Robustness with respect to small time-varied delay for linear dynamical systems on Banach spaces

by

Miao Li, Xiao-Hui Gu and Fa-Lun Huang (Chengdu)

Abstract

Under suitable conditions we prove the wellposedness of small time-varied delay equations and then establish the robust stability for such systems on the phase space of continuous vector-valued functions.

1. Introduction. The robustness of delay equations has been studied by many authors (see cf. [Ba1, Ba2, Da, EN, Hu, FN, JGH, Liu]).

In this paper we consider the time-varied delay equation of the form

$$
\begin{cases}x^{\prime}(t)=A x(t)+B x(t-\tau(t)), & t \geq 0 \tag{1.1}\\ x(\theta)=\xi(\theta), & -r \leq \theta \leq 0\end{cases}
$$

where A generates a C_{0}-semigroup $(T(t))_{t \geq 0}$ on a Banach space X, B is a closed densely defined linear operator on $X, \tau(t)$ is continuous and ξ is taken from some phase space.

Huang ([Hu]) proved the robust stability of the delay equation (1.1) on the phase space $C(-r, 0 ; X)$ in the case that B is a bounded operator. Dropping the assumption that B is bounded, Liu ([Liu]) showed that if A generates a holomorphic semigroup and B is $(-A)^{\alpha}$-bounded, then the exponential stability of (1.1) (with $\tau(t) \equiv r$) on the phase space $C(-r, 0 ; D(A))$ is robust. Bátkai et al. ([Ba1, Ba2]) proved a similar result on the phase space $X \times L^{p}(-r, 0 ; D(B))$.

Our goal in this paper is to study the robust stability of the time-varied delay equation (1.1) in the case that B is unbounded. The organization of the paper is as follows: in Section 2, we will prove the wellposedness of (1.1) under some general assumptions on A and B, and that the solution operators are given by Dyson-Phillips series. In Section 3, we prove the robust stability of the equation with time-varied delay on the phase space of continuous functions under the assumption that $B T(t)$ is norm continuous

[^0]for $t>0$. In addition, we will give an example to show that under this condition, the semigroup $T(t)$ is not necessarily holomorphic. So our results in this section generalize that of [Liu]. Moreover, our results show that on the phase space of continuous functions, the robust stability of the system without delay persists in the system with time-varied delay. However, the time-varied delay on the phase space $X \times L^{p}(-r, 0 ; D(B))$ will greatly affect the robustness and even the wellposedness of the delay equation. This will be taken up in a subsequent paper.
2. Preliminaries and wellposedness. Let X be a Banach space with norm $\|\cdot\|$ and let $\mathbf{B}(X)$ be the Banach algebra of all bounded linear operators on X. If A is a linear operator on X, we write $D(A)$ for its domain. We denote by $(f * g)(t)=\int_{0}^{t} f(t-s) g(s) d s$ the convolution of f and g. Throughout this paper the following assumptions will be in force:

General Assumptions. (a1) A generates a C_{0}-semigroup $(T(t))_{t \geq 0}$ on X.
(a2) B is a closed linear operator on $X, D(A) \subset D(B)$ and there is a non-negative measurable function $k \in L_{\mathrm{loc}}^{1}(0, \infty)$ such that

$$
\begin{equation*}
\|B T(t) x\| \leq k(t)\|x\|, \quad t \geq 0, x \in D(A) \tag{2.1}
\end{equation*}
$$

Since $k \in L_{\text {loc }}^{1}(0, \infty)$, from [DS, pp. 631, Theorem 19] one knows that $A+B$ with domain $D(A)$ generates a C_{0}-semigroup $\left(T_{B}(t)\right)_{t \geq 0}$ on X.

Let $\omega_{0}(T)$ be the growth bound of $(T(t))_{t \geq 0}$, that is, for $\omega>\omega_{0}(T)$ and $0<\delta<\omega-\omega_{0}(T)$, there is a constant $M \geq 1$ such that $\|T(t)\| \leq M e^{(\omega-\delta) t}$ for $t \geq 0$. Let $t_{0}>0$ by such that $k\left(t_{0}\right)$ is finite. Then by (2.1), for $t \geq t_{0}$ and $x \in D(A)$, we have

$$
\begin{align*}
\|B T(t) x\| & =\left\|B T\left(t_{0}\right) T\left(t-t_{0}\right) x\right\| \tag{2.2}\\
& \leq k\left(t_{0}\right)\left\|T\left(t-t_{0}\right) x\right\| \leq k\left(t_{0}\right) M e^{(\omega-\delta)\left(t-t_{0}\right)}\|x\|
\end{align*}
$$

This shows that $B T(t)$ extends to a bounded operator on X for $t \geq t_{0}$ since $D(A)$ is dense. We will also denote this extension by $B T(t)$ in the rest of this paper. Moreover, since there is a sequence $\left\{t_{n}\right\} \subset \mathbb{R}^{+}$such that $t_{n} \rightarrow 0$ and $k\left(t_{n}\right)$ is finite, we know that $B T(t) \in \mathbf{B}(X)$ for all $t>0$. Let $k_{0}(t)=\|B T(t)\|$. By (2.2), we have $k^{0}(t):=k_{0}(t) e^{-\omega t} \in L^{1}(0, \infty)$ and

$$
\begin{equation*}
k^{0}(t) \leq k_{0}\left(t_{0}\right) M e^{-\delta\left(t-t_{0}\right)}, \quad t \geq t_{0} \tag{2.3}
\end{equation*}
$$

Furthermore, we have
Lemma 2.1. For all $t>0, B T_{B}(t) \in \mathbf{B}(X)$ and $k_{1}(t):=\left\|B T_{B}(t)\right\| \in$ $L_{\text {loc }}^{1}(0, \infty)$ satisfies

$$
\begin{equation*}
k_{1}(t) \leq k_{1}\left(t_{0}\right) M e^{(\omega-\delta)\left(t-t_{0}\right)}, \quad t \geq t_{0}>0 \tag{2.4}
\end{equation*}
$$

where $\omega>\max \left\{0, \omega_{0}(T), \omega_{0}\left(T_{B}\right)\right\}$ is large enough such that $\|T(t)\|,\left\|T_{B}(t)\right\|$ $\leq M e^{(\omega-\delta) t}$ for $t \geq 0$ and some constant $M \geq 1$, and

$$
\begin{equation*}
\beta:=M \int_{0}^{\infty} k^{0}(t) d t<1 \tag{2.5}
\end{equation*}
$$

Proof. Choose $\omega>\max \left\{0, \omega_{0}(T), \omega_{0}\left(T_{B}\right)\right\}$ large enough such that (2.5) holds. Then for $x \in X$ and $t>0$, multiplying the equation

$$
\begin{equation*}
B T_{B}(t) x=B T(t) x+\int_{0}^{t} B T(t-s) B T_{B}(s) x d s \tag{2.6}
\end{equation*}
$$

by $e^{-\omega t}$ yields

$$
\begin{equation*}
e^{-\omega s}\left\|B T_{B}(s) x\right\| \leq k^{0}(s)\|x\|+\int_{0}^{s} k^{0}(s-\tau) e^{-\omega \tau}\left\|B T_{B}(\tau) x\right\| d \tau, \quad s>0 \tag{2.7}
\end{equation*}
$$

Integrating (2.7) from 0 to t gives

$$
\begin{aligned}
\int_{0}^{t} e^{-\omega s}\left\|B T_{B}(s) x\right\| d s & \leq \int_{0}^{t} k^{0}(s)\|x\| d s+\int_{0}^{t} \int_{0}^{s} k^{0}(s-\tau) e^{-\omega \tau}\left\|B T_{B}(\tau) x\right\| d \tau d s \\
& \leq \beta\|x\|+\int_{0}^{t} e^{-\omega \tau}\left\|B T_{B}(\tau) x\right\| \int_{\tau}^{t} k^{0}(s-\tau) d s d \tau \\
& \leq \beta\|x\|+\beta \int_{0}^{t} e^{-\omega \tau}\left\|B T_{B}(\tau) x\right\| d \tau
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\int_{0}^{t} e^{-\omega s}\left\|B T_{B}(s) x\right\| d s \leq \beta(1-\beta)^{-1}\|x\|, \quad t>0, x \in X \tag{2.8}
\end{equation*}
$$

By induction, from (2.7) using (2.8) we have

$$
\begin{equation*}
e^{-\omega t}\left\|B T_{B}(t) x\right\| \leq k_{2}(t)\|x\|, \quad t>0, x \in X \tag{2.9}
\end{equation*}
$$

where $k_{2}(t)=\sum\left(k^{0}\right)^{* n}(t)$ and $\left(k^{0}\right)^{* n}=k^{0} * \cdots * k^{0}$ is the n-fold convolution of the kernel k^{0}. Since $\left\|k^{0}\right\|_{L^{1}(0, \infty)} \leq \beta$, we have $\left\|k_{2}\right\|_{L^{1}(0, \infty)} \leq(1-\beta)^{-1} \beta$. Thus from (2.9) we have $\left\|B T_{B}(t)\right\| \leq e^{\omega t} \beta(1-\beta)^{-1}$, and similarly to the proof of (2.2) and (2.3), one can show that (2.4) holds.

Next we consider the norm continuity of $B T(t)$ and $B T_{B}(t)$.
Lemma 2.2. If $B T(t)$ is norm continuous for $t>0$, then so is $B T_{B}(t)$.

Proof. Let $t>0$ and $0<\delta<t / 2$. By (2.6), for $|h|<\delta$ and $x \in X$ satisfying $\|x\| \leq 1$,

$$
\begin{aligned}
\| B T_{B}(t+ & h) x-B T_{B}(t) x \| \\
= & \| B(T(t+h) x-T(t)) x+\int_{t-\delta}^{t+h} B T(t+h-s) B T_{B}(s) x d s \\
& +\int_{0}^{t-\delta}[B T(t+h-s)-B T(t-s)] B T_{B}(s) x d s \\
& -\int_{t-\delta}^{t} B T(t-s) B T_{B}(s) x d s \| \\
\leq & \|B T(t+h)-B T(t)\|+\int_{0}^{t-\delta}\|B T(t+h-s)-B T(t-s)\| k_{1}(s) d s \\
& +M_{t}\left[\int_{t-\delta}^{t+h} k_{0}(t+h-s) d s+\int_{t-\delta}^{t} k_{0}(t-s) d s\right]
\end{aligned}
$$

where $M_{t}:=\max \left\{k_{1}(s): t / 2 \leq s \leq 3 t / 2\right\}$; (2.4) implies that M_{t} is finite for $t>0$. Since $B T(t)$ is norm continuous for $t>0$ and $k_{0} \in L_{\mathrm{loc}}^{1}(0, \infty)$, for every $\varepsilon>0$ there is a $\delta_{1} \in(0, t / 4)$ such that when $|h|<\delta / 2$ and $\delta \leq \delta_{1}$,

$$
\|B T(t+h)-B T(t)\|+M_{t}\left(\int_{t-\delta}^{t+h} k_{0}(t+h-s) d s+\int_{t-\delta}^{t} k_{0}(t-s) d s\right)<\varepsilon / 2
$$

Moreover, for given $0<\delta \leq \delta_{1}$, since $B T(t)$ is uniformly continuous on $[\delta / 2, t+\delta / 2]$, there exists $\delta_{\varepsilon} \in(0, \delta / 2)$ such that for $s \in[0, t-\delta]$ and $|h| \leq \delta_{\varepsilon}$,

$$
\|B T(t+h-s)-B T(t-s)\|<\frac{1}{2}\left(\int_{0}^{t} k_{1}(s) d s\right)^{-1} \varepsilon
$$

Combining all these inequalities, for $x \in X$ with $\|x\| \leq 1$ and $|h|<\delta_{\varepsilon}$ we obtain

$$
\left\|B T_{B}(t+h) x-B T_{B}(t) x\right\|<\varepsilon
$$

which implies the norm continuity of $B T_{B}(t)$ on $(0, \infty)$.
The continuity of $B T(t) x$ for some point x is equivalent to that of $B T_{B}(t) x$:

Lemma 2.3. Let $x \in D(B)$. Then $B T(t) x$ is continuous for $t \geq 0$ if and only if $B T_{B}(t) x$ is continuous for $t \geq 0$.

Proof. Suppose that $B T(t) x$ is continuous for $t \geq 0$. Since for $0 \leq t \leq 1$,

$$
\begin{aligned}
\left\|B T_{B}(t) x-B x\right\| & =\left\|B T(t) x-B x+\int_{0}^{t} B T_{B}(t-s) B T(s) x d s\right\| \\
& \leq\|B T(t) x-B x\|+\int_{0}^{t} k_{1}(t-s) d s \max _{0 \leq \tau \leq 1}\|B T(\tau) x\|
\end{aligned}
$$

$B T_{B}(t) x$ is right-continuous at 0 . Now let $t>0$ and $|h|<\delta<\min \{1, t / 2\}$. Then

$$
\begin{aligned}
&\left\|B T_{B}(t+h) x-B T_{B}(t) x\right\| \\
&= \| B T(t+h) x-B T(t) x+\int_{0}^{t+h} B T_{B}(s) B(t+h-s) x d s \\
& \quad-\int_{0}^{t} B T_{B}(s) B T(t-s) x d s \| \\
& \leq\|B T(t+h) x-B T(t) x\| \\
&+\int_{0}^{t-\delta} k_{1}(s)\|B T(t+h-s) x-B T(t-s) x\| d s \\
&+\left[\int_{t-\delta}^{t+h} k_{1}(s) d s+\int_{t-\delta}^{t} k_{1}(s) d s\right] \max _{0 \leq \tau \leq 2}\|B T(\tau) x\|
\end{aligned}
$$

Since $B T(s) x$ is uniformly continuous for $s \in[0, t+1]$ and $k_{1} \in L_{\mathrm{loc}}^{1}(0, \infty)$, for every $\varepsilon>0$ one can find a constant $\delta_{\varepsilon} \in(0, \min \{1, t / 2\})$ such that for $|h|<\delta<\delta_{\varepsilon}$,

$$
\|B T(s+h) x-B T(s) x\|<\frac{1}{2}\left(1+\int_{0}^{t} k_{1}(s) d s\right)^{-1} \varepsilon, \quad s \in[0, t+1]
$$

and

$$
\int_{t-\delta}^{t+h} k_{1}(s) d s+\int_{t-\delta}^{t} k_{1}(s) d s<\frac{1}{2}\left(\max _{0 \leq \tau \leq 2}\|B T(\tau) x\|\right)^{-1} \varepsilon
$$

By the above estimates, we have

$$
\left\|B T_{B}(t+h) x-B T_{B}(t) x\right\|<\varepsilon, \quad|h|<\delta_{\varepsilon}
$$

which means that $B T_{B}(t) x$ is continuous for $t \geq 0$. Conversely, if $B T_{B}(t) x$ is continuous for $t \geq 0$, then from

$$
B T(t) x=B T_{B}(t) x-\int_{0}^{t} B T(s) B T_{B}(t-s) x d s, \quad t \geq 0
$$

by a similar argument one can show that $B T(t) x$ is continuous for $t \geq 0$.

We are particularly interested in the subspace of X on which $B T(t)$ (and also $B T_{B}(t)$ by Lemma 2.3) is strongly continuous.

Lemma 2.4. Let X_{b} be the subspace of X defined by

$$
X_{b}=\{x \in D(B): B T(t) x \text { is continuous for } t \geq 0\}
$$

Then $D(A) \subset X_{b} \subset D(B)$ and X_{b} is a Banach space with norm

$$
\begin{equation*}
\|x\|_{b}=\|x\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T(s) x\right\|, \quad x \in X_{b} \tag{2.10}
\end{equation*}
$$

where $\omega>\max \left\{0, \omega_{0}(T), \omega_{0}\left(T_{B}\right)\right\}$ is large enough such that $\|T(t)\|+\left\|T_{B}(t)\right\|$ $\leq M e^{(\omega-\delta) t}$ for $t \geq 0$ and some constant $M \geq 1$, and

$$
\gamma:=M \int_{0}^{\infty} e^{-\omega t}\left(k_{0}(t)+k_{1}(t)\right) d t<1
$$

Moreover, the norm

$$
\|x\|_{b^{\prime}}:=\|x\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T_{B}(s) x\right\|
$$

on X_{b} is equivalent to $\|\cdot\|_{b}$. Finally, if $T_{B}(t)$ is exponentially stable, that is, there are constants $M_{b} \geq 1$ and $\omega_{b}>0$ such that $\left\|T_{B}(t)\right\| \leq M_{b} e^{-\omega_{b} t}$ for $t \geq 0$, then the norm

$$
\begin{equation*}
\|x\|_{s}:=\|x\|+\sup _{s \geq 0}\left\|B T_{B}(s) x\right\| \tag{2.11}
\end{equation*}
$$

on X_{b} is also equivalent to $\|\cdot\|_{b}$.
Proof. If $x \in D(A)$, then for $t \geq 0$ and $h>0$,

$$
\|B T(t+h) x-B T(t) x\|=\left\|B \int_{t}^{t+h} T(s) A x d s\right\| \leq \int_{t}^{t+h} k_{0}(s) d s \cdot\|A x\|
$$

so $B T(t) x$ is continuous for $t \geq 0$ since $k_{0}(\cdot) \in L_{\text {loc }}^{1}(0, \infty)$. Hence $D(A) \subset$ $X_{b} \subset D(B)$.

Next we show that $\left(X_{b},\|\cdot\|_{b}\right)$ is a Banach space. Let $\left\{x_{n}\right\} \subset X_{b}$ be a Cauchy sequence in X_{b}. Then from the definition of the norm, both $\left\{x_{n}\right\}$ and $\left\{B x_{n}\right\}$ are Cauchy sequences in X and thus converge. Suppose that $x_{n} \rightarrow x$ and $B x_{n} \rightarrow y$ in X. Then from the closedness of B we have $x \in D(B)$ and $B x=y$. Now the strong continuity of $B T(t) x$ follows from the facts that x_{n} converges to x and the convergence of $B T(t) x_{n}$ to $B T(t) x$ is uniform in compact intervals. Similarly one can show that ($X_{b},\|\cdot\|_{b^{\prime}}$) is also a Banach space by using Lemma 2.3.

To see the equivalence of the two norms, by the Inverse Mapping Theorem, we only need to show that one norm is stronger than the other. Let $x \in X_{b}$. By the definition of b^{\prime}-norm we have

$$
e^{-\omega t}\left\|B T_{B}(t) x\right\| \leq\|x\|_{b^{\prime}}, \quad t \geq 0
$$

thus

$$
\begin{aligned}
\|x\|_{b^{\prime}}= & \|x\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T_{B}(s) x\right\| \\
\leq & \|x\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T(s) x\right\| \\
& +\sup _{s \geq 0}\left\|\int_{0}^{s} e^{-\omega(s-\tau)} B T(s-\tau) e^{-\omega \tau} B T_{B}(\tau) x d \tau\right\| \\
\leq & \|x\|_{b}+\sup _{s \geq 0} \int_{0}^{s} e^{-\omega(s-\tau)} k_{0}(s-\tau) e^{-\omega \tau}\left\|B T_{B}(\tau) x\right\| d \tau \\
\leq & \|x\|_{b}+\sup _{s \geq 0}^{s} \int_{0}^{s} e^{-\omega(s-\tau)} k_{0}(s-\tau)\|x\|_{b^{\prime}} d \tau \\
\leq & \|x\|_{b}+\gamma\|x\|_{b^{\prime}} .
\end{aligned}
$$

It follows that $\|x\|_{b^{\prime}} \leq(1-\gamma)^{-1}\|x\|_{b}$ for $x \in X_{b}$, and therefore, the $\|\cdot\|_{b}$-norm is stronger than the $\|\cdot\|_{b^{\prime}}$-norm.

If $T_{B}(t)$ is exponentially stable, then by Lemma $2.1, B T_{B}(t) \in \mathbf{B}(X)$ for all $t>0$ and

$$
\left\|B T_{B}(t)\right\|=\left\|B T_{B}\left(t_{0}\right) T_{B}\left(t-t_{0}\right)\right\| \leq k_{1}\left(t_{0}\right) M_{b} e^{-\omega_{b}\left(t-t_{0}\right)}, \quad t \geq t_{0}
$$

So $\|\cdot\|_{s}$ is a norm on X_{b} and $\left(X_{b},\|\cdot\|_{s}\right)$ is a Banach space. Moreover, for $x \in X_{b}$,

$$
\|x\|_{b^{\prime}}=\|x\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T_{B}(s) x\right\| \leq\|x\|+\sup _{s \geq 0}\left\|B T_{B}(s) x\right\|=\|x\|_{s}
$$

and again by the Inverse Mapping Theorem, the norms $\|\cdot\|_{s}$ and $\|\cdot\|_{b}$ on X_{b} are equivalent.

After these preparations, we now consider the delay equation

$$
\begin{cases}x^{\prime}(t)=A x(t)+B x(t-\tau(t)), & t \geq 0 \tag{2.12}\\ x(\theta)=\xi(\theta), & -r \leq \theta \leq 0\end{cases}
$$

where $0 \leq \tau \leq r, \tau(t)$ is continuous for $t \geq 0$ and $\xi(\cdot) \in C\left(-r, 0 ; X_{b}\right)$. In the rest of this paper we will denote by $\mathcal{X}=C\left(-r, 0 ; X_{b}\right)$ the phase space. The solution of (2.12) also satisfies

$$
\begin{cases}x(t)=T(t) \xi(0)+\int_{0}^{t} T(t-s) B x(s-\tau(s)) d s, & t \geq 0 \tag{2.13}\\ x(\theta)=\xi(\theta), & \\ \hline r \leq \theta \leq 0\end{cases}
$$

We call $x(t)$ a solution of (2.13) if $x(t) \in C\left(-r, \infty ; X_{b}\right)$ satisfies (2.13) and $x_{t}(\cdot) \in \mathcal{X}$ is continuous for $t \geq 0$, where $x_{t}(\theta):=x(t+\theta)$ for $t \geq 0$ and $-r \leq \theta \leq 0$. In the following we will denote the solution of (2.13) at ξ by $x(t, \xi)$ and call it the mild solution of (2.12).

Theorem 2.5. For any $r>0$ and $\xi \in \mathcal{X}$, (2.13) has a unique solution $x(t, \xi)$. Let

$$
\left(T_{r}(t) \xi\right)(\theta):=x_{t}(\theta, \xi), \quad t \geq 0, \quad-r \leq \theta \leq 0,
$$

be the solution operator. Then there exist positive constants M_{0} and ω_{0}, independent of r, such that

$$
\begin{equation*}
\left\|T_{r}(t) \xi\right\|_{\mathcal{X}} \leq M_{0} e^{\omega_{0} t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0, r>0, \xi \in \mathcal{X} . \tag{2.14}
\end{equation*}
$$

Proof. We will choose the $\|\cdot\|_{b}$-norm on X_{b} given by (2.10), with the constant ω so large that $\|T(t)\| \leq M e^{(\omega-\delta) t}$ for all $t \geq 0$, and $\omega>\delta>M$ such that

$$
\beta_{0}:=M \int_{0}^{\infty} e^{-\omega t} k_{0}(t) d t<1-M \delta^{-1} .
$$

For $r>0$ and $\xi \in \mathcal{X}$, define

$$
x^{(0)}(t)= \begin{cases}T(t) \xi(0), & t \geq 0, \\ \xi(t), & -r \leq t<0,\end{cases}
$$

and for $n=1,2, \ldots$,

$$
x^{(n)}(t)= \begin{cases}\int_{0}^{t} T(t-s) B x^{(n-1)}(s-\tau(s)) d s, & t \geq 0, \tag{2.15}\\ 0, & -r \leq t<0\end{cases}
$$

It is clear from the definition of X_{b} that $x^{(0)}(t)$ is continuous for $t \geq-r$ in X_{b}, and from

$$
x_{t}^{(0)}(\theta)= \begin{cases}T(t+\theta) \xi(0), & t \geq r,-r \leq \theta \leq 0 \text { or } 0 \leq t \leq r,-t \leq \theta \leq 0, \\ \xi(t+\theta), & 0 \leq t \leq r,-r \leq \theta \leq-t,\end{cases}
$$

we have for $t \geq r,-r \leq \theta \leq 0$ or $0 \leq t \leq r,-t \leq \theta \leq 0$,

$$
\begin{aligned}
\left\|x_{t}^{(0)}(\theta)\right\|_{b} & =\|T(t+\theta) \xi(0)\|+\sup _{s \geq 0}\left\|e^{-\omega s} B T(s+t+\theta) \xi(0)\right\| \\
& \leq M e^{\omega(t+\theta)}\|\xi(0)\|+e^{\omega(t+\theta)} \sup _{s \geq 0}\left\|e^{-\omega(s+t+\theta)} B T(s+t+\theta) \xi(0)\right\| \\
& \leq M e^{\omega t}\|\xi(0)\|_{b}+e^{\omega t}\|\xi(0)\|_{b} \leq(1+M) e^{\omega t}\|\xi\| \mathcal{X},
\end{aligned}
$$

and for $0 \leq t \leq r,-r \leq \theta \leq-t$,

$$
\left\|x_{t}^{(0)}(\theta)\right\|_{b}=\|\xi(t+\theta)\|_{b} \leq\|\xi\|_{\mathcal{X}} .
$$

It follows that

$$
\begin{equation*}
\left\|x_{t}^{(0)}(\cdot)\right\|_{\mathcal{X}} \leq(1+M) e^{\omega t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0 \tag{2.16}
\end{equation*}
$$

Moreover, from (2.15) it is easy to see that $x^{(1)}(t)$ is continuous for $t \geq 0$ in X_{b} and by using (2.16) one can show that

$$
\left\|x_{t}^{(1)}(\cdot)\right\|_{\mathcal{X}} \leq(1+M) \beta_{1} e^{\omega t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0, \quad \xi \in \mathcal{X}
$$

where $\beta_{1}:=M \delta^{-1}+\beta_{0}<1$. Then by induction on n we find that $x^{(n)}(t)$ is continuous in X_{b} and

$$
\begin{equation*}
\left\|x_{t}^{(n)}(\cdot)\right\|_{\mathcal{X}} \leq(1+M) \beta_{1}^{n} e^{\omega t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0, n=0,1,2, \ldots \tag{2.17}
\end{equation*}
$$

Set $x(t)=\sum_{n=0}^{\infty} x^{(n)}(t)$ for $t \geq-r$. By (2.17) the series $\sum_{n=0}^{\infty} x^{(n)}(t)$ is absolutely convergent on compact intervals in X_{b} and

$$
\begin{align*}
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} & \leq \sum_{n=0}^{\infty}\left\|x_{t}^{(n)}(\cdot)\right\|_{\mathcal{X}} \leq \sum_{n=0}^{\infty}(1+M) \beta_{1}^{n} e^{\omega t}\|\xi\|_{\mathcal{X}} \tag{2.18}\\
& =(1+M)\left(1-\beta_{1}\right)^{-1} e^{\omega t}\|\xi\|_{\mathcal{X}}
\end{align*}
$$

Thus $x(t)$ is continuous for $t \geq-r$ in X_{b} and

$$
\begin{aligned}
x(t) & = \begin{cases}T(t) \xi(0)+\sum_{n=0}^{\infty} \int_{0}^{t} T(t-s) B x^{(n)}(s-\tau(s)) d s, & t \geq 0 \\
\xi(t), & -r \leq t \leq 0\end{cases} \\
& = \begin{cases}T(t) \xi(0)+\int_{0}^{t} T(t-s) B \sum_{n=0}^{\infty} x^{(n)}(s-\tau(s)) d s, & t \geq 0 \\
\xi(t), & -r \leq t \leq 0\end{cases} \\
& = \begin{cases}T(t) \xi(0)+\int_{0}^{t} T(t-s) B x(s-\tau(s)) d s, & -r \leq t \leq 0 \\
\xi(t), & \end{cases}
\end{aligned}
$$

that is, $x(t)$ satisfies (2.13) and by (2.18),

$$
\begin{equation*}
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq(1+M)\left(1-\beta_{1}\right)^{-1} e^{\omega t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0, \quad \xi \in \mathcal{X} \tag{2.19}
\end{equation*}
$$

To show the uniqueness of the solutions, let $x(t)$ be a solution of (2.13) with initial value $\xi(t) \equiv 0(t \in[-r, 0])$. Then $x(t)=0$ for $-r \leq t \leq 0$, while for $t \geq 0$,

$$
x(t)=\int_{0}^{t} T(t-s) B x(s-\tau(s)) d s
$$

It is easy to show that for $t \geq r,-r \leq \theta \leq 0$ or $0 \leq t \leq r,-t \leq \theta \leq 0$,
(2.20) $\left\|x_{t}(\theta)\right\|_{b} \leq M \int_{0}^{t+\theta}\left[e^{(\omega-\delta)(t+\theta-s)}+k_{0}(t+\theta-s)\right]\|x(s-\tau(s))\|_{b} d s$,
which implies that

$$
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq \beta_{1} e^{\omega t}\left\|x_{t}(\cdot)\right\|_{\mathcal{X}}
$$

by using this inequality on the right-hand side of (2.20) and by induction one obtains

$$
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq \beta_{1}^{n} e^{\omega t}\left\|x_{t}(\cdot)\right\|_{\mathcal{X}}, \quad n=1,2, \ldots
$$

Since n is arbitrary and $\beta_{1}<1$, we have $x_{t} \equiv 0$, which proves the uniqueness of the solutions. So we can define

$$
\left(T_{r}(t) \xi\right)(\theta)=x(t+\theta, \xi), \quad t \geq 0,-r \leq \theta \leq 0, \xi \in \mathcal{X}
$$

where $x(t, \xi)$ is the solution of (2.13) at $\xi \in \mathcal{X}$. Moreover, (2.19) implies that (2.14) holds for $M_{0}=(1+M)\left(1-\beta_{0}\right)^{-1}$ and $\omega_{0}=\omega$. Finally, since $x^{(n)}(t)$ are uniformly continuous on $\left[-r, t_{0}\right]$ for every $t_{0}>-r$ and $x^{(n)}(\cdot)$ is continuous for $t \geq 0$ in \mathcal{X}, by (2.18), we know that $x_{t}(\cdot)$ is continuous for $t \geq 0$ in \mathcal{X}.
3. Robustness with respect to small time-varied delay. In this section we will investigate the stability of the solution of (2.12). To this end, we rewrite (2.12) as

$$
\begin{cases}x^{\prime}(t)=(A+B) x(t)+B(x(t-\tau(t))-x(t)), & t \geq 0 \tag{3.1}\\ x(\theta)=\xi(\theta), & -r \leq \theta \leq 0\end{cases}
$$

where $\xi(\cdot) \in \mathcal{X}, 0 \leq \tau(t) \leq r$ and $\tau(t)$ is continuous for $t \geq 0$. The solution of (3.1) is related to the integrated equation

$$
\left\{\begin{align*}
x(t)= & T_{B}(t) \xi(0) & & \tag{3.2}\\
& +\int_{0}^{t} T_{B}(t-s) B(x(s-\tau(s))-x(s)) d s, & & t \geq 0 \\
x(\theta)= & \xi(\theta) & & -r \leq \theta \leq 0
\end{align*}\right.
$$

Lemma 3.1. The space X_{b} is $T_{B}(t)$-invariant, i.e., $T_{B}(t) X_{b} \subset X_{b}$ for $t \geq 0$, and $\left(T_{B}(t)\right)_{t \geq 0}$ is a C_{0}-semigroup on X_{b}. Moreover, if $T_{B}(t)$ is exponentially stable on X, then so is $T_{B}(t)$ on X_{b} and

$$
\begin{equation*}
\left\|T_{B}(t) x\right\|_{s} \leq\left(3+k_{1}\left(t_{0}\right)\right) M_{b} e^{\omega_{b} t_{0}} e^{-\omega_{b} t}\|x\|_{s}, \quad t \geq 0, x \in X_{b} \tag{3.3}
\end{equation*}
$$

where $t_{0}>0$ is arbitrary, M_{b} and ω_{b} are positive constants such that $\left\|T_{B}(t)\right\| \leq M_{b} e^{-\omega_{b} t}$ for $t \geq 0$, and $\|\cdot\|_{s}$ is given by (2.11).

Proof. It is easy to see that X_{b} is $T_{B}(t)$-invariant. Now we suppose that $T_{B}(t)$ is exponentially stable on X. Let $x \in X_{b}$ and $t_{0}>0$. Then for every $\varepsilon>0$, there is a $T_{\varepsilon} \geq t_{0}$ such that for $s \geq T_{\varepsilon}$ and $t \geq 0$,

$$
\begin{aligned}
\left\|B T_{B}(t+s) x-B T_{B}(s) x\right\| & =\left\|B T_{B}\left(t_{0}\right)\left(T_{B}\left(t+s-t_{0}\right) x-T_{B}\left(s-t_{0}\right) x\right)\right\| \\
& \leq k_{1}\left(t_{0}\right) M_{b}\left(e^{-\omega_{b}\left(t+s-t_{0}\right)}+e^{-\omega_{b}\left(s-t_{0}\right)}\right)\|x\|<\varepsilon / 2
\end{aligned}
$$

On the other hand, by Lemma $2.3, B T_{B}(s) x$ is continuous for $s \geq 0$, and therefore uniformly continuous on $\left[0, T_{\varepsilon}+1\right]$. So we can find $\delta_{\varepsilon} \in(0,1)$ such that when $t \in\left[0, \delta_{\varepsilon}\right]$,

$$
\left\|B T_{B}(t+s) x-B T_{B}(s) x\right\|<\varepsilon / 2, \quad s \in\left[0, T_{\varepsilon}\right] .
$$

Therefore, for $t \in\left[0, \delta_{\varepsilon}\right]$, we have

$$
\begin{aligned}
\left\|T_{B}(t) x-x\right\|_{s} & =\left\|T_{B}(t) x-x\right\|+\sup _{s \geq 0}\left\|B T_{B}(s)\left(T_{B}(t) x-x\right)\right\| \\
& \leq \varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

which proves the strong continuity of $T_{B}(t)$ on $\left(X_{b},\|\cdot\|_{s}\right)$.
Next we show that $T_{B}(t)$ is exponentially stable on $\left(X_{b},\|\cdot\|_{s}\right)$ and (3.3) holds. In fact, for $x \in X_{b}$ and $t \geq t_{0}>0$, we have

$$
\begin{aligned}
\left\|T_{B}(t) x\right\|_{s} & =\left\|T_{B}(t) x\right\|+\sup _{s \geq 0}\left\|B T_{B}(s) T_{B}(t) x\right\| \\
& =\left\|T_{B}(t) x\right\|+\sup _{s \geq 0}\left\|B T_{B}(s+t) x\right\| \\
& =\left\|T_{B}(t) x\right\|+\sup _{s \geq 0}\left\|B T_{B}\left(t_{0}\right) T_{B}\left(t+s-t_{0}\right) x\right\| \\
& \leq M_{b} e^{-\omega_{b} t}\|x\|+\sup _{s \geq 0} k_{1}\left(t_{0}\right) M_{b} e^{-\omega_{b}\left(t+s-t_{0}\right)}\|x\| \\
& \leq\left(1+k_{1}\left(t_{0}\right) e^{\omega_{b} t_{0}}\right) M_{b} e^{-\omega_{b} t}\|x\|_{s}
\end{aligned}
$$

and for $0 \leq t \leq t_{0}$,

$$
\begin{aligned}
\left\|T_{B}(t) x\right\|_{s} & =\left\|T_{B}(t) x\right\|+\sup _{s \geq 0}\left\|B T_{B}(s+t) x\right\| \\
& =M_{b} e^{-\omega_{b} t}\|x\|+\|x\|_{s} \leq\left(M_{b}+e^{\omega_{b} t_{0}}\right) e^{-\omega_{b} t}\|x\|_{s}
\end{aligned}
$$

This implies (3.3) since $M_{b}, e^{\omega_{b} t_{0}} \geq 1$.
In the following we will assume that $T_{B}(t)$ is exponentially stable on X, and adopt the $\|\cdot\|_{s}$-norm on X_{b}. Note that by Lemma 2.4, this norm is equivalent to the $\|\cdot\|_{b}$-norm.

Definition 3.2. We say that the exponential stability of $T_{B}(t)$ with small time-varied delay on the phase space \mathcal{X} is robust or the solutions of (3.2) in \mathcal{X} are uniformly exponentially stable with small time-varied delay if there are positive constants r_{0}, M_{0}, and ω_{0} such that for $t \geq 0,0 \leq \tau(t) \leq$ $r \leq r_{0}$ continuous and $\xi \in \mathcal{X}$,

$$
\left\|T_{r}(t) \xi\right\|_{\mathcal{X}} \leq M_{0} e^{-\omega_{0} t}\|\xi\| \mathcal{X}
$$

REmark 3.3. The robustness defined above has some kind of uniformity since the constants M_{0} and ω_{0} (depend on r_{0}) are independent of r.

Our main result is
Theorem 3.4. If $B T(t)$ is norm continuous for $t>0$, then the exponential stability of $T_{B}(t)$ with small time-varied delay on the phase space \mathcal{X} is robust.

Proof. Suppose that $\left\|T_{B}(t)\right\| \leq M_{b} e^{-\omega_{b} t}$ for $t \geq 0$. By Lemma 3.1, $T_{B}(t)$ is exponentially stable on X_{b} and (3.3) holds. Since $B T(t)$ is norm continuous for $t>0$, so is $B T_{B}(t)$ by Lemma 2.2. For $r>0$ and $\xi \in \mathcal{X}$, by Theorem 2.5, (3.2) has a unique solution $x_{t}(\cdot)=x_{t}(\cdot, \xi)=x(t+\cdot, \xi) \in \mathcal{X}$ and

$$
\begin{equation*}
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq N_{0} e^{\sigma_{0} t}\|\xi\|_{\mathcal{X}}, \tag{3.4}
\end{equation*}
$$

where N_{0} and σ_{0} are independent of r. For $\omega_{1} \in\left(0, \omega_{b}\right)$ and $t_{0}>0$, note that

$$
\begin{aligned}
e^{\omega_{1} t} k_{1}(t) & =e^{\omega_{1} t}\left\|B T_{B}(t)\right\|=e^{\omega_{1} t}\left\|B T_{B}\left(t_{0}\right) T_{B}\left(t-t_{0}\right)\right\| \\
& \leq k_{1}\left(t_{0}\right) M_{b} e^{\omega_{1} t} e^{-\omega_{b}\left(t-t_{0}\right)} .
\end{aligned}
$$

For $t \geq t_{0}$ and $k_{1} \in L_{\text {loc }}^{1}(0, \infty)$, we have

$$
\begin{aligned}
\beta_{2} & :=\int_{0}^{\infty} e^{\omega_{1} t} k_{1}(t) d t<\infty \\
\eta(t) & :=\sup _{s \geq 0}^{s+t} \int_{s}^{s+t} e^{\omega_{1} \tau} k_{1}(\tau) d \tau \rightarrow 0 \quad \text { as } t \rightarrow 0+
\end{aligned}
$$

Choose $\tau_{0} \in(0,1]$ small enough such that

$$
\begin{aligned}
& \left(e^{\omega_{b}}+1\right) \eta\left(\tau_{0}\right)<1 \\
& e^{\omega_{b}}\left[\tau_{0} M_{b}\left(\frac{1}{M_{1}}+\frac{1}{\omega_{b}-\omega_{1}}\right)+2 \eta\left(\tau_{0}\right)\right]\left(1-\left(e^{\omega_{b}}+1\right) \eta\left(\tau_{0}\right)\right)^{-1}<1
\end{aligned}
$$

Since $B T_{B}(t)$ is norm continuous for $t>0$, for $r_{1}=t_{0} / 2$ there exists $r_{0} \in$ $\left(0, r_{1}\right)$ such that

$$
\begin{equation*}
\left\|B T_{B}\left(r_{1}-r\right)-B T_{B}\left(r_{1}\right)\right\|<r_{1}, \quad 0 \leq r \leq r_{0} \tag{3.6}
\end{equation*}
$$

Now we estimate $\|B x(t-\tau(t))-B x(t)\|$ for $t \geq 0$, where $0 \leq \tau(t) \leq r \leq r_{0}$ and $\tau(t)$ is continuous for $t \geq 0$. For $t \in\left[0, \tau_{0}\right]$, since $\tau_{0} \leq 1$, by (3.4) we have

$$
\begin{align*}
\|B x(t-\tau(t))-B x(t)\| & \leq\|x(t-\tau(t))-x(t)\|_{s} \leq 2\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \tag{3.7}\\
& \leq 2 N_{0} e^{\sigma_{0} t}\|\xi\|_{\mathcal{X}} \leq 2 N_{0} e^{\sigma_{0}}\|\xi\|_{\mathcal{X}} .
\end{align*}
$$

Let $M_{1}=2 N_{0} e^{2 \sigma_{0}}$. We will prove that

$$
\begin{equation*}
\|B x(t-\tau(t))-B x(t)\| \leq M_{1} e^{\omega_{1} t}\|\xi\|_{\mathcal{X}}, \quad t \geq 0, \xi \in \mathcal{X} . \tag{3.8}
\end{equation*}
$$

For $t \in\left[0, \tau_{0}\right]$, we know from (3.7) that (3.8) holds. Next, suppose that (3.8) holds for $t \in\left[0, n \tau_{0}\right]$, where n is any positive integer, and let $t \in$ $\left[n \tau_{0},(n+1) \tau_{0}\right]$. If $t-\tau(t)>n \tau_{0}$, then by (3.6) and (3.8), we have

$$
\begin{aligned}
\| B x(t- & \tau(t))-B x(t) \| \\
= & \| B\left(T_{B}(t-\tau(t))-T_{B}(t)\right) \xi(0) \\
& +\int_{0}^{t-\tau(t)} B T_{B}(t-\tau(t)-s) B(x(s-\tau(s))-x(s)) d s \\
& -\int_{0}^{t} B T_{B}(t-s) B(x(s-\tau(s))-x(s)) d s \| \\
\leq & \left\|B\left(T_{B}\left(r_{1}-\tau(t)\right)-T_{B}\left(r_{1}\right)\right) T_{B}\left(t-r_{1}\right) \xi(0)\right\| \\
& +\int_{0}^{n \tau_{0}-r_{1}}\left\|B\left(T_{B}\left(r_{1}-\tau(t)\right)-T_{B}\left(r_{1}\right)\right)\right\| \\
& \cdot\left\|T_{B}\left(t-r_{1}-s\right)\right\| \cdot\|B(x(s-\tau(s))-x(s))\| d s \\
& +\int_{n \tau_{0}}^{n \tau_{0}}\left[k_{1}(t-\tau(t)-s)+k_{1}(t-s)\right]\|B(x(s-\tau(s))-x(s))\| d s \\
& +\int_{n \tau_{0}}^{t-\tau(t)} k_{1}(t-\tau(t)-s)\|B(x(s-\tau(s))-x(s))\| d s \\
& +\int_{n \tau_{0}}^{t} k_{1}(t-s)\|B(x(s-\tau(s))-x(s))\| d s,
\end{aligned}
$$

and the first three terms on the right-hand side are bounded by

$$
\begin{aligned}
& r_{1} M_{b} e^{-\omega_{b}\left(t-r_{1}\right)}\|\xi\| \mathcal{X}+\int_{0}^{n \tau_{0}-r_{1}} r_{1} M_{b} e^{-\omega_{b}\left(t-r_{1}\right)}\|\xi\| \mathcal{X} d s \\
&+\int_{n \tau_{0}-r_{1}}^{n \tau_{0}}\left[k_{1}(t-\tau(t)-s)+k_{1}(t-s)\right] M_{1} e^{-\omega_{1} s}\|\xi\| \mathcal{X} d s \\
& \leq r_{1} M_{b} e^{-\omega_{b}\left(t-r_{1}\right)}\|\xi\| \mathcal{X}+r_{1} M_{b} M_{1} \int_{t-n \tau_{0}}^{t-r_{1}} e^{-\omega_{b} \tau} e^{-\omega_{1}\left(t-r_{1}-\tau\right)} d \tau\|\xi\| \mathcal{X} \\
&+\left[\int_{t-n \tau_{0}+r_{1}-\tau(t)}^{t-n \tau_{0}-\tau(t)} k_{1}(\tau) e^{-\omega_{1}(t-\tau(t)-\tau)} d \tau\right. \\
&\left.+\int_{t-n \tau_{0}}^{t-n \tau_{0}+r_{1}} k_{1}(\tau) e^{-\omega_{1}(t-\tau)} d \tau\right] M_{1}\|\xi\| \mathcal{X} \\
& \leq {\left[r_{1} M_{b} e^{\omega_{b}}\left(1+M_{1}\left(\omega_{b}-\omega_{1}\right)^{-1}\right)+2 M_{1} e^{\omega_{b}} \eta\left(r_{1}\right)\right] e^{-\omega_{1} t}\|\xi\| \mathcal{X} } \\
& \leq M_{2} e^{-\omega_{1} t}\|\xi\| \mathcal{X}
\end{aligned}
$$

where $M_{2}:=M_{1} \varrho, \varrho:=e^{\omega_{b}}\left[\tau_{0} M_{b}\left(M_{1}^{-1}+\left(\omega_{b}-\omega_{1}\right)^{-1}\right)+2 \eta\left(\tau_{0}\right)\right]$. Therefore,

$$
\begin{align*}
& \|B x(t-\tau(t))-B x(t)\| \tag{3.9}\\
& \leq M_{2} e^{-\omega_{1} t}\|\xi\| \mathcal{X}+\int_{n \tau_{0}}^{t-\tau(t)} k_{1}(t-\tau(t)-s)\|B(x(s-\tau(s))-x(s))\| d s \\
& \quad+\int_{n \tau_{0}}^{t} k_{1}(t-s)\|B(x(s-\tau(s))-x(s))\| d s
\end{align*}
$$

Then by the generalized Gronwall inequality or by induction, from (3.9), we have for $t-\tau(t)>n \tau_{0}, t \in\left[n \tau_{0},(n+1) \tau_{0}\right]$,

$$
\begin{equation*}
\|B(x(t-\tau(t))-x(t))\| \leq \sum_{n=0}^{\infty} y^{(n)}(t) \tag{3.10}
\end{equation*}
$$

where $y^{(0)}(t):=M_{2} e^{-\omega_{1} t}\|\xi\| \mathcal{X}$ and for $n=1,2, \ldots$,

$$
y^{(n)}(t):=\int_{n \tau_{0}}^{t-\tau(t)} k_{1}(t-\tau(t)-s) y^{(n-1)}(s) d s+\int_{n \tau_{0}}^{t} k_{1}(t-s) y^{(n-1)}(s) d s
$$

Hence,

$$
\begin{aligned}
y^{(1)}(t)= & \int_{n \tau_{0}}^{t-\tau(t)} k_{1}(t-\tau(t)-s) y^{(0)}(s) d s+\int_{n \tau_{0}}^{t} k_{1}(t-s) y^{(0)}(s) d s \\
= & {\left[\int_{0}^{t-n \tau_{0}-\tau(t)} k_{1}(\tau) e^{-\omega_{1}(t-\tau(t)-\tau)} d \tau\right.} \\
& \left.+\int_{0}^{t-n \tau_{0}} k_{1}(\tau) e^{-\omega_{1}(t-\tau)} d \tau\right] M_{2}\|\xi\| \mathcal{X} \\
\leq & M_{2}\left(e^{\omega_{1} r}+1\right) \eta\left(\tau_{0}\right) e^{-\omega_{1} t}\|\xi\| \mathcal{X}
\end{aligned}
$$

and then by induction,

$$
\begin{equation*}
y^{(n)}(t) \leq M_{2}\left(e^{\omega_{1} r}+1\right)^{n} \eta\left(\tau_{0}\right)^{n} e^{-\omega_{1} t}\|\xi\| \mathcal{X}, \quad n=0,1,2, \ldots \tag{3.11}
\end{equation*}
$$

Now (3.10) and (3.11) imply

$$
\begin{align*}
\|B(x(t-\tau(t))-x(t))\| & \leq \sum_{n=0}^{\infty} M_{2}\left(e^{\omega_{1} r}+1\right)^{n} \eta\left(\tau_{0}\right)^{n} e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}} \tag{3.12}\\
& =M_{2}\left[1-\left(e^{\omega_{1} r}+1\right) \eta\left(\tau_{0}\right)\right]^{-1} e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}} \\
& \leq M_{2}\left[1-\left(e^{\omega_{b}}+1\right) \eta\left(\tau_{0}\right)\right]^{-1} e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}}
\end{align*}
$$

Note that by (3.5), $M_{2}\left[1-\left(e^{\omega_{b}}+1\right) \eta\left(\tau_{0}\right)\right]^{-1}<M_{1}$, and thus (3.8) holds for $t \in\left[n \tau_{0},(n+1) \tau_{0}\right]$ and $t-\tau(t) \geq n \tau_{0}$. But from the calculations above it is easy to see that (3.12) is also valid for $t \in\left[n \tau_{0},(n+1) \tau_{0}\right]$ with $t-\tau(t) \leq n \tau_{0}$. Therefore, (3.8) holds for all $t \geq 0$.

Finally, we estimate $\left\|x_{t}(\cdot)\right\|_{\mathcal{X}}$. For $t \geq \tau_{0},-r \leq \theta \leq 0$ and $0 \leq \tau(t) \leq$ $r \leq r_{0}$, by (3.3) and (3.8) we have

$$
\begin{aligned}
\left\|x_{t}(\theta)\right\|_{s}= & \left\|T_{B}(t+\theta) \xi(0)+\int_{0}^{t+\theta} T_{B}(t+\theta-s) B(x(s-\tau(s))-x(s)) d s\right\|_{s} \\
\leq & \left\|T_{B}(t+\theta) \xi(0)\right\|_{s}+\left\|\int_{0}^{t+\theta} T_{B}(t+\theta-s) B(x(s-\tau(s))-x(s)) d s\right\|_{s} \\
\leq & \left(3+k_{1}(1)\right) e^{\omega_{b}} M_{b} e^{-\omega_{b} t}\|\xi(0)\|_{s} \\
& +\left\|\int_{0}^{t+\theta} T_{B}(t+\theta-s) B(x(s-\tau(s))-x(s)) d s\right\| \\
& +\sup _{\sigma \geq 0}\left\|\int_{0}^{t+\theta} B T_{B}(t+\theta-s) T_{B}(\sigma) B(x(s-\tau(s))-x(s)) d s\right\| \\
\leq & \left(3+k_{1}(1)\right) e^{\omega_{b}} M_{b} e^{-\omega_{b} t}\|\xi\| \mathcal{X} \\
& +\int_{0}^{t+\theta} M_{b} e^{-\omega_{b}(t+\theta-s)} M_{1} e^{-\omega_{1} s} M_{1} e^{-\omega_{1} s}\|\xi\| \mathcal{X} d s \\
& +M_{b} \int_{0}^{t+\theta} k_{1}(t+\theta-s) M_{1} e^{-\omega_{1} s}\|\xi\| \mathcal{X} d s \\
\leq & M_{b} M_{1} e^{\omega_{b}}\left[\left(3+k_{1}(1)\right) M_{1}^{-1}+\left(\omega_{b}-\omega_{1}\right)^{-1}+\beta_{2}\right] e^{-\omega_{1} t}\|\xi\| \mathcal{X}
\end{aligned}
$$

which proves

$$
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq M_{3} e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}}, \quad t \geq \tau_{0}, r \leq r_{0}
$$

where $M_{3}:=M_{b} M_{1} e^{\omega_{b}}\left[\left(3+k_{1}(1)\right) M_{1}^{-1}+\left(\omega_{b}-\omega_{1}\right)^{-1}+\beta_{2}\right]$. Moreover, for $t \in\left[0, \tau_{0}\right]$, by (3.4), we have

$$
\begin{aligned}
\left\|x_{t}(\cdot)\right\| \mathcal{X} & \leq N_{0} e^{\sigma_{0} \tau_{0}}\|\xi\|_{\mathcal{X}} \leq N_{0} e^{\sigma_{0} \tau_{0}} e^{\omega_{1} \tau_{0}} e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}} \\
& \leq N_{0} e^{\sigma_{0}+\omega_{b}} e^{-\omega_{1} t}\|\xi\| \mathcal{X}
\end{aligned}
$$

Therefore, for $t \geq 0, r \in\left[0, r_{0}\right]$, and $\xi \in \mathcal{X}$,

$$
\left\|x_{t}(\cdot)\right\|_{\mathcal{X}} \leq\left(M_{3}+N_{0} e^{\sigma_{0}+\omega_{b}}\right) e^{-\omega_{1} t}\|\xi\|_{\mathcal{X}}
$$

Example 3.5. Let H_{1}, H_{2} be Hilbert spaces. Suppose that A_{j} generates a C_{0}-semigroup $T_{j}(t)$ on H_{j} for $j=1,2$ respectively, and $T_{2}(\cdot)$ is holomor-
phic. Moreover, suppose that $B_{1}: D\left(B_{1}\right) \subset H_{1} \rightarrow H_{2}$ is a closed linear operator satisfying $D\left(B_{1}\right) \supset D\left(\left(-A_{2}\right)^{r}\right)$, where $0<r<1$. Since $T_{2}(t)$ is holomorphic, by $[\mathrm{EN}], B_{1} T_{2}(t) \in \mathbf{B}\left(H_{2}, H_{1}\right)$ and there exist constants M and ω such that $\left\|B_{1} T_{2}(t)\right\| \leq M e^{\omega t} / t^{r}=: k(t)$ for $t>0$. Let $H=H_{1} \times H_{2}$,

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & B_{1} \\
0 & 0
\end{array}\right)
$$

Then A generates a C_{0}-semigroup

$$
T(t)=\left(\begin{array}{cc}
T_{1}(t) & 0 \\
0 & T_{2}(t)
\end{array}\right), \quad t \geq 0
$$

on H and

$$
B T(t)=\left(\begin{array}{cc}
0 & B_{1} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
T_{1}(t) & 0 \\
0 & T_{2}(t)
\end{array}\right)=\left(\begin{array}{cc}
0 & B_{1} T_{2}(t) \\
0 & 0
\end{array}\right)
$$

is norm continuous for $t>0$ with $\|B T(t)\|=\left\|B_{1} T_{2}(t)\right\|_{\mathbf{B}\left(H_{2}, H_{1}\right)} \leq k(t) \in$ $L_{\text {loc }}^{1}(0, \infty)$. So the operators A and B satisfy the assumptions of Theorems 2.5 and 3.4, but the C_{0}-semigroup $T(t)$ is not holomorphic.

Acknowledgements. The authors are greatly indebted to the referees for helpful suggestions and for pointing out a mistake in the proof of Theorem 2.5.

References

[Ba1] A. Bátkai, On the stability of linear partial differential equations with delay, Tübinger Berichte Funktionalanalysis 9 (1999/2000), 47-56.
[Ba2] A. Bátkai and S. Piazzera, Semigroups and linear partial differential equations with delay, J. Math. Anal. Appl. 264 (2001), 1-20.
[Da] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim. 26 (1988), 697-713.
[DS] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Interscience, 1958.
[EN] K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, 1999.
[FN] A. Fisher and J. M. A. M. van Neerven, Robust stability of C_{0}-semigroups and applications to stability of delay equations, J. Math. Anal. Appl. 226 (1998), 82100.
[Hu] F. L. Huang, On the problem of stability of solutions of linear differential equations with small delay in Banach spaces, J. Math. (Wuhan) 6 (1986), 183-192 (in Chinese).
[JGH] W. S. Jiang, F. M. Guo and F. L. Huang, Robustness with respect to small delays for exponential stability of linear dynamical systems with unbounded operator in the delay term, preprint.
[Liu] K. S. Liu, Differentiability of infinite-dimensional linear systems with time delay and its applications to stability analysis, J. Systems Sci. Math. Sci. 12 (1992), 297-306 (in Chinese).

Department of Mathematics
Sichuan University
Chengdu, Sichuan 610064, P.R. China
E-mail: limiao1973@hotmail.com
xiaohuigu@sohu.com

Received May 8, 2003
Revised version December 18, 2003

[^0]: 2000 Mathematics Subject Classification: 34K05, 34K20, 34G10, 47D06.
 Key words and phrases: C_{0}-semigroup, delay equations, robust stability.
 This project is supported by Tianyuan Science Foundation of China (No. 10226030).

