ) =

�
Pr(ei(θ−τ)) dω(eiτ ). An easy computation

shows that

(Pr ∗ ω)∧(α) = �
Tn

(Pr ∗ ω)(eiθ)e−iα·θ dσ(eiθ) = r
|α1|
1 · · · r|αn|n T ∗α

+
Tα
−
.

Thus, the sequence (r1T1, . . . , rnTn)∗α
+

(r1T1, . . . , rnTn)α
−
, α ∈ Zn, is the

Fourier coefficient sequence of the positive L(H)-valued operator measure
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(Pr ∗ω)dσ. By the first part of the proof we have ∆(1,...,1)
(r1T1,...,rnTn) ≥ 0. Letting

r → (1, . . . , 1) we obtain ∆(1,...,1)
T ≥ 0.

We now prove that ∆ε
T ≥ 0 for an arbitrary multi-index ε with 0 ≤ ε ≤

(1, . . . , 1). Let 1 ≤ j1 < · · · < jm ≤ n be those indices j for which εj = 1.
Consider the linear map Λ : C(Tm)→ L(H) defined by

Λ : ϕ 7→ �
Tn
ϕ(eiθj1 , . . . , eiθjm ) dω(eiθ) ∈ L(H).

Clearly, the map Λ is positive and is, by Proposition 1.2, induced by a
positive L(H)-valued operator measure λ on Tm in the sense that Λ(ϕ) =�
ϕdλ. By construction we have

λ̂(α) = �
Tm
e−iα·θ dλ(eiθ) = �

Tn
e−i(α1θj1+···+αmθjm ) dω(eiθ) = T ∗β

+
T β
−
,

where β = (β1, . . . , βn) is defined by βj = 0 for j 6= j1, . . . , jm and βjk =
αk for k = 1, . . . ,m. Thus, the sequence (Tj1 , . . . , Tjm)∗α

+
(Tj1 , . . . , Tjm)α

−
,

α ∈ Zm, is the Fourier coefficient sequence of λ. By what we have proven
above, ∆ε

T = ∆
(1,...,1)
(Tj1 ,...,Tjm) ≥ 0 in L(H).

We close this section with some comments on the relation of our results in
this section to the so-called regular unitary dilations of S. Brehmer, B. Sz.-
Nagy and I. Halperin. Recall that a unitary representation U : Zn → L(H)
is a function such that U(α) is a unitary operator for every α ∈ Zn and

U(α+ β) = U(α)U(β) for α, β ∈ Zn.
It is easy to see that a unitary representation U : Zn → L(H) naturally
corresponds to an n-tuple U = (U1, . . . , Un) of commuting unitary operators
in L(H) by means of the formula U(α) = Uα = Uα1

1 . . . Uαnn for α ∈ Zn.
By Stone’s theorem (see [1]) every unitary representation U : Zn → L(H)

has the form

U(α) = �
Tn
eiα·θ dE(eiθ) for α ∈ Zn,(2.7)

where E is an L(H)-valued spectral measure on Tn. Conversely, given a
spectral measure E it is easy to see that formula (2.7) defines a unitary
representation U .

Let T = (T1, . . . , Tn) be an n-tuple of commuting operators in L(H).
Let K be a Hilbert space containing H as a closed subspace. A unitary
representation U : Zn → L(K) is said to be a regular unitary dilation of T if

PU(α)|H = T ∗α
−
Tα

+
for all α ∈ Zn,

where P is the orthogonal projection of K onto H.
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It is well known that a regular unitary dilation corresponds to a positive
operator measure of the type studied in this section. We have the following
proposition.

Proposition 2.2. Let T = (T1, . . . , Tn) be an n-tuple of commuting op-
erators in L(H). Then the following two assertions are equivalent.

(1) The n-tuple T has a regular unitary dilation U : Zn → L(K).
(2) There exists a positive L(H)-valued operator measure ω on Tn such

that ω̂(α) = T ∗α
+
Tα
−

for α ∈ Zn.

Furthermore, when the above holds, we have

ω(σ) = PE(σ)|H for σ ∈ S,(2.8)

where E is the spectral measure for U , P is the orthogonal projection of K
onto H, and S denotes the σ-algebra of Borel subsets of Tn.

Proof. Assume first that T has a regular unitary dilation U : Zn → L(K).
By Stone’s theorem there exists an L(K)-valued spectral measure E on
Tn such that (2.7) holds. By compression to H we see that T ∗α

−
Tα

+
=�

eiα·θ dω(eiθ) for α ∈ Zn, where ω is as in (2.8). Now, clearly, ω̂(α) =
T ∗α

+
Tα
−

for α ∈ Zn.
Assume next that assertion (2) holds. By Theorem 1.1 there exists a

larger Hilbert space K and an L(K)-valued spectral measure E on Tn
such that (2.8) holds. Formula (2.7) gives us a unitary representation U :
Zn → L(K). A straightforward verification shows that U is a regular unitary
dilation of T .

We also remark that by Bochner’s theorem (see [10]) assertion (2) in
the above proposition is equivalent to positive definiteness of the sequence
T ∗α

+
Tα
−

, α ∈ Zn.

3. Boundary behavior of the Poisson integral. In this section we
are concerned with the boundary behavior of the L(H)-valued n-harmonic
Poisson integral discussed in the introduction. More generally, we also prove
some statements involving operator measures of the type ωT . First we need
a lemma.

Lemma 3.1. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators
in L(H) such that ∆ε

T ≥ 0 in L(H) for 0 ≤ ε ≤ (1, . . . , 1). Then

�
Tn
P [ϕ](r1e

iθ1 , . . . , rne
iθn) dωT (eiθ) = �

Tn
ϕ(eiθ) dω(r1T1,...,rnTn)(e

iθ)

for every ϕ ∈ C(Tn) and r = (r1, . . . , rn), 0 ≤ rj ≤ 1.
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Proof. Let ϕ be a trigonometric polynomial on Tn and note that

P [ϕ](r1e
iθ1 , . . . , rne

iθn) = Pr ∗ ϕ(eiθ) =
∑

α∈Zn
r
|α1|
1 · · · r|αn|n ϕ̂(α)eiα·θ.

We now have

� P [ϕ](r1e
iθ1 , . . . , rne

iθn) dωT (eiθ) =
∑

α∈Zn
r
|α1|
1 · · · r|αn|n ϕ̂(α)T ∗α

−
Tα

+
.

Since also

� ϕ(eiθ) dω(r1T1,...,rnTn)(e
iθ) =

∑

α∈Zn
ϕ̂(α)r|α1|

1 · · · r|αn|n T ∗α
−
Tα

+
,

we have proved the lemma for ϕ a trigonometric polynomial. The general
case now follows by approximation.

Remark 3.1. Let 0 ≤ rj ≤ 1 for 1 ≤ j ≤ n. Note that by the results of
Section 2, existence of dω(r1T1,...,rnTn) follows from that of dωT .

Theorem 3.1. Let T = (T1, . . . , Tn) be an n-tuple of commuting op-
erators in L(H) such that ∆ε

T ≥ 0 in L(H) for 0 ≤ ε ≤ (1, . . . , 1). Let
ϕ ∈ C(Tn) and let r = (r1, . . . , rn), 0 ≤ rj ≤ 1 for 1 ≤ j ≤ n. Then
∥∥∥ �
Tn
ϕdω(r1T1,...,rnTn) − �

Tn
ϕdωT

∥∥∥ ≤ max
eiθ∈Tn

|P [ϕ](r1e
iθ1 , . . . , rne

iθn)− ϕ(eiθ)|.

In particular , limr→(1,...,1)
�
ϕdω(r1T1,...,rnTn) =

�
ϕdωT in L(H), where

0 ≤ rj ≤ 1.

Proof. By Lemma 3.1, Proposition 1.1 and (1.1) we have
∥∥∥ � ϕdω(r1T1,...,rnTn) − � ϕdωT

∥∥∥

=
∥∥∥ � (P [ϕ](r1e

iθ1 , . . . , rne
iθn)− ϕ(eiθ)) dωT (eiθ)

∥∥∥

≤ max
eiθ∈Tn

|P [ϕ](r1e
iθ1 , . . . , rne

iθn)− ϕ(eiθ)|.

The last assertion of the theorem is clear since P [ϕ](r1e
iθ1 , . . . , rne

iθn)
→ ϕ(eiθ) uniformly in eiθ ∈ Tn as r → (1, . . . , 1).

We can formulate the last continuity assertion of Theorem 3.1 more gen-
erally as follows.

Theorem 3.2. Denote by P the set of all n-tuples T ∈ L(H)n of com-
muting operators such that ∆ε

T ≥ 0 in L(H) for 0 ≤ ε ≤ (1, . . . , 1). Then
the map

C(Tn)×P 3 (ϕ, T ) 7→ �
Tn
ϕdωT ∈ L(H)

is continuous.
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Proof. Let Tj → T in L(H)n and ϕj → ϕ in C(Tn). We have to prove
that

�
ϕj dωTj →

�
ϕdωT in L(H). First observe that

�
P dωTj →

�
P dωT

whenever P is a trigonometric polynomial on Tn. Let ε > 0. Let P be a
trigonometric polynomial such that ‖ϕ−P‖∞ < ε/4. For j large enough we
have∥∥∥ � ϕj dωTj − � ϕdωT

∥∥∥ ≤
∥∥∥ � (ϕj − ϕ) dωTj

∥∥∥+
∥∥∥ � (ϕ− P ) dωTj

∥∥∥

+
∥∥∥ � P dωTj − � P dωT

∥∥∥+
∥∥∥ � (P − ϕ) dωT

∥∥∥ < ε.

Thus,
�
ϕj dωTj →

�
ϕdωT .

Let us now restrict our attention to the special case of Theorem 3.1 when
r = (r1, . . . , rn) is such that 0 ≤ rj < 1 for 1 ≤ j ≤ n. The last assertion of
Theorem 3.1 then becomes

lim
rj→1

0≤rj<1

P [ϕ](r1T1, . . . , rnTn) = �
Tn
ϕdωT in L(H).(3.1)

A computation shows that

� P (r1T1, . . . , rnTn; eiθ)ϕ(eiθ) dσ(eiθ)

=
∑

α∈Zn
r
|α1|
1 · · · r|αn|n ϕ̂(α)T ∗α

−
Tα

+
in L(H).

Thus, by (3.1), the formal series
∑
ϕ̂(α)T ∗α

−
Tα

+
is Abel summable to�

ϕdωT in L(H), that is,

lim
rj→1

0≤rj<1

∑

α∈Zn
r
|α1|
1 · · · r|αn|n ϕ̂(α)T ∗α

−
Tα

+
= �
Tn
ϕdωT in L(H).

In the preceding paragraph we essentially used the fact that Pr ∗ ϕ→ ϕ
in C(Tn). We now consider the analogous situation when the Poisson kernel
Pr is replaced by the Fejér kernel KN , N = (N1, . . . , Nn), Nj ≥ 0, defined by

KN (eiθ) =
n∏

j=1

KNj (e
iθj ) =

∑

−N≤α≤N

n∏

j=1

(
1− |αj|

Nj + 1

)
· eiα·θ, eiθ ∈ Tn.

Since KN ∗ϕ→ ϕ in C(Tn) as Nj →∞, we have
�
KN ∗ϕdωT →

�
ϕdωT in

L(H). This last limit assertion can be reformulated as saying that the formal
series

∑
ϕ̂(α)T ∗α

−
Tα

+
is Cesàro summable to

�
ϕdωT in L(H), that is,

lim
Nj→∞

∑

|αj |≤Nj

(
1− |α1|

N1 + 1

)
· · ·
(

1− |αn|
Nn + 1

)
ϕ̂(α)T ∗α

−
Tα

+

= �
Tn
ϕdωT in L(H).
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