
STUDIA MATHEMATICA 164 (1) (2004)

Elliptic functions, area integrals and the
exponential square class on B1(0) ⊆ Rn, n > 2

by

Caroline Sweezy (Las Cruces, NM)

Abstract. For two strictly elliptic operators L0 and L1 on the unit ball in Rn, whose
coefficients have a difference function that satisfies a Carleson-type condition, it is shown
that a pointwise comparison concerning Lusin area integrals is valid. This result is used
to prove that if L1u1 = 0 in B1(0) and Su1 ∈ L∞(Sn−1) then u1|Sn−1 = f lies in the
exponential square class whenever L0 is an operator so that L0u0 = 0 and Su0 ∈ L∞

implies u0|Sn−1 is in the exponential square class; here S is the Lusin area integral.
The exponential square theorem, first proved by Thomas Wolff for harmonic functions in
the upper half-space, is proved on B1(0) for constant coefficient operator solutions, thus
giving a family of operators for L0. Methods of proof include martingales and stopping
time arguments.

The subject treated here is the exponential square class for elliptic oper-
ator solutions in the unit ball in Rn. The main result is given in Theorem 4,
where it is proved that if solutions for one operator L0u0 = 0 in B1(0) sat-
isfy the exponential square result (i.e. if the Lusin area integral Su0 is in
L∞(∂B1(0)) then u0|∂B1(0) = f lies in the exponential square class) then
solutions u1 to L1u1 = 0 in B1(0) will also satisfy the exponential square
theorem if the coefficients of L1 satisfy a Carleson-type condition with van-
ishing trace with respect to the coefficients of L0. The main ingredient in
the proof is to establish a comparison of area integrals by methods similar
to those of Fefferman, Kenig and Pipher [FKP] in their proof of Dahlberg’s
preservation of Bq for elliptic measures.

In order to ensure that the result is not vacuous, the exponential square
theorem is proved on B1(0) for harmonic functions. The martingale argu-
ment of Chang, Wilson and Wolff [CWW] can be adapted to the geometry
on B1(0). This result is established in part I in detail, using spherical co-
ordinates. To establish the formula that served in place of the Calderón
reproducing formula, and to establish the martingale proof, it seemed bet-
ter to use spherical coordinates. A similar formula shows that solutions
to constant coefficient equations also satisfy the exponential square result.
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Part II contains the proof of Theorem 4. This is done by using rectangular
coordinates, since there is no particular need for this result to be proved
in spherical coordinates, and the formulas in rectangular coordinates are
much simpler. The cone formulas are somewhat different for the two coor-
dinate systems, but are shown to compare with each other in the appendix.
The Main Lemma used to prove Theorem 4 establishes a local pointwise
comparison of area integrals for the two operator solutions, a result that
may be of some independent interest. The other key estimate used in the
proof of Theorem 4 is that if F (x) is the difference of the two solutions,
F (x) = u1(x) − u0(x), then (

�
R |F (x)|2dx)1/2 ≤ Cε(diamR)Mω0Su1(q0)

for any q0 ∈ projR|∂B1(0), where R is a Whitney-type region in B1(0) and
ε(diamR) is the Carleson coefficient with an appropriate rate of decay as
diamR → 0. This estimate can be used to prove a version of the good-λ
inequality in Lemma 2.16 of [FKP]. There is a similar proof for a version of
Lemma 7 in [CS2].

I. Exponential square on the unit ball in Rn. Suppose u(y) is
defined on B1(0) ⊆ Rn so that

∆u = 0 in B1(0), u|∂B1(0) = f ∈ L1(Sn−1),

The Lusin area integral for u is

Aγf(θx) = Aγu(θx) =
( �

Γ
δ0
γ (θx)

|∇yu(y)|2(dist(y, Sn−1))2−n dy
)1/2

,

where
Γ δ0γ (θx) = {(r, θ) : δ0 < r < 1, |θ − θx| < γ(1− r)}.

Then the following result is valid:

Theorem 1. For u and f as above, suppose Aγf(θx) ∈ L∞(Sn−1). Then
there are constants C1, C2 > 0 independent of Q and f so that if `(Q) ≤
`(Q0) then

(
1
|Q|

�

Q

exp
(
C1|f − fQ|2
‖Aγf‖2∞

)
dy

)1/2

< C2 <∞.

Here Q is a surface cube on Sn−1 of limited size; it will be the image of
a cube Q̂ in Rn−1 under the projection map P̂ defined below.

Theorem 1 can be proved by using a martingale result similar to the one
in [CWW] along with other estimates as in [BM]. In fact, one can obtain a
version of the Calderón reproducing formula so that�

r=1−ε
u(rθy)P1−r(θx − θy) dθy

equals a sum of eight integrals—three boundary integrals and five integrals
over a solid spherical shell region R in B1(0). (See Lemma 1 below; P1−r is
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defined after the statement of Theorem 2.) Then P1−r(θ) being an approxi-
mation to the identity implies that, as r → 1, � r=1−ε u(rθy)P1−r(θx−θy) dθy
→ f(θx). This happens because u converges non-tangentially to the bound-
ary function f .

So it suffices to prove that � r=1−ε u(rθy)P1−r(θx− θy) dθy is in the expo-
nential square class. This can be shown by the following steps. First all three
boundary integrals Ii, i = 1, 2, 3, in Lemma 1 can be dominated by the area
integral, i.e. |Ii− Ii,Q| ≤ c‖Aγf‖∞ a.e. Next two of the integrals over R can
be bounded directly by cAγf(θx) also. The remaining three integrals over
R can be replaced by “dyadic” martingales with an error of c‖Aγf‖∞ a.e.
These martingales have their dyadic square functions bounded by c‖Aγf‖∞
for a.e. θx, and so Theorem 2 below shows that the martingales are expo-
nentially square integrable.

Note that each function bounded by c‖Aγf‖∞ is in the exponential
square class and any finite sum of exponentially square integrable functions
is also exponentially square integrable; this implies that � r=1−ε uP1−r is in
the exponential square class. The constants will be shown to be independent
of ε, so f(θx) is in the exponential square class also.

The steps of this proof are well known by now ([CWW], [BM]). The
intention in this paper is to make clear the elements of the proof that change
for B1(0) ⊆ Rn, n ≥ 3, and to show that the standard proof works in this
slightly new setting.

To begin, a version of the dyadic martingale exponential square result
must be established. To create σ-algebras Fm on Sn−1, with Fm−1 ⊆ Fm,
let S0 be a fixed polar cap on the lower hemisphere of Sn−1. The cap must
be large enough to contain 3Q for any surface cube Q, where 3Q is the image
of 3Q̂ under the projection operator P̂ defined by

P̂ (x) = P̂ (x1, . . . , xn−1,−1) =
(
x1, x2, . . . , xn−1,−

(
1−

n−1∑

i=1

x2
i

)1/2)

so P̂ maps Rn−1 × {−1} onto the lower hemisphere of Sn−1.
Now Q̂ will denote a dyadic subcube of an initial cube 3Q̂0, where Q̂0

is a cube of fixed size centered at (0, . . . , 0,−1) in Rn−1× {−1}, and 3Q̂0 is
the cube concentric with Q̂0 and with side length `(3Q̂0) = 3`(Q̂0).

To define the σ-algebras, let Fm be the σ-algebra generated by the col-
lection P̂ (Q̂m), where Q̂m is a dyadic subcube of 3Q̂0 ⊆ Rn−1 × {−1} of
side length `(Q̂m) = 2−m`(Q̂0). The projection function P̂ is 1-1 on 3Q̂0

and maps
⋃
Q̂m onto P̂ (3Q̂0) in S0, for each m. In this way the Fm are

simply the usual dyadic σ-algebras in Rn−1 mapped to S0 by P̂ . The distor-
tion produced by P̂ in S0 is bounded, so that `(P (Q̂)) = `(Q) ∼ `(Q̂) and
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|Q| ∼ |Q̂|. Here `(Q) can be taken to be the diameter of Q, and |Q| denotes
the Lebesgue surface measure of Q.

It is easy to see that Fm−1 ⊆ Fm for all m ≥ 1. Given the sequence
{Fm}∞m=0 of σ-algebras, martingales are defined in the usual way, being
a sequence {fm}∞m=0 of functions defined on S0, so that each fm is Fm-
measurable and E(fm+1 | Fm) = fm, m = 0, 1, 2, . . . . If limm→∞ fm(θx)
= f(θx) a.e. θx, then f is the martingale limit function. Also any L1 function
f(θx) can be taken to generate a martingale. By a mild abuse of terminology
the term dyadic will continue to be used here; this dyadic martingale is

fm =
∑

Qjm are generators ofFm

1

|Qjm|

�

Qjm

f(θ) dθ · χ
Qjm

,

where |Qjm| = �
Qjm

dθy. The {fm}∞m=0 have f(θx) as their martingale limit
function.

The dyadic martingale square function for any dyadic martingale {gm}
is defined by

Sm = Sgm(θ) =
( m∑

j=1

‖djχQj−1‖2∞
)1/2

, dj = gj − gj−1.

If gm has a martingale limit function g then

Sg(θ) =
( ∞∑

j=1

‖djχQj−1‖2∞
)1/2

.

But Sg(θ) is well defined even if g is not known.

Theorem 2. If {fm}∞m=0 is a dyadic martingale as defined above on
Q ⊆ S0 ⊆ Sn−1 with limit function f(θx), suppose Sf ∈ L∞(Q). Then there
are constants C1, C2 > 0 independent of Q and f so that

1
|Q|

�

Q

exp
{
C1|f(θx)− fQ|2
‖Sf‖2∞

}
dθx < C2 <∞.

The proof is the same argument used in [CWW] and [BM] to establish
this result for dyadic martingales in Rn.

To establish the result of Theorem 1 using Theorem 2, an essential ingre-
dient is to find a form of the Calderón reproducing formula. The following
calculation uses the Laplacian on a sphere; the spherical form of the Lapla-
cian is

∆ =
∂2

∂r2 −
1
r2

∑∑
θjθk

∂2

∂θj∂θk
+
n− 1
r

∂

∂r

+
1
r2

∑ ∂2

∂θ2
j

− n− 1
r2

∑
θk

∂

∂θk
.
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The sums are all taken from 1 to n − 1 for each index. Here yj = rθj for
j = 1, . . . , n, θj = cosψj for j = 1, . . . , n−1 and θn = (1−∑n−1

j=1 θ
2
j )

1/2. The
angles ψj are the angles with respect to each coordinate axis. (See Helm’s
book [H].)

To produce a substitute for the Calderón reproducing formula, following
the method in Bañuelos and Moore [BM], take k(θ) defined on Sn−1 to be
smooth, radial, of compact support, with � k(θ) dθ = 1, and let

k1−r(θ) =
1

(1− r)n−1 k

(
θ

1− r

)
.

Then define

P1−r(θ) =
∂

∂r

{
1

(1− r)n−2 k

(
θ

1− r

)}
=

1
(1− r)n−1 P

(
θ

1− r

)
.

This gives

P (θ) = (n− 2)k(θ) +
∑

θk
∂

∂θk
k(θ)

as long as
(
θk

∂
∂θk

k(θ)
)

1−r is understood to be

1
(1− r)n−1

θj
1− r

∂k(θ/(1− r))
∂(θj/(1− r))

.

Then

∂P1−r
∂r

(θ̂ ) =
∂

∂r

{
1

(1− r)n−1P

(
θx − θy
1− r

)}
=

n− 1
(1− r)n P

(
θx − θy
1− r

)

+
1

(1− r)n−1

∑ ∂

∂r

(
θx,j − θy,j

1− r

)
∂P (θ̂)

∂θ̂j

=
n− 1

(1− r)n P (θ̂) +
1

(1− r)n
∑

θ̂j
∂P (θ̂)

∂θ̂j

=
1

(1− r)n
∑ ∂

∂θ̂j
(θ̂jP (θ̂ )),

where

θ̂j =
θx,j − θy,j

1− r , θ̂ =
θx − θy
1− r .

Notice that
�
k1−r(θx − θy) dθx = 1,

�
P1−r(θx − θy) dθx = 1

and � ∂
∂rP1−r dθx = 0.
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Integrating from r = 1− ε to r = δ0 gives
�

r=δ0

uP1−r −
�

r=1−ε
uP1−r =

δ0�

1−ε

∂

∂r

�

suppP1−r

u(rθ)P1−r(θ̂ ) dθ dr

=
δ0�

1−ε

�

suppP1−r

{
∂u

∂r
P1−r + u

∂P1−r
∂r

}
dθ dr

=
� �

R

∂u

∂r

∂

∂r

(
1

(1− r)n−2 k(θ̂)
)
dθ dr

+
� �

R

u
1

(1− r)n
∑ ∂

∂θ̂j
(θ̂jP (θ̂)) dθ dr = I + II,

where
R = {(r, θ) : 1− ε > r > δ0, θx ∈ βQ0},

and β > 1 is chosen so that supp k1−r(θx − ∗) lies inside

{(r, θ) : δ < r < 1, θ ∈ βQ0} if θx ∈ Q0.

Here δ is a fixed radius, but δ0 depends on the cube Q under consideration.
For all cubes Q, δ ≤ δ0/2. For the purpose of Lemma 1 below, consider Q0
to be fixed.

Next, to produce integrals in forms that can be dealt with by the mar-
tingale replacement method (as in [BM]), or that can be estimated directly,
integration by parts is used on both terms. The first integral becomes

I =
�

r=δ0

(
∂

∂r
u

)(
1

(1− r)n−2 k(θ̂)
)
dθ

−
�

r=1−ε

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ−

� �

R

(
∂2

∂r2u(rθ)
)

1
(1−r)n−2 k(θ)dθdr

=
�

r=δ0

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ−

�

r=1−ε

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂ )
)
dθ

+(n−1)
� �

R

1
(1−r)n−2

1
r

(
∂

∂r
u

)
k(θ̂)dθdr

+
� �

R

1
(1−r)n−2 k(θ̂)

1
r2

∑ ∂2

∂θ2
j

u(rθ)dθdr

−
� �

R

1
(1−r)n−2 k(θ̂)

1
r2

∑∑
θjθk

∂2

∂θj∂θk
u(rθ)dθdr

−(n−1)
� �

R

1
(1−r)n−2 k(θ̂)

1
r2

∑
θk

∂

∂θk
u(rθ).
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The expression substituted for − ∂2

∂r2u(rθ) has been taken from the Laplacian
as given above.

Now using integration by parts again on the two integrals in the last
expression that involve second derivatives in u gives

I =
�

r=δ0

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ−

�

r=1−ε

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ

+ (n− 1)
� �

R

1
(1− r)n−2

1
r

(
∂

∂r
u

)
k(θ̂) dθ dr

−
� �

R

1
(1− r)n−2

1
r2

(∑ ∂

∂θj
k

(
θx,j − θy,j

1− r

))
∂

∂θj
u(rθ) dθ dr

+ n
� �

R

1
(1− r)n−2

1
r2 k(θ̂)

∑
θk

∂

∂θk
u(rθ) dθ dr

+
� �

R

1
(1− r)n−2

1
r2

∑∑(
∂

∂θj
k

(
θx,j − θy,j

1− r

))
θjθk

∂

∂θk
u(rθ) dθ dr

− (n− 1)
� �

R

1
(1− r)n−2

1
r2 k(θ̂)

∑
θk

∂

∂θk
u(rθ) dθ dr

=
�

r=δ0

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ−

�

r=1−ε

(
∂

∂r
u

)(
1

(1−r)n−2 k(θ̂)
)
dθ

−
� �

R

1
(1− r)n−2

1
r2

∑(
∂

∂θj
k

(
θx,j − θy,j

1− r

))
∂

∂θj
u(rθ) dθ dr

+
� �

R

1
(1− r)n−2

1
r2

∑∑(
∂

∂θj
k

(
θx,j − θy,j

1− r

))
θjθk

∂

∂θk
u(rθ) dθ dr

+ (n− 1)
� �

R

1
(1− r)n−2

1
r

(
∂

∂r
u

)
k(θ̂) dθ dr

+
� �

R

1
(1− r)2

1
r2 k(θ̂ )

(∑
θk

∂

∂θk
u(rθ)

)
dθ dr

All sums are from 1 to n− 1, θ = θy and θj = θy,j .
The boundary terms can be dominated by the Lusin area integral for u

and the first two integrals over R in the last expression can be estimated by
using the method of replacing them by a martingale with an error bounded
by a constant times the Lusin area integral of u. The essential properties
for doing this are that the kernels ∂

∂θ̂j
k(θ̂ ) have � ∂

∂θ̂j
k(θ̂) dθx = 0 and that

the dilation factors, 1/(1− r)n−2, are the right magnitude for domination
by the area integral.
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However, the last integral can be bounded directly by Aγu(θx). Break-
ing R = {(r, θ) : 1 − ε > r > δ0, θ ∈ βQ0} into dyadic approach regions
TQ (annular segments of approximately the same geometric shape as R,
whose dimension compares with their distance from Sn−1), one easily sees
that∣∣∣∣

� �

R

1
(1− r)n−2

1
r
k(θ̂)

∂u

∂r
dθ dr

∣∣∣∣

=

∣∣∣∣
∑

Q⊂Sn−1

� �

TQ∩ supp k(θ̂ )

1
(1− r)n−2

1
r
k(θ̂)

∂u

∂r
dθ dr

∣∣∣∣

≤
∑

Q⊂Sn−1

( � �

TQ∩ supp k(θ̂ )

∣∣∣∣
∂u

∂r

∣∣∣∣
2

(1− r)2−n dθ dr
)1/2

×
( � �

TQ∩ supp k(θ̂ )

1
r2

1
(1− r)n−2

(
k

(
θx − θy
1− r

))2

dθ dr

)1/2

.

In TQ we have
(
k
(θx−θy

1−r
))2 ≤ c, and 1/r2 ≤ 1/δ2

0, so this implies that
( � �

TQ∩ supp k(θ̂ )

1
r2

1
(1− r)n−2

(
k

(
θx − θy
1− r

))2

dθ dr

)1/2

≥ c
{ |TQ|
δ2

0 inf (1− r)n−2

}1/2

≤ c′`(Q)

since |TQ| compares with (1−r)n if rθ ∈ TQ. The inf (1−r)n−2 is also taken
over rθ ∈ TQ. So
∣∣∣∣

� �

R

1
(1− r)n−2

1
r
k(θ̂)

∂u

∂r
dθ dr

∣∣∣∣

≤ c′
∑

Q⊂Sn−1

( � �

TQ∩ supp k(θ̂ )

∣∣∣∣
∂u

∂r

∣∣∣∣
2

(1− r)2−n dθ dr
)1/2

`(Q)

≤ c′′
( ∑

Q⊂Sn−1

� �

TQ∩ supp k(θ̂ )

∣∣∣∣
∂u

∂r

∣∣∣∣
2

(1−r)2−n dθ dr
)1/2( ∑

TQ∩Γ δ0γ (θx)6=∅

`(Q)2
)1/2

≤ c(δ0)
( �

Γ δγ (θx)

|∇u|2(1− r)2−n dθ dr
)1/2

∼ Aγu(θx)

as long as θx ∈ Q0 since βQ0 stays well inside the lower half of Sn−1 (see
the Appendix).
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For the integral II, integration by parts gives

II = −
� �

R

1
(r − 1)n

∑(
∂

∂θ̂j
u(rθ)

)
θ̂jP (θ̂)

=
� �

R

1
(r − 1)n−1

∑(
∂

∂θj
u(rθ)

)
θ̂jP (θ̂ ),

where θ̂j and θ̂ are as before. The latter integral should be easy to esti-
mate using the martingale method, described above. θ̂jP (θ̂ ) is odd in the
θj variable so that � θ̂jP (θ̂ ) dθx = 0. Also in this integrand 1/(1− r)n−1 is
the correct dilation for later estimations by Lipschitz norms.

The Lusin area integral equals

Aγu(θx) =
( �

Γ δγ (θx)

|∇yu|2(dist(y, Sn−1))2−n dy
)1/2

=
( �

Γ δγ (θx)

{(
∂

∂r
u

)2

+
1
r2

∑(
∂

∂θj
u

)2

− 1
r2

(∑
θj

∂

∂θj
u

)2}

× rn−1

(1− r)n−2 dr dσ(θ)
)1/2

in spherical coordinates, where

Γ δγ (θx) = {(r, θ) : δ < r < 1, |θ − θx| < γ(1− r)}.

Γ δγ (θx) is not a Euclidean cone, but it can be compared with Euclidean cones
of different apertures as long as δ > 0 is fixed. Here, as above, δ ≤ δ0/2.
Moreover, Aγu(θx) can be shown to compare to

( �

Γ δγ (θx)

{(
∂

∂r
u

)2

+
1
r2

∑(
∂

∂θj
u

)2} rn−1

(1− r)n−2 dr dθ

)1/2

by using the elementary estimate
(∑

θj
∂

∂θj
u

)2

≤ α(n)
∑(

∂

∂θk
u

)2

, where α(n) = 1− θ2
n < 1,

because the region on Sn−1 under consideration will always be well inside
the lower hemisphere. Also dσ(θ) = dθ/|θn| ∼ dθ in the region under con-
sideration.

Altogether the formula for approximating the boundary function f(θx),
using the non-tangential convergence of u(rθ) to f(θx), is given in Lemma 1:
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Lemma 1.�

r=1−ε
u(rθy)P1−r(θx − θy) dθy =

�

r=δ0

u(rθy)P1−r(θx − θy) dθy

−
�

r=δ0

(
∂

∂r
u

)(
1

(1− r)n−2 k(θ̂)
)
dθ −

�

r=1−ε

(
∂

∂r
u

)(
1

(1− r)n−2 k(θ̂)
)
dθ

−
� �

R

1
(1− r)n−2

1
r2

∑(
∂

∂θj
k

(
θx − θy
1− r

))
∂

∂θj
u(rθ) dθ dr

+
� �

R

1
(1− r)n−2

1
r2

∑∑(
∂

∂θj
k

(
θx − θy
1− r

))
θjθk

∂

∂θk
u(rθ) dθ dr

+ (n− 1)
� �

R

1
(1− r)n−2

1
r

(
∂

∂r
u

)
k(θ̂) dθ dr

+
� �

R

1
(1− r)n−1

∑(
∂u

∂θj

)
θ̂jP (θ̂ ) dθ dr.

The last integral over R has been shown to be dominated by cAγf(θx).
The three boundary integrals will be proved to have the same upper bound.
The remaining two integrals over R can be shown to differ from dyadic mar-
tingales by an error that is bounded by CAγf(θx); the dyadic martingales
have square functions that are bounded by CAγf(θx). The constants C are
independent of ε and θx. The method that will be used to prove these facts is
essentially the one in [CWW] and [BM], with some relatively minor changes
due to the geometry of B1(0).

To estimate the boundary terms in the formula of Lemma 1, first
� r=δ0 uP1−r − ( � r=δ0 uP1−r)Q is bounded by c‖Aγf‖∞ because
∣∣∣∣

�

r=δ0

u(rθy)
1

(1− r)n−1 P

(
θx − θy
1− r

)
dθy

− �
Q

�

r=δ0

u(rθy)P1−r(θz − θw) dθw dθz

∣∣∣∣

≤ 1
|Q|

�

Q

∣∣∣∣
�

r=δ0

u(rθy)P
(
θx − θy
1− r

)
dθy−

�

r=δ0

u(rθw)P1−r(θz−θw) dθw

∣∣∣∣ dθz

= (letting θx = θx − θy and θz = θz − θw)

1
|Q|

�

Q

∣∣∣−
�

r=δ0

u(r(θx − θx))P1−r(θx) dθx

+
�

r=δ0

u(r(θz − θz)) · P1−r(θz) dθz

∣∣∣∣dθz
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≤ 1
|Q|

�

Q

�

r=δ0

P1−r(θz)|u(r(θx − θx))− u(r(θz − θz))| dθz dθz

≤ 1
|Q|

�

Q

�

r=δ0

1
(1− r)n−1 P

(
θz

1− r

)
|∇θu(θ∗)| |θx − θz + θz − θx|

≤ sup
θ∗∈Q

|∇θu(θ∗)| · c`(Q) ≤ C‖Aγf‖∞.

The last inequality follows from an estimate for harmonic functions that
appears in Stein [S]. The result is stated here (Lemma 2) for derivatives in
spherical coordinates.

The second to the last inequality is valid since suppP (θx − θy) ⊆ 3Q
when θx ∈ Q and also |θx − θx − (θz − θz)| = |θy − θw| ≤ c`(Q) ≤ c(1− δ0)

by definition of δ0, taking δ0 = 1 −
(
r0+12

√
n−1

r0γ

)
`(Q) as below. Here r0 is a

bound for the distortion produced by P̂ .

Lemma 2 (Stein). If u is harmonic in Γ δγ (θx) then for any point rθy ∈
Γ
δ/2
αγ (θx) both

|1− r|
∣∣∣∣
∂u

∂r

∣∣∣∣, |1− r| |∇θu| ≤ cAγf(θx), c = c(α).

Proof. Use the mean value property of the harmonic functions ∂u/∂r
and ∂u/∂θj, j = 1, . . . , n− 1, and Cauchy–Schwarz.

Lemma 2 and the fact that � k1−r(θ) dθ = 1 give an upper bound of
c‖Aγf‖∞ for both boundary integrals � r=%(1− r)∂u∂r k1−r(θx− ·), % = δ0 and
1− ε.

The three integrals
� �

R

1
r2(1− r)n−2

n−1∑

j=1

∂u

∂θj

∂k

∂θj
,

� �

R

1
r2(1− r)n−2

n−1∑

k=1

n−1∑

j=1

∂u

∂θj
θjθk

∂k

∂θk

and
� �

R

1
(1− r)n−1

n−1∑

j=1

∂u

∂θj
θjP (θ)

are left to deal with. These will be replaced by dyadic martingales.
First each integral is written as a sum of smaller parts:

� �

R

1
r2(1− r)n−2

∑ ∂u

∂θi

∂k

∂θi
=

n−1∑

i=1

∑

Q∈Q

� �

TQ

1
r2(1− r)n−2

∂u

∂θi

∂k

∂θi

where Q is the collection of all dyadic subcubes Q ⊆ P (3Q0) ⊆ S0 with
supp k1−r(θx−·)∩Q 6= ∅. The regions TQ are segments of spherical shells that
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are obtained by projecting Q radially into the region c/2k+1 < 1− r < c/2k;
here c depends on β and r0, and `(P̂−1(Q)) = 1/2k .

Now each
∑

Q∈Q λQ is further subdivided into sums

m∑

i=1

∑

Q∈Qi
λQ =

m∑

i=1

Λxiε,k,

where Qi = Qxi is a collection of cubes from Q. These cubes are chosen so
that if Q ∈ Qi then there is a dyadic cube Q′′ ∈ Q so that 3Q ⊆ Q′′ + xi
and `(P̂−1(Q′′)) = 23`(P̂−1(Q)). The construction of the Qi is accomplished
in Rn−1, dealing with the (truly) dyadic cubes P̂−1(Q) that were originally
used to define the “dyadic” surface cubes. The following Lemma 3 guarantees
that such a subdivision of Q exists:

Lemma 3 ([CWW], [BM]). There are a finite set of points {xi}Mi=1 in
Rn−1 and a disjoint collection Qxi of cubes so that

(i)
⋃M
i=1
⋃
Q∈Qxi P̂

−1(Q) =
⋃
Q∈Q P̂

−1(Q) = P̂−1(3Q0).

(ii) For each Q ∈ Qxi there is a cube Q′′ ∈ Q so that `(P̂−1(Q′′)) =
23`(P̂−1(Q)) and P̂−1(3Q) ⊆ P̂−1(Q′′ + θxi) = P̂−1(Q′′) + xi.

(iii) If Q1, Q2 ∈ Qxi and Q1 6= Q2, then Q′′1 6= Q′′2.

The lemma is proved exactly as in [CWW] dealing with the P̂−1(Q),
P̂−1(Q′′) and the proof is consequently omitted.

There are three crucial properties that hold for the integrals λQ =
� TQ Ij(θx − θy) dr dθy and these properties are the ones that allow the mar-
tingale square functions to be bounded by cAγf . They are

suppλQ ⊆ 3Q,
�

S0

λQ = 0,

‖λQ‖Lipα `(Q)α ≤ c
( �

TQ

|∇u|2(1− r)2−n
)1/2

.

The first property of dyadic cubes in Sn−1 means suppλQ ⊆ P̂ (3Q̂) if
Q̂ ⊆ Rn−1 and Q = P̂ (Q̂). To have this hold one needs supp k1−r(θx− θy)
⊆ Q together with all neighboring dyadic surface cubes of Q. For this the
distortion produced by the projection operator P̂ must be taken into ac-
count. This is accomplished by taking

supp k(θ) = suppP (θ) ⊆ {θ ∈ S0 : |θ − (0, . . . , 0,−1)| < β},
where β = r0γ/(r0 + 12

√
n− 1). This choice of β in relation to γ is also

designed for the proof of Theorem 3 below. Here r0 is a constant such that
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r0`(P̂−1(Q)) < `(Q) < (1/r0)`(P̂−1(Q)) for all cubes Q ∈ Q and

TQ =
{

(r, θ) : θ ∈ Q, `(P̂
−1(Q))
2β

< 1− r ≤ `(P̂−1(Q))
β

}

for any Q ∈ Q.
The regions TQ with `(P̂−1(Q)) = `(P̂−1(Q0))/2k are not of uniform

volume. However, for Q1, Q2 with `(P̂−1(Q1)) = `(P̂−1(Q2)), |TQ1 | ∼ |TQ2 |
with constants depending on the function P̂ (x). Also the TQ cover a region
in the lower hemisphere of B1(0) so for any ε > 0 the region R in Lemma 1
will be contained in

⋃
Q∈Q TQ.

Now,

Λiε,k(θx) =
∑

Q∈Qi
λQ(θx) =

∑

`(Q)≥1/2m+2

(λQ + λQ,ε),

where 1/2m+3 < ε ≤ 1/2m+2 and λQ,ε = � TQ∩{r>1−ε} Ik(θx) (if ε = 1/2m+2,

λQ,ε disappears). By using the shifted grid of cubes in Qi, Λiε,k can be
approximated by the function E(Λiε,k | Fm−1), the conditional expectation
of Λiε,k with respect to the σ-algebra Fm−1. Notice that

E(Λiε,k | F im−1) = E(Λi1/2m+2,k | F im−1)

because � Qm−1
λQ,ε = 0 for any Qm−1 in the generating set for F im−1. This

happens because suppλQ,ε ⊆ some Qm−1 ∈ F im−1 by Lemma 3.
Now, with

∑′
Q :=

∑
c(δ0)≥`(P̂−1(Q))>1/2m+2,

|Λiε,k(θx)− E(Λiε,k | F im−1)| =
∣∣∣∣
∑′

Q

λiQ −
1

|Qm−1|
�

Qm−1

∑′

Q

λiQ

∣∣∣∣

≤
∑′

Q

1
|Qm−1|

�

Qm−1

|λiQ(θx)− λiQ(θz)| dθz

≤
∑′

Q

1
|Qm−1|

�

Qm−1

�

TQ

1
r2(1− r)n−2

∣∣∣∣
∂u

∂θj
(rθw)

∣∣∣∣

·
∣∣∣∣
∂k

∂θj

(
θx − θw
1− r

)
− ∂k

∂θj

(
θz − θw
1− r

)∣∣∣∣ dr dθw dθz

≤
∑ 1
|Qm−1|

�

Qm−1

�

TQ

1
r2(1− r)n−1

∣∣∣∣
∂u

∂θj
(rθw)

∣∣∣∣

·
∣∣∣∣∇θ

∂k

∂θj
(θ∗)

∣∣∣∣ ·
∣∣∣∣
θx − θz
1− r

∣∣∣∣ dr dθw dθz
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≤ C
∑ �

TQ

1
(1− r)n |∇θu| sup

Qm−1

|θx − θz|

≤ C
∑

`(Qm−1)
( �

TQ

|∇θu|2(1− r)2−n
)1/2

( �

TQ

1
(1− r)n+2

)1/2

≤ C
(∑′

Q

�

TQ

|∇θu|2(1− r)2−n
)1/2

(∑′

Q

(
`(Qm−1)
`(Q)

)2)1/2

= CAδγf(θx).

The last inequality follows because the cone Γ δγ (θx) contains any TQ where
suppλiQ ∩ Qm−1 6= ∅ and θx ∈ Qm−1. Taking γ = (1 + 12

√
n− 1/r0)β is

enough to guarantee this.
A similar calculation shows that each integrand in Λε,k, k = 4, 5, 6, has

the same upper bound for |Λiε,k(θx)− E(Λiε,k | F im−1)|, i = 1, . . . ,M .
The last result of Part I is Theorem 3. To see that the dyadic martin-

gale square function for the dyadic martingale {E(Λiε,k | F im−1)}∞m=1 can be
bounded by C‖Aδγf‖∞ a.e., it is helpful to notice that for a fixed Q ∈ Qi if

Qm−1 ⊇ 3Q and `(P̂−1(Qm−1)) = 23`(Q), then
�
Qm−1

λiQ = 0 so djχQj−1 = 0
if j > m. When j = m, we have

‖dmχQm−1‖∞ = sup
Qm⊆Qm−1

∣∣∣ �
Qm

λiQ − �
Qm−1

λiQ

∣∣∣

if θx ∈ Qm−1. The estimate for this term in the dyadic square function only
involves ∇u(rθy) for rθy ∈ TQ and the most extreme case will be that Q
lies in the 2nth section of Qm−1, Qm, that is farthest from θx. Then at most
the region in ‖dmχQm−1‖∞ will involve 5 cubes beyond the cube Q such
that θx ∈ suppTQ, i.e. at a distance 6

√
n− 1(1/r0)`(P̂−1(Q)), so one needs

γ ≥ β(1 + 12
√
n− 1/r0).

Theorem 3. For Λik(θx) the martingale limit function of the dyadic
martingale

{E(Λi1/2m+1,k | F im−1)}∞m=1,

with Λiε,k defined above, the dyadic martingale square function satisfies
SΛik(θx) ≤ CAδγf(θx) with C independent of θx and f .

Proof. Notice that it is obvious that {E(Λi1/2m+1,k | F im−1)}∞m=1 is a
dyadic martingale. The rest of the proof will actually show that each dyadic
square function Sm is uniformly bounded, with constant independent of m.
This implies that the family of martingale functions is uniformly integrable
and so has an L1 limit function Λiε,k. Actually the uniform bound on Sm is
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enough to prove Theorem 1. Now with
∑′

Q as in the previous proof,

S2Λi(θx) =
∑

Qj∈Fi

∥∥∥ �
Qj

∑
λQ − �

Qj−1

∑
λQ

∥∥∥
2

∞

=
∑

Qj∈Fi

∥∥∥
∑′

Q

( �
Qj

λQ − �
Qj−1

λQ

)∥∥∥
2

∞

≤
∑

Qj∈Fi

∥∥∥
∑′

Q

�
Qj

�
Qj−1

(λQ(θw)− λQ(θz)) dθz dθw
∥∥∥

2

∞

≤
∑

Qj∈Fi

(∑′

Q

�
Qj

�
Qj−1

‖λQ‖Lipα `(Qj−1)α dθz dθw
)2

= c
∑

Qj∈Fi
`(Qj−1)2α

(∑
‖λQ‖Lipα

`(Q)β

`(Q)β

)2

≤ C
∑

Qj∈Fi
`(Qj−1)2α

(∑′

Q

1

`(P̂−1(Q))2β

)(∑
‖λQ‖2Lipα `(Q)2β

)

= C
∑

Qj∈Fi
`(Qj−1)2α · `(Qj−1)−2β

∑′

Q

‖λQ‖2Lipα,Qj−1
`(Q)2β

≤ C
∑

Q∈Q
‖λQ‖2Lipα `(Q)2β ·

∑

`(Qj−1)≤23`(Q)

`(Qj−1)2(α−β).

Here TQ is in the sum of λQ that make up Λi, and θx is near TQ as described
above. This means

S2Λi(θx) ≤ C
∑

Q

‖λQ‖2Lipα `(Q)2α

≤ C
∑

Q

�

TQ

|∇u|2 · (1− r)2−n ≤ CAδ0γ f(θx).

It is useful to extend the class of operators L0 for the application of
Theorem 4. Note that Theorem 1 is also valid for any strictly elliptic constant
coefficient operator. Basically the same proof works for solutions to these
operator equations. If L =

∑n
i,j=1

∂
∂xi

(
aij

∂
∂xj

)
in rectangular coordinates,

then in spherical coordinates

L=
( n∑

i,j=1

aijθiθj

) ∂2

∂r2 −
1
r2

( n∑

j<n, i=1

aijθi
∂

∂θj
+

n∑

i<n, j=1

aijθj
∂

∂θi

)

+
1
r

( n∑

j<n, i=1

aijθi
∂

∂r∂θj
+

n∑

i<n, j=1

aijθj
∂2

∂r∂θi

)
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− 2
r

( n∑

i,j=1

aijθiθj

)( n−1∑

l=1

θl
∂2

∂r∂θl

)
+

1
r2

( n−1∑

i,j=1

aij
∂2

∂θi∂θj

)

− 1
r2

( n∑

j<n,i=1

aijθi

( n−1∑

l=1

θl
∂2

∂θl∂θj

)
+

n∑

i<n,j=1

aijθj

( n−1∑

l=1

θl
∂2

∂θl∂θi

))

+
1
r2

( n∑

i,j=1

aijθiθj

)( n−1∑

l=1

n−1∑

k=1

θkθl
∂2

∂θk∂θl

)
+

1
r

( n∑

i=1

aii−
n∑

i,j=1

aijθiθj

) ∂
∂r

+
3
r2

( n∑

i,j=1

aijθiθj

)( n−1∑

l=1

θl
∂

∂θl

)
− 1
r2

( n∑

i=1

aii

)( n−1∑

l=1

θl
∂

∂θ`

)
.

The fact that the aij are constant and satisfy λ|ξ|2 ≤ ∑n
i,j=1 ξiaijξj

≤ λ−1|ξ|2 means that one can substitute for ∂2u/∂r2 as in the proof of The-
orem 1. The formula is much longer; however the same kinds of estimations
will work here to give the exponential square result, using direct estimation
on the drift terms and integration by parts along with replacement by mar-
tingales on the principal order terms. To estimate the boundary terms the
device of averaging replaces using Lemma 2 ([CS1]).

II. In this part of the paper Sαu(θ) = ( � Γα(θ) |∇u(y)|2δ(y)2−n dy)1/2 is

used to devoted the Lusin area integral of u(y) over the cone Γα(θ) = Γ δα(θ),
a Euclidean cone as defined in the Appendix. The following result will be
established:

Theorem 4. For L0, L1 strictly elliptic divergence form operators with
coefficients satisfying the condition (Cc) below , suppose the solutions to
L0u0 = 0 in B1(0) satisfy the exponential square theorem. Then solutions u
to L1u1 = 0 in B1(0) also satisfy the EST.

Definition (EST). For L a strictly elliptic divergence form operator
on B1(0), a solution to Lu = 0 on B1(0) satisfies the exponential square
theorem if Su ∈ L∞(∂B1(0)) implies that u|∂B = f lies in the exponential
square class.

(Cc) For all q ∈ ∂B1(0) and 0 < r < r0 there is a coefficient ε(r) so that
(

1
ω0(∆r(q))

�

Tr(q)

a(y)2

δ(y)2 G0(0; y) dy
)
≤ ε(r)

with ε(r) → 0 as r → 0 and in fact ε(2jr) ≤ 2γjrγ where γ < α,
α is the coefficient of Hölder continuity at ∂B1(0) for solutions of
L0u = 0 that vanish locally on ∂B1(0).
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Here ω0 = ω0
0 is the elliptic measure associated with L0; ωx0 is this mea-

sure evaluated at the point x in B1(0); G0(x; y) is the Green function for
L0; ∆r(q) = Br(q) ∩ ∂B1(0) and Tr(q) = Br(q) ∩ B1(0) for q ∈ ∂B1(0);
δ(y) = dist(y, ∂B1(0)) and a(y) = supx∈Bδ(y)/2(y) |ε(x)|, where ε(x) =
supi,j |εij(x)| and εij(x) = bij(x)− aij(x). Moreover, the operators

L0 =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
, L1 =

n∑

i,j=1

∂

∂xi

(
bij(x)

∂

∂xj

)

satisfy λ−1|ξ|2 ≤ ξiCijξj ≤ λ|ξ|2 for Cij = aij and bij and for some λ > 0.

Definition. f ∈ expL2(dµ) if for any surface “cube” Q ⊆ ∂B1(0) there
are constants C1, C2 > 0 independent of Q so that

(
1

µ(Q)

�

Q

exp{C1|f − fµ(Q)|2} dµ(y)
)
≤ C2 <∞,

where fµ(Q) = µ(Q)−1 � Q f(y) dµ(y).

In this paper µ will be taken to be surface (Lebesgue) measure on ∂B1(0),
and the elliptic measure associated to L0 will be assumed to satisfy dω0 ∈
B2(dµ), i.e. (

1
σ(Q)

�

Q

(
dω0

dσ
(x)
)2

dσ(x)
)1/2

- ω0(Q)
σ(Q)

.

The measure in Theorem 4 and in the EST will be surface measure. It is
crucial that the results of [FKP] hold for the measure dω1, given the Carleson
condition (Cc).

In order to prove that the Carleson condition with vanishing trace is
sufficient to guarantee that the exponential square theorem will hold for
solutions of one operator whenever it holds for solutions of a given operator,
one can obtain a pointwise comparison of area integrals. This is done by
using arguments similar to those in [FKP]; the solution u1 behaves like a
perturbation of u0 when the coefficients satisfy (Cc).

One reason for proving Theorem 1 in Part I was to guarantee that The-
orem 4 is not vacuous. Theorem 1 shows that for L0 = ∆, the EST is true;
so Theorem 4 then shows that EST will also hold for solutions to L1u1 = 0
when L1 is a mild perturbation of ∆ (or of any strictly elliptic constant
coefficient operator). This result extends the class of elliptic operators for
which the EST is known to be valid. It is a start towards proving an EST
for solutions to more general elliptic operators in the upper half-plane. In
[CS1] a result for a restricted class of elliptic operators was established for
the upper half-plane. The coefficients were assumed to match the Laplacian
in the vertical direction, i.e. anj = δnj , j = 1, . . . , n. Theorem 4 removes
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this restriction, replacing it by the broader Carleson condition. R. Bañuelos
and C. Moore [BM] note that an exponential square result for any opera-
tor L on Rn+1

+ whose pull-back by a Lipschitz map is ∆ would open the
way for an easy proof of good-λ inequalities for the nontangential maximal
function and the Lusin area integral of a harmonic function with sharp con-
stants. Theorem 4 does not accomplish this much, but it is a step in that
direction.

There are other facts that can be deduced from the proof of Theorem 4.
The comparison of area integrals obtained in the Main Lemma below may
be of interest in itself. As a major step in proving the Main Lemma the key
estimate ( �

R∗j

|F (y)|2 dy
)1/2

- ε(`(Rj))Mω0Sβ(u1)(q0)

is shown to be valid for any fixed dilation R∗j of a Whitney type region
Rj ⊆B1(0). Here F (y) = u1(y)−u0(y), `(Rj)' diamR∗j ' dist(R∗j , ∂B1(0)),
q0 is any point on ∂B1(0) that lies in the radial projection of Rj onto ∂B1(0),
ε(`(Rj)) is the Carleson coefficient and

Mω0g(q) = sup
∆r(q)

1
ω0(∆r(q))

�

∆r(q)

|g(q̂)| dω0(q̂ )

is the Hardy–Littlewood maximal function with respect to the elliptic mea-
sure ω0 of L0.

It is worth noting that the above key estimate for (
�
R∗j
|F (y)|2 dy)1/2 can

be used to prove the good-λ inequality in [FKP, Lemma 2.16]. With suitable
modifications this condition and proof also give the good-λ inequality in
[CS2, Lemma 7].

Let
M(q0) = max(Mω0Sβu1(q0), [Mω0Sβu1(q0)]1/2).

Theorem 4 will follow from the

Main Lemma. Suppose L0u0 = 0 = L1u1 in B1(0), where L0 and L1 are
as in Theorem 4. If u1|∂B1(0) = f = u0|∂B1(0), where f ∈ BMO(∂B1, dω0),
then there is a constant C = C(λ, n, ‖f‖BMO, α, β) so that

Sαu0(q) ≤ CM(q) for dω0 a.e. q ∈ ∂B1(0).

Before proving the Main Lemma, it is easy to see that if Sβu1 ∈
L∞(∂B1, dω0) then

Mω0Sβu1(q) ≤ ‖Sβu1‖∞,ω0 for dω0 a.e. q.

The Main Lemma says that if Sβu1 ∈ L∞(∂B1, dω1) then Sαu0 ∈
L∞(∂B1, dω0) and by the hypothesis of Theorem 4, u0 satisfies EST, so
f ∈ expL2(∂B1). The reason that the assumption f ∈ BMO(∂B1, dω0) is
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not needed for Theorem 4 is the following: the fact that the coefficients of L0
and L1 satisfy (Cc) means that the B2 result of [FKP] is valid so ω0 ∈ B2(σ)
⇒ ω1 ∈ B2(σ). This fact is enough to guarantee that

Sβu1 ∈ L∞(∂B1, dω1)⇒ f ∈ BMO(dω0),

because one can use the following theorem of C. Kenig ([K, Chapter 1,
Theorem 1.5.18], quoted below for clarity) to see

Sβu1 ∈ L∞(∂B1, dω1) ⇒ f ∈ BMO(dω1).

Then dω1 ∈ B2(dω0) ⇒ dω0 ∈ Bq(dω1) for some q > 1 so this is sufficient
to have f ∈ BMO(dω0).

Theorem (C. Kenig). Let Lu = 0 in B1(0). Then

u(x) =
�

∂B1(0)

k(x; q)f(q) dω(q)

with f ∈ BMO(∂B1, dω) if and only if

1
ω(∆r(q))

�

Tr(q)

G(0; y)|∇u(y)|2 dy ≤ C.

If Sβu ∈ L∞(dω) then the basic estimate, for y∗ the projection of y onto
Sn−1,

G(0; y) '
ω(∆δ(y)(y∗))

δ(y)n−2

shows that
1

ω(∆r)

�

Tr

G(0; y)|∇u(y)|2 dy ≤ 1
ω(∆r)

�

Tr

ω(∆δ(y)(y∗))

δ(y)n−2 |∇u(y)|2 dy

-
Fubini

1
ω(∆r)

�

∆r

�

Γ
δ0
β (q)

|∇u(y)|2δ(y)2−n dy dω(q)

=
1

ω(∆r)

�

∆r

Sβu(q) dω(q) ≤ ‖Sβu‖∞.

So Sβu1 ∈ L∞(∂B1, dω1)⇒ f ∈ BMO(∂B1, dω1).

To prove the Main Lemma, an argument similar to that of [FKP] in their
proof of Lemma 2.9 can be employed. Here, however, all estimates will be
kept local, both for

�
Rj
|δ(y)∇F (y)|2 dy and for (

�
Rj
|F (y)|2 dy)1/2 until the

very end of the proof. Then instead of taking sups, the local estimates will
be added to show SαF (q) -M(q) for a.e. q ∈ ∂B1(0).

It is easy to see this implies Sαu0(q) ≤ c′M(q) also. Start with the
inequality
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�
Rj

|δ(y)∇F (y)|2 dy ≤ 2
`(Rj)

3`(Rj)/2�

`(Rj)

( �
Rj

|δ∇F |2
)
dx

.
δ2
j

|Rj |

(
1
δj

�

N(∂Rj)

|F (y)| |A∇F (y) · ~n|+ 1
δj

�

N(∂Rj)

|F | |ε| |∇u1 · ~n|

+
�

R∗j

|~∇F | |ε~∇u1|
)
≤ C(λ, n)

( �
R∗j

|F |2
)1/2( �

R∗j

|δ∇F |2
)1/2

+ εj

( �
R∗j

|F |2
)1/2( �

R∗j

|δ∇u1|2
)

+ εj

( �
R∗j

|δ∇F |2
)1/2

·
( �
R∗j

|δ∇u1|2
)1/2

as in [FKP, p. 87], with εj = ε(`(Rj)) replacing ε0.
Now the key estimate (

�
R∗j
|F (y)|2 dy)1/2 ≤ εjMω0Sβu1(q0) along with

|∇F | . |∇u1|+ |∇u0| gives
�

Rj

|∇F (y)|2δ(y)2−ndy . εjMω0Sβu1(q0) ·
( �
R∗j

δ(y)2|∇F (y)|2
)1/2

+ ε2
jMω0Sβu1(q0) ·

( �
R∗j

|δ∇u1|2
)1/2

+ εj

( �
R∗j

|δ∇u1|2
)1/2( �

R∗j

|δ∇u0|2 + �
R∗j

|δ∇u1|2
)1/2

.

The terms involving
�
R∗j
|δ∇u0|2 can be handled by using

�
R∗j

|δ∇u0|2 .
�

R∗j

|∇u0(y)|2δ(y)2−n .
�

R∗j

1
ω0(∆∗j)

·
ω0(∆∗j)

δ(x)n−2 |∇u0(y)|2

. 1
ω0(∆∗j)

�

R∗j

G0(0; y)|∇u0(y)|2 dy ≤ C‖f‖BMO

according to Kenig’s theorem, because R∗j ⊆ Trj (q0) and ω0 is a doubling
measure, so ω0(∆rj ) ∼ ω0(∆∗j), where ∆∗j = proj|∂B1R

∗
j , rj = diamRj .

Thus
�
R∗j
|δ∇u0|2 ≤ C = C(‖f‖BMO) and this gives

�

Rj

|∇F (y)|2δ(y)2−n dy . εjMω0Sβu1(q0)

+ εjMω0Sβu1(q) ·
( �
R∗j

|δ∇u1|2
)1/2

+ εj

( �
Rj

|δ∇u1|2
)1/2

+ ε2
jMω0Sβu1(q) ·

( �
Rj

|δ∇u1|2
)1/2

+ εj

( �
R∗j

|δ∇u1|2
)
.
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Summing over j with Rj ∩ Γα(q0) 6= ∅ on both sides gives

SαF (q0)2 . C(Mω0Sβu1(q0) +M2
ω0
Sβu1(q0))

using
∑
εj ≤ ε0 and (

∑
ε2
j)

1/2 ≤ ε0, Cauchy–Schwarz and the fact that
Sβu1(q0) .Mω0 Sβu1(q0). Taking square roots gives the required inequality.

To prove
( �
Rj

|F (y)|2 dy
)1/2

. ε(`(Rj))Mω0Su1(q0), q0 ∈ proj(Rj),

the stopping time argument that [FKP] use to prove that Ñ(F )(q) ≤
ε0Mω0Su1(q) a.e. dσ actually gives this estimate. The notation is that
of [FKP].

Dividing the potential F (x) = � B1(0)∇yG(x; y) · ([εij(y)]∇u) into the
same regions as in [FKP],

�

Bδ(x)/4(x)

+
�

Ω0

+
N∑

j=1

�

Ωj∩Γ (q0)

+
N∑

j=1

�

Ωj∩Γ (q0)c

+
�

B1(0)\B1/2(q0)

one has only to notice that in
�

Bδ(x)/4(x)

∇yG(x; y) · [εij(y)]∇u(y),

the estimate on ε(y) actually gives ε(δ(x)) because y ∈ Bδ(x)/4(x). So one
has ( �

Rj

|F1(x)|2dx
)1/2

≤ ε(δ(x))
( �

R∗j

|∇u1(y)|2δ(y)2−n
)1/2

.

For � Ω0
the stopping time argument uses the Carleson condition on the

term
∑

I∈Ik

�

I+

a(y)2

δ(y)2 G(0; y) dy,

where I is a “dyadic” cube in ∆0, Ik is the collection of cubes in ∆0 with side
length ∼ 2−kδ(x), and I+ is the upper half of the Carleson box associated
with I. So

�

I+

a(y)2

δ(y)2 G(0; y) dy ≤ ε(`(I))ω0(I) ≤ ε(δ(x))ω0(I)

because of the definition of Ω0 = Bδ(x)/2(q0)∩B1(0). So one has the estimate
∣∣∣

�

Ω0

∇G(x; y) · [εij]∇u(y)
∣∣∣ ≤ ε(δ(x))Mω0 Su1(q0).
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For the integrals over Ωj ∩ Γ (q0), condition (Cc) is used on
( �

Ωj∩Γ (q0)

a(y)2

δ(y)2 G0(0; y)
)1/2

≤ ε(2jδ(x))ω0(∆j)1/2

to give∣∣∣
�

Ωj∩Γ (q0)

∇G0(x, y)[εij(y)]∇u1(y) dy
∣∣∣ . 2−jαε(2jδ(x)) · Su1(q0)

with every other part of the argument the same as in [FKP]. Now since
ε(2jδ(x)) ≤ 2γj(δ(x)), we have∣∣∣

�

Ωj∩Γ (q0)

∇G0 · [εij]∇u1

∣∣∣ ≤ 2−(α−γ)jδ(x)γ · Su1(q0)

and as γ < α, one can sum over j to get
∣∣∣
N∑

j=1

�

Ωj∩Γ (q0)

∇G0 · [εij ]∇u1

∣∣∣ . δ(x)γSu1(q0).

Similar estimates on the Green function G0(x; y) along with the stopping
time argument imply that

∣∣∣
N∑

j=1

�

Ωj∩Γ (q0)c

∇G0 · [εij ]∇u1

∣∣∣ . ε(δ(x))Mω0Su1(q0).

Finally, the fact that∣∣∣
�

B1(0)\B1/2(q0)

∇G0 · [εij]∇u1 dy
∣∣∣ ≤ C

�

∂B1\∆(q0,1/2)

Su1(q) dωx(q)

shows that this part of the potential is bounded by Cδ(x)αMω0Su1(q0) by
using the estimate

dωx

dω0 (q) . 2−αj

ω0(∆j)
if q ∈ ∆j \∆j−1, ∆j = {q : |q − q0| . 2jδ(x)}.

For N such that 2Nδ(x) = 1/2 we have

�

∂B1\∆(q0,1/2)

Su1(q) dωx(q) =
M∑

j=N−1

�

Rj

Su1(q) dωx(q)

≤
∞∑

j=N

2−jα

ω0(∆j)

�

∆j

Su1 dω
0 ≤ C · 2−NαMω0Su1(q0) . δ(x)αMω0Su1(q0).

This finishes the proof of the Main Lemma.

Finally, we prove a version of the good-λ inequality (see [FKP, Lem-
ma 2.16]) as a result of independent interest.
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Let

E = {q ∈ ∆r : SαF (q) > β0λ, F
∗
β′(q)Mω0Sβ′u1(q) ≤ (γλ)2,

Ñβ′(δ∇F )(q) ·Mω0Sβ′u1(q) ≤ (γλ)2}.
Then for ∆r a Whitney cube in the decomposition of {q : SαF (q) > λ} one
has

λ2ω0(E ∩∆r) .
�

E∩∆r

�

Γ τrα (q)

|∇F (y)|2δ(y)2−n dy dω0(q)

since SαF (q) > λ ⇒ Sτrα F (q) > λ/2 on Er = E ∩ ∆r for any 0 < τ < 1,
r = δ(x), if γ is chosen to be small enough (see [DJK]).

As in [FKP], with A = [aij ] the coefficient matrix for L0,
�

E∩∆r
(Sτrα F (q))2 dω0(q) .

�

Ω

(
1
2
L0F

2 − FL0F

)
G0(0; y) dy

.
�

∂Ω

F (y)G0(0; y)A∇F · ~n− 1
2

�

Ω

A∇F 2 · ∇G0

−
�

∂Ω

FG0[εij ]∇u1(y) · ~n+
�

Ω

∇(FG0) · [εij]∇u1(y)

=
�

∂Ω

F (y)G0(0; y)A∇F (y) · ~n−
�

∂Ω

1
2
F 2A∇G0 · ~n

+
�

Ω

1
2
F (y)2L0G0 −

�

∂Ω

FG0[εij ]∇u1 · ~n

+
�

Ω

∇F · [εij ]∇u1(y)G0(y) +
�

Ω

F (y)∇G0(y) · [εij]∇u1(y).

Now
Ω =

⋃

q∈E∩∆r
Γ τrα (q)

so 0 6∈ Ω and � Ω F (y)2 L0G0 = 0.
This leaves three boundary integrals and two integrals over Ω to be

estimated. To handle the boundary integrals, which technically may not exist
since∇F and∇G0 exist as L2

loc(B1(0)) functions, one can use averaging over
cones as in [FKP]: Take α < β < β ′; then

�

∆r∩E
(Sτrα F (q))2 dω0(q) =

�

Er

�

Γ τrα (q)

|∇F (y)|2δ(y)2−n dy dω0(q)

.
�

Er

1
β − α

β�

α

�

Γ τrη (q)

|∇F (y)|2 δ(y)2−n dy dη dω0(q)
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' 1
β − α

β�

α

�

Er

�

Γ τrη (q)

|∇F (y)|2δ(y)2−n dy dω0(q) dη

. 1
β − α

β�

α

�

Ωη

(A∇F (y)) · ∇F (y)δ(y)2−nω0(∆δ(y)(y
∗)) dy dη,

where
Ωη =

⋃

q∈Er
Γ τrη (q), Er = ∆r ∩ E.

Now averaging over the top of Ωη as well means that for I(y) ≥ 0 each
boundary integral can be replaced by

1
β − α

β�

α

�

∂Ωη

I(y) dy dη .
�

N(∂Ωη)

1
δ(y)

I(y) dy .
�

Ωβ

1
δ(I)

I(y) dy,

where N(∂Ωη) is a solid neighborhood of ∂Ωτr
η ⊆ Ωτr

β = Ωβ.
Obviously

1
β − α

β�

α

�

Ωη

I(y) dy dη ≤
�

Ωβ

I(y) dy.

So one needs to estimate the following five integrals:
�

Ωβ

1
δ(y)

|F (y)| |G0(0; y)| |∇F (y)|,(1)

�

Ωβ

1
δ(y)

|F (y)|2|∇G0(0; y)|,(2)

�

Ωβ

1
δ(y)

|F (y)| |G0(0; y)| |[εij]∇u1(y)|,(3)

�

Ωβ

|G0(0; y)| |∇F (y)|ε(y)|∇u1(y)|,(4)

�

Ωβ

|F (y)| |∇G0(0; y)|ε(y)|∇u1(y)|.(5)

For (1),
�

Ωβ

1
δ(y)

|F (y)| |G0(0; y)| |∇F (y)| dy =
∑

I∈D(∆r)

�

I+∩Ωβ

1
δ(y)

|F | |G0| |∇F |

.
∑

I∈D(∆r)

1
`(I)

ω0(I)
`(I)n−2

( �
I+∩Ωβ

|F (y)|2 dy
)1/2 ( �

I+∩Ωβ
|δ∇F |2

)1/2
`(I)n−1
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.
∑

I∈D(∆r)

`(I)
`(I)

ω0(I)ε(`(I)) ·Mω0Sβu1(qE∩I) · Ñβ(δ∇F )(qE∩I)

. γ2λ2
∑

k

∑

`(I)=2−kr
I∈D(∆r)

ω0(I) · ε(`(I)) . γ2λ2ω0(∆r)

since diamΩβ ∼ r and by hypothesis

∞∑

k=0
`(I)=2−kr

ε(`(I)) ≤ C0.

Here qE∩I can be any point in E∩ I for β ′ > β sufficiently large, and D(∆r)
is the collection of all dyadic subcubes of ∆r.

The integral (2) can also be estimated:
�

Ωβ

1
δ(y)

F (y)2|∇G0(0; y)| dy =
∑

I∈D(∆r)

�

I+∩Ωβ

1
δ
F 2|∇G0|

.
∑

I∈D(∆r)

1
`(I)

F ∗(qE∩I)
ω0(I)
`(I)n−1

( �
I+∩Ωβ

|F |2
)1/2

· `(I)
n
2 ·2

.
∑

I⊆D(∆r)

ω0(I)F ∗β′(qE∩I)ε(`(I))Mω0Sβ′(qE∩I)

. γ2λ2
∑

j

∑

`(I)=2−jr

ε(`(I))ω0(I) = Cγ2λ2ω0(∆r)

as above.

For (3),
�

Ωβ

1
δ(y)

|F (y)| |G0(0; y)| |ε(y)| |∇u1(y)| dy

=
∑

I∈D(∆r)

�

I+∩Ωβ

1
δ(y)

|F | |G0| |ε| |∇u1|

.
∑

I∈D(∆r)

ε(`(I))
ω0(I)
`(I)n−1

( �

I+∩Ωβ
|F (y)|2 dy

)1/2( �

I+∩Ωβ
|∇u1(y)|2

)1/2

.
∑

k

∑

`(I)=2−kr
I∩Ωβ 6=∅

ε(2−kr)ω0(I)γ2λ2 ≤ Cγ2λ2ω0(∆r).
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For (4),
�

Ωβ

|G0(0; y)| |∇F (y)| ε(y) |∇u1(y)|

≤
∑

I∈D(∆r)

( �
I+∩Ωβ

|δ∇F (y)|2
)1/2( �

I+∩Ωβ
|δ∇u1(y)|2

)1/2

· ε(`(I)) sup
y∈I+

|G0(0; y)| · `(I)n−2

.
∑

I∈D(∆r)

γ2λ2ε(`(I))ω0(I) ≤ Cγ2λ2ω0(∆r) as before.

Finally, we estimate the fifth integral:
�

Ωβ

|F (y)| |∇G0(0; y)|ε(y)|∇u1(y)|

=
∑

I∈D(∆r)

�

I+∩Ωβ
|F (y)| |∇G0(0; y)| |ε(y)| |∇u1(y)|

.
∑

I∈D(∆r)

F ∗β′(qE∩I) · ε(`(I))
( �
I+∩Ωβ

|δ∇G0|2
)1/2( �

I+∩Ωβ
|δ∇u1|2

)1/2
`(I)n−2

.
∑

I∈D(∆r)

F ∗β′(qE∩I) · Sβ′u1(qE∩I) · ε(`(I)) sup
y∈I+

|G0(0; y)|`(I)n−2

. γ2λ2
∑

j

∑

`(I)=2−jr

ε(`(I))ω0(I) . Cγ2λ2ω0(∆r).

So λ2ω0(Er) ≤ Cγ2λ2ω0(∆r). Dividing by λ2 and summing over the Whit-
ney cubes ∆r gives ω0(E) ≤ Cγ2ω0(SF > λ).

This is enough to prove
�

∂B1

(SF (q))p dω0(q) .
�

∂B1

(Ñ(F )(q))p dω0(q)

+
�

∂B1

(Ñ(δ∇F )(q))p dω0(q) +
�

∂B1

f(q)p dω0(q)

using the maximal theorem, the estimates

F ∗(q) ≤ Ñ(F )(q) + u∗0(q), Sβu1(q) ≤ SβF (q) + Sβu0(q)

and standard arguments.
It can be noted here that the same kind of argument proves the good-λ

inequality for parabolic functions also given the proper decay of the Carleson
coefficient.
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Appendix. We recall that the spherical cone is

Γ δγ (θx) = {(r, θ) : δ < r < 1, |θ − θx| < γ(1− r)},
and the Euclidean cone is

Γ δγ (x) = {y : |y − r∗θx| < γ(1− r∗) where

1− r∗ = dist(y,Rn−1) and dist(y, center of Sn−1) ≥ δ}.
Here Rn−1 is tangent to Sn−1 at θx = x.

We will show that for γ fixed there are apertures β, β ′ so that Γ δβ′(θx) ⊂
Γ δγ (x) and Γ δγ (x) ⊂ Γ δβ (θx).

Claim. |r − r∗| < 1− r ≤ 1− r∗ for y = rθ.

It is enough to show this in R2. Take θx = x = 0 and S1 centered at
(0, 1).

Let (x, y) = ~y lie on a circle of radius r = % about (0, 1), where % is
large enough to have this circle intersect Γ δα(0). The line y = αx intersects
the circle x2 + (y − 1)2 = %2 at x such that x2 + (αx − 1)2 = %2. Solving
gives

x =
2α±

√
4α2 − 4(α2 + 1)(1− %2)

2(α2 + 1)
.

Choosing the point on the circle nearest 0 gives

~y =
(
α−

√
−1 + %2(α2 + 1)
(α2 + 1)

,
α2 − α

√
−1 + %2(α2 + 1)
(α2 + 1)

)
= (x, 1− r∗)

so

|r − r∗| =
∣∣∣∣%−

(
1− α2 − α

√
−1 + p2(α2 + 1)
(α2 + 1)

)∣∣∣∣,

|r − r∗|
1− r =

∣∣∣∣
(α2 + 1)%+ α2 − α

√
−1 + %2(α2 + 1)− (α2 + 1)

(α2 + 1)(1− %)

∣∣∣∣

=

∣∣∣∣
(%− 1)(α2 + 1) + α2 − α

√
%2(α2 + 1)− 1

(α2 + 1)(1− %)

∣∣∣∣.

Using l’Hospital we obtain

lim
%↑1
|r − r∗|
1− r = lim

%→1

∣∣∣∣
(α2 + 1)− α%(α2+1)√

%2(α2+1)−1

α2 + 1

∣∣∣∣ = 1− α√
α2 + 1− 1

= 0.

So there is a height δ0 so that |r∗ − r| < 1− r if r ≥ δ0.
The fact that 1− r ≤ 1− r∗ is obvious so if y ∈ Γ δγ (θx) then |θy − θx| <

γ(1−r), hence |rθy−r∗θx| < rγ(1−r)+ |r∗θx−rθx| = rγ(1−r)+ |r∗−r| |θx|
and so |y − r∗θx| < (γ + |θx|)(1 − r∗), that is, y ∈ Γ δβ′(x) if β′ ≥ 2γ + |θx|.
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Conversely, if y ∈ Γ δβ (x) then |y − r∗θx| < γ(1− r∗) and

|rθy − rθx| ≤ γ(1− r∗) + |rθx − r∗θx|
so that

|θy − θx| ≤
γ

r
(1− r) +

γ

r
(r − r∗) +

|θx|
r
|r − r∗|

and hence

|θy − θx| <
2γ
δ0

(2(1− r)) +
|θx|
δ0

(1− r) ≤ β(1− r)

if β ≥ (2γ + |θx|)/δ0.
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