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Hardy spaces H1

for Schrödinger operators with certain potentials

by

Jacek Dziubański and Jacek Zienkiewicz (Wrocław)

Abstract. Let {Kt}t>0 be the semigroup of linear operators generated by a
Schrödinger operator −L = ∆ − V with V ≥ 0. We say that f belongs to H1

L if
‖ supt>0 |Ktf(x)| ‖L1(dx) < ∞. We state conditions on V and Kt which allow us to give

an atomic characterization of the space H1
L.

1. Introduction. Let Lf(x) = −∆f(x) + V (x)f(x) be a Schrödinger
operator on Rd, where V ≥ 0, V 6≡ 0. We shall assume that −L generates
a semigroup {Kt}t>0 of linear contractions on Lp(Rd), 1 ≤ p < ∞. This is
guaranteed if e.g. V ∈ Lqloc for some q > d/2.

We define the Hardy space H1
L related to the operator L by

(1.1) H1
L =

{
f ∈ L1(Rd) : ‖f‖H1

L
=
∥∥sup
t>0
|Ktf(x)|

∥∥
L1(dx) <∞

}
.

Let Q = {Qj}∞j=1 be a collection of closed cubes with parallel sides
whose interiors are disjoint such that Rd =

⋃∞
j=0 Qj . For a cube Q let

d(Q) denote its diameter. We shall always assume that there exist constants
C0, β > 0 such that for Qj1 , Qj2 ∈ Q if Q∗∗∗∗j1

∩Q∗∗∗∗j2
6= ∅, then C−1

0 d(Qj1) ≤
d(Qj2) ≤ C0d(Qj1), where Q∗ is the cube with the same center as Q such
that d(Q∗) = (1 + β)d(Q).

In order to state our results we need the following notion of the local
atomic Hardy space H1

Q associated with the collection Q. We say that a
function a is an H1

Q-atom if there is a cube Q ∈ Q such that a is a classical
(1,∞)-atom having support contained in Q∗∗, or a(x) = |Q|−11Q(x), where,
for a set A ⊂ Rd, 1A denotes the indicator function of A. Then H1

Q is defined
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by

(1.2) H1
Q =

{
f ∈ L1 : f(x) =

∑

s

λsas(x),
∑

s

|λs| <∞
}
,

where as are H1
Q-atoms. We set

(1.3) ‖f‖H1
Q

= inf
∑
|λs|,

where the infimum is taken over all possible representations of f as in (1.2).
In [DZ2] the authors proved that if V satisfies the reverse Hölder in-

equality with an exponent q > d/2, d ≥ 3, that is,

(1.4)
( 1
|B|

�

B

V (y)q dy
)1/q

≤ C

|B|
�

B

V (y) dy for every ball B,

then the elements of H1
L admit atomic decompositions of this type (cf. Sec-

tion 8 of the present article).
The main goal of the present paper is to use ideas from [DZ1] and [DZ2]

to see what the theory looks like when there are no reverse Hölder estimates
for V . We formulate here two conditions on V , Kt, and Q that guarantee
that H1

L is local, that is, the norms ‖ · ‖H1
Q

and ‖ · ‖H1
L

are equivalent (see
Theorem 2.2). We shall verify that these conditions hold not only for V
satisfying the reverse Hölder inequality but also for the following naturally
occurring potentials:

V (x) = 1Rd+(x), Rd+ = {(x1, x2, . . . , xd) : x1 > 0}, d ≥ 1,(1.5)

V (x) = exp(x1), x = (x1, . . . , xd) ∈ Rd, d ≥ 1,(1.6)

V (x) = γ|x|−2, γ > 0, d ≥ 3,(1.7)

and properly defined families Q (cf. Theorems 2.4, 2.6, and 2.8). The po-
tentials (1.5) and (1.6) do not satisfy the doubling condition, so they do not
belong to any reverse Hölder class. Obviously for q ≥ d/2 and V (x) = γ|x|−2

the condition (1.4) does not hold.
For results concerning Hardy spaces related to Schrödinger operators

with potentials from reverse Hölder classes we refer the reader to [DZ1]–
[DZ4].

At the end of the paper for 0 < α < 1 and V being a nonnegative polyno-
mial we consider the operator (−∆)α+V . We prove atomic decompositions
of the elements of H1

(−∆)α+V .
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2. Statements of the results. Denote by Pt(x) the convolution kernels
of the heat semigroup {Pt}t>0 on Rd generated by ∆ and by Kt(x, y) the
integral kernels of the semigroup {Kt}t>0 generated by the Schrödinger
operator −L = ∆− V , V ≥ 0. Obviously,

(2.1) 0 ≤ Kt(x, y) ≤ Pt(x− y) = (4πt)−d/2 exp(−|x− y|2/4t).
For V ≥ 0 and a collection Q of cubes as described above we consider the
following two conditions:

(D) there exist constants C, ε > 0 such that

sup
y∈Q∗

�
K2sd(Q)2(x, y) dx ≤ Cs−1−ε for Q ∈ Q, s ∈ N,

(K) there exist constants C, δ > 0 such that
2t�

0

(1Q∗∗∗V ) ∗ Ps(x) ds ≤ C
(

t

d(Q)2

)δ
for x ∈ Rd, Q ∈ Q, t ≤ d(Q)2.

Theorem 2.2. Assume that for V ≥ 0 and a collection Q of cubes con-
ditions (D) and (K) hold. Then there exists a constant C > 0 such that

(2.3) C−1‖f‖H1
Q
≤ ‖f‖H1

L
≤ C‖f‖H1

Q
.

For ` > 0 denote by Q̃` a partition of Rd−1 into cubes whose sides have
length `.

The theorems below combined with Theorem 2.2 give atomic charac-
terizations of the Hardy spaces related to Schrödinger operators with the
potentials we are interested in.

Theorem 2.4. For the potential V (x) = 1Rd+(x) on Rd, d ≥ 1, the col-
lection

Q = {[k, k + 1]× Q̃ : k = −1, 0, 1, 2, . . . , Q̃ ∈ Q̃1}(2.5)

∪ {[−2k+1,−2k]× Q̃ : Q̃ ∈ Q̃2k , k = 0, 1, 2, . . .}
satisfies (D) and (K).

Theorem 2.6. Let V (x) = exp(x1) on Rd, d ≥ 1. Then the family of
cubes

Q = {[−2j+1,−2j ]× Q̃ : Q̃ ∈ Q̃2j , j = 0, 1, 2, . . .}(2.7)

∪ {[−1, 1]× Q̃ : Q̃ ∈ Q̃2}
∪ {[rj , rj+1]× Q̃j : r1 = 1, rj+1 = rj + exp(−rj/2),

Q̃j ∈ Q̃exp(−rj/2)}
satisfies (D) and (K).
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Theorem 2.8. For V (x) = γ|x|−2 on Rd, d ≥ 3, γ > 0, let Q be the
Whitney decomposition of Rd \ {0} that consists of dyadic cubes. Then con-
ditions (D) and (K) hold.

3. Auxiliary lemmas. To prove the theorems stated in Section 2, we
need a sequence of auxiliary results.

For l > 0 let h1
l denote the local Hardy space (cf. [Go]) with the norm

‖f‖h1
l

defined by

(3.1) ‖f‖h1
l

=
∥∥ sup
t≤l2
|Ptf(x)|

∥∥
L1(dx).

The following theorem is a consequence of results of Goldberg [Go].

Theorem 3.2. There exists a constant C > 0 such that for every l > 0
we have

C−1‖f‖H1
Ql
≤ ‖f‖h1

l
≤ C‖f‖H1

Ql
,

where Ql is a partition of Rd into cubes of side-length l. Moreover , if f ∈ h1
l

with supp f ⊂ Q∗ for some Q ∈ Ql, then

f =
∑

λsas,
∑
|λs| ≤ C‖f‖h1

l
,

with as being H1
Ql-atoms such that supp as ⊂ Q∗∗.

For a collection Q of cubes let {φQ}Q∈Q be a family of C∞ functions
on Rd such that suppφQ ⊂ Q∗, 0 ≤ φQ ≤ 1, |∂αφQ| ≤ Cαd(Q)−|α|, and∑
Q φQ(x) = 1 for all x ∈ Rd.
Lemma 3.3. There exists a constant C > 0 such that for every Q ∈ Q

we have

(3.4) ‖φQf‖h1
d(Q)
≤ C

∥∥ sup
t≤d(Q)2

|Pt(φQf)|
∥∥
L1(Q∗∗).

Proof. There exist constants C, c1 > 0 such that if x ∈ (Q∗∗)c, y ∈ Q∗,
and t ≤ d(Q)2, then Pt(x− y) ≤ Cd(Q)−d exp(−c1|x− yQ|2/d(Q)2), where
yQ denotes the center of Q. Hence

(3.5) |Pt ∗ (φQf)(x)| ≤ Cd(Q)−d‖φQf‖L1 exp(−c1|x− yQ|2/d(Q)2).

Now the lemma is a consequence of (3.5) and Theorem 3.2.

For Q ∈ Q we set

(3.6)
Q′(Q) = {Q′ ∈ Q : Q∗∗∗ ∩ (Q′)∗∗∗ 6= ∅},
Q′′(Q) = {Q′′ ∈ Q : Q∗∗∗ ∩ (Q′′)∗∗∗ = ∅}.

The lemma below is quite similar to those in our earlier papers (cf. [DZ1,
Lemma 5.7], [DZ2, Lemma 3.11]).
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Lemma 3.7. There exists a constant C > 0 such that for every Q ∈ Q
and every f ∈ L1(Rd) we have
∥∥∥ sup
t>0

∣∣∣Kt

(
φQ

∑

Q′∈Q′(Q)

φQ′f
)
− φQ

(
Kt

∑

Q′∈Q′(Q)

φQ′f
)∣∣∣
∥∥∥
L1(Q∗∗)

≤ C
∑

Q′∈Q′(Q)

‖φQ′f‖L1 .

Proof. Let g =
∑
Q′∈Q′(Q) φQ′f . Then

sup
t>0
|Kt(φQg)(x)− φQ(x)Ktg(x)| = sup

t>0

∣∣∣
�
(φQ(y)− φQ(x))Kt(x, y)g(y) dy

∣∣∣

≤ C sup
t>0

� |x− y|
d(Q)

Kt(x, y)|g(y)| dy ≤ C

d(Q)

� |g(y)|
|x− y|d−1 dy.

Integrating with respect to x over Q∗∗ we obtain the lemma.

Lemma 3.8. Assume that Q satisfies condition (D). Then there exists a
constant C > 0 such that∑

Q∈Q

∥∥∥1Q∗∗∗ sup
t>0

∣∣∣Kt

( ∑

Q′′∈Q′′(Q)

φQ′′f
)∣∣∣
∥∥∥
L1
≤ C‖f‖L1 .

Proof. Denote the left-hand side by S. Then

S ≤
∑

Q∈Q

∑

Q′′∈Q′′(Q)

‖1Q∗∗∗ sup
t>0

(Kt|φQ′′f |)‖L1

≤
∑

Q′′∈Q

∑

Q∈Q′′(Q′′)
‖1Q∗∗∗ sup

t>0
(Kt|φQ′′f |)‖L1

≤ C
∑

Q′′∈Q
‖ sup
t>0

(Kt|φQ′′f |)‖L1((Q′′)∗∗c)

≤ C
∑

Q′′∈Q
‖ sup

0<t≤d(Q′′)2
(Kt|φQ′′f |)‖L1((Q′′)∗∗c)

+ C
∑

Q′′∈Q

∞∑

j=0

‖ sup
2jd(Q′′)2≤t≤2j+1d(Q′′)2

(Kt|φQ′′f |)‖L1((Q′′)∗∗c).

Note that for sj = 2jd(Q′′)2 ≤ t ≤ 2j+1d(Q′′)2 = sj+1 we have

Kt(x, y) =
�
Kt−2j−1d(Q′′)2(x, z)K2j−1d(Q′′)2(z, y) dz

≤
�
Pmax
sj (x, z)K2j−1d(Q′′)2(z, y) dz,

where, by (2.1),

(3.9) Pmax
sj (x, z) = sup

sj/2≤s≤2sj
Ps(x− z) ≤ C1s

−d/2
j exp(−c1|x− z|2/sj).
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Applying (D), we obtain

S ≤ C
∑

Q′′∈Q
‖φQ′′f‖L1 + C

∑

Q′′∈Q

∞∑

j=0

j−1−ε‖φQ′′f‖L1 ≤ C‖f‖L1 .

Lemma 3.10.
�

Rd

∞�

0

V (x)(Ks|f |)(x) ds dx ≤ ‖f‖L1 .

Proof. This result seems to be well known. We give a proof for complete-
ness. The perturbation formula asserts that

Pt = Kt +
t�

0

Pt−sV Ks ds.

Therefore, by (2.1), if f ≥ 0 then

t�

0

Pt−sV Ksf(y) ds ≤ Ptf(y).

Integrating with respect to y and applying the Fubini theorem we get
t�

0

�
V (x)Ksf(x) dx ds ≤ ‖f‖L1 .

Letting t→∞ we obtain the lemma.

The following lemma is a generalization of Lemma 3.9 of [DZ2] (see also
[DZ1, Lemma 5.1]).

Lemma 3.11. Assume that Q satisfies (K). Then there exists a constant
C > 0 such that

(3.12)
∥∥ sup

0<t≤d(Q)2
|(Pt −Kt)(φQf)|

∥∥
L1 ≤ C‖φQf‖L1 .

Proof. By (2.1) and (3.5) it suffices to estimate the quantity∥∥sup0<t≤d(Q)2 |(Pt −Kt)(φQf)|
∥∥
L1(Q∗∗). The perturbation formula implies

(Pt −Kt)(φQf)(x) =
t�

0

Pt−sV
′′Ks(φQf)(x) ds

+
t�

0

Pt−s((1Q∗∗∗V )Ks(φQf))(x) ds,

where V = 1Q∗∗∗V + V ′′.
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For y ∈ (Q∗∗∗)c, x ∈ Q∗∗, and 0 < s < t ≤ d(Q)2, we have Pt−s(x−y) ≤
Cd(Q)−d exp(−c|x− y|2/d(Q)2). Hence
∣∣∣
t�

0

Pt−sV
′′Ks(φQf)(x) ds

∣∣∣ =
∣∣∣

� t�

0

Pt−s(x− y)V ′′(y)Ks(φQf)(y) ds dy
∣∣∣

≤ C
� t�

0

d(Q)−d exp
(−c|x− y|2

d(Q)2

)
V ′′(y)Ks(|φQf |)(y) ds dy

≤ Cd(Q)−d
� ∞�

0

V ′′(y)Ks(|φQf |)(y) ds dy ≤ Cd(Q)−d‖φQf‖L1 .

In the last inequality we have used Lemma 3.10. Thus
∥∥∥ sup

0<t≤d(Q)2

∣∣∣
t�

0

Pt−sV
′′Ks(φQf)(x) ds

∣∣∣
∥∥∥
L1(Q∗∗)

≤ C‖φQf‖L1 .

We now turn to estimating the integral that contains 1Q∗∗∗V :
∣∣∣
t�

0

Pt−s1Q∗∗∗V Ks(φQf)(x) ds
∣∣∣ ≤

t�

0

Pt−s(1Q∗∗∗V )Ps(|φQf |)(x) ds

=
t/2�

0

+
t�

t/2

= It(x) + Jt(x).

For tj = 2−jd(Q)2 ≤ t ≤ 2−j+1d(Q)2 = 2tj we have

I∗j (x) = sup
tj≤t≤2tj

It(x) ≤
2tj�

0

�
Pmax
tj (x, z)V (z)1Q∗∗∗(z)Ps(|φQf |)(z) dz ds

(see (3.9)). Hence, applying (K) and (3.9), we conclude that

‖ sup
0<t≤d(Q)2

It(x)‖L1 ≤
∑

j≥1

‖I∗j ‖L1

≤
∑

j≥1

� � tj�

0

Pmax
tj (x, z)1Q∗∗∗(z)V (z)Ps(|φQf |)(z) ds dz dx

≤ C
∑

j≥1

� � tj�

0

(1Q∗∗∗V )(z)Ps(z − y)(|φQ(y)f(y)|) ds dy dz

≤ C
∑

j≥1

2−jδ‖φQf‖L1 .

The L1-norm of J∗(x) = sup0<t≤d(Q)2 Jt(x) can be estimated in a similar
way.
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4. Proof of Theorem 2.2. We start by proving the first inequality in
(2.3). From Lemmas 3.3 and 3.11 we deduce that

∑

Q∈Q
‖φQf(x)‖h1

d(Q)
≤ C

∑

Q∈Q

∥∥1Q∗∗ sup
t≤d(Q)2

|PtφQf |
∥∥
L1(4.1)

≤ C
∑

Q∈Q

∥∥1Q∗∗ sup
t≤d(Q)2

|(Pt −Kt)(φQf)|
∥∥
L1

+ C
∑

Q∈Q

∥∥1Q∗∗ sup
t≤d(Q)2

|Kt(φQf)|
∥∥
L1

≤ C‖f‖L1 + C
∑

Q∈Q

∥∥1Q∗∗ sup
t≤d(Q)2

|Kt(φQf)|
∥∥
L1

Note that

Kt(φQf)(x) = Kt

(
φQ

( ∑

Q′∈Q′(Q)

φQ′f
))

(x)(4.2)

− φQ(x)Kt

( ∑

Q′∈Q′(Q)

(φQ′f)
)

(x)

− φQ(x)Kt

( ∑

Q′′∈Q′′(Q)

(φQ′′f)
)

(x) + φQ(x)Ktf(x).

Lemmas 3.7 and 3.8 combined with (4.2) lead to

(4.3)
∑

Q∈Q

∥∥1Q∗∗ sup
t≤d(Q)2

|Kt(φQf)|
∥∥
L1 ≤ C‖f‖H1

L
.

Hence, applying (4.1), (4.3), and Theorem 3.2, we obtain

(4.4) φQ(x)f(x) =
∑

s

λs(Q)as(Q)

with

(4.5)
∑

Q∈Q

∑

s

|λs(Q)| ≤ C‖f‖H1
L
,

where as(Q) are H1
Qd(Q)

-atoms having supports contained in Q∗∗. The first
inequality in (2.3) follows from (4.4) and (4.5).

We now turn to the second inequality in (2.3). Let a be an H1
Q-atom

with supp a ⊂ Q∗∗. There exists an integer m ≥ 0 independent of Q such
that

inf{d(Q′)2 : Q′ ∈ Q′(Q)} ≥ 2−md(Q)2.

Then, by Lemma 3.11,

(4.6)
∥∥∥ sup
t≤2−md(Q)2

∣∣∣(Pt −Kt)
∑

Q′∈Q′(Q)

φQ′a
∣∣∣
∥∥∥
L1
≤ C‖a‖L1 .
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Thus

(4.7)
∥∥ sup
t≤2−md(Q)2

|Kt(φQ′a)|
∥∥
L1 ≤ C‖a‖L1 +

∥∥ sup
t≤2−md(Q)2

|Pt(φQ′a)|
∥∥
L1 .

By standard arguments, the last summand on the right-hand side of (4.7)
is controlled by the H1

Q-norm of a. Therefore it suffices to estimate∥∥supt>2−md(Q)2 |Kta|
∥∥
L1 . Observe that

(4.8)
∥∥ sup
t>2−md(Q)2

|Kta|
∥∥
L1 ≤

∑

j≥−m

∥∥ sup
2jd(Q)2≤t≤2j+1d(Q)2

|Kta|
∥∥
L1

and, by (3.9),

(4.9)
∥∥ sup

2jd(Q)2≤t≤2j+1d(Q)2
|Kta|

∥∥
L1

≤
∥∥ sup

2j−1d(Q)2≤t≤3·2j−1d(Q)2
Kt|K2j−1d(Q)2a|

∥∥
L1 ≤ C

∥∥K2j−1d(Q)2 |a|
∥∥
L1 ,

which, combined with (2.1) and (D), allows us to sum up the expression on
the right-hand side of (4.8). This completes the proof of Theorem 2.2.

5. Proof of Theorem 2.4. Let Q be the collection of cubes described
in (2.5). Obviously Q satisfies (K). Therefore it remains to show that (D)
holds.

Let k
{γ}
t (x, y) be the integral kernels of the semigroup generated by

−L{γ} = ∆− γ1Rd+ , γ > 0. The Feynman–Kac formula implies

B
{γ}
t (y) =

�
k
{γ}
t (x, y) dx = Ey1 exp

(
−γ

2

2t�

0

1[0,∞)(Ws) ds
)
,

where Ws is one-dimensional Brownian motion with infinitesimal generator
1
2
d2

dx2 , and y = (y1, ỹ) ∈ R × Rd−1 = Rd. Applying e.g. [BS, formula 1.4.3,
p. 156], we get

(5.1) B
{γ}
t (y)

=





Erf
(−y1√

4t

)
+
e−γt

π

2t�

0

exp(γs/2− y2
1/2s)√

s(2t− s)
ds for y1 ≤ 0,

e−γtErf
(
y1√
4t

)
+

1
π

2t�

0

exp(−γs/2− y2
1/2s)√

s(2t− s)
ds for y1 ≥ 0,

where Erf(x) = 2√
π

� x
0 e
−v2

dv. An immediate consequence of (5.1) is

(5.2)
�
k
{1}
t (x, y) dx = B

{1}
t (y) ≤

{
C min{1, t−1/2(1 + |y1|)} for y1 ≤ 0,

C min{1, t−1/2} for y1 ≥ 0.

Now (D) follows from (5.2).
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6. Proof of Theorem 2.6. Let Kt(x, y) be the integral kernels of the
semigroup generated by −L = ∆ − V (x), where V (x) = exp(x1), and let
Q be the corresponding collection of cubes (see (2.7)). It is not difficult to
check that Q satisfies (K). What is left is to prove (D). We shall consider
two cases.

Case 1: Q = [−2j+1,−2j ]×Q̃, Q̃ ∈ Q̃2j , j = 0, 1, 2, . . . , or Q = [−1, 1]×
Q̃, Q̃ ∈ Q̃2. Since V ≥ 1Rd+ , we have Kt(x, y) ≤ k

{1}
t (x, y). Hence, applying

(5.2), we obtain

(6.1)
�
Kt(x, y) dx ≤ Ct−1/2(1 + |y1|) for y = (y1, ỹ), y1 ≤ 1,

and, consequently, (D) holds.

Case 2: Q = [rj , rj+1] × Q̃j , r1 = 1, rj+1 = rj + exp(−rj/2), Q̃j ∈
Q̃exp(−rj/2). Let k[j]

t (x, y) denote the integral kernels of the semigroup gen-
erated by the Schrödinger operator ∆−erj+11{x=(x1,x̃) : x1>rj+1}. Obviously,

Kt(x, y) ≤ k[j]
t (x, y). Moreover, (5.1) implies

�
Kt(x, y) dx ≤

�
k

[j]
t (x, y) dx

=
�
k
{erj+1}
t (x− rj+1e1, y − rj+1e1) dx ≤ Ct−1/2e−rj/2

for y = (y1, ỹ), |y1 − rj+1| ≤ 2e−rj/2, and condition (D) is verified.

7. Proof of Theorem 2.8. The fact that (K) holds is obvious. In order
to prove (D) we denote by K{γ}t (x, y) the integral kernels of the semigroup
generated by −L{γ} = ∆ − γ|x|−2. Then K

{γ2}
t (x, y) ≤ K

{γ1}
t (x, y) for

0 < γ1 ≤ γ2. Therefore it suffices to verify (D) for γ > 0 small. Theorem 2
of [MS] combined with (2.1) gives

(7.1) K
{γ}
1 (x, y) ≤ Cφ(x)φ(y)e−|x−y|

2/5,

with

(7.2) φ(x) = |x|σ for |x| < 1, φ(x) = 1 for |x| ≥ 1,

where σ > 0 is an exponent that depends on γ. Since L{γ} is homogeneous
of degree 2,

(7.3) K
{γ}
t (x, y) = t−d/2K{γ}1 (t−1/2x, t−1/2y).

Now (D) follows from (7.1)–(7.3).

8. Remarks. In the present section we give two further examples of
potentials and families of cubes for which conditions (D) and (K) hold.
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• If V (x) = 1[−1,1](x1), x = (x1, x̃) ∈ Rd, d ≥ 1, and

Q = {[−2j+1,−2j ]× Q̃ : Q̃ ∈ Q̃2j , j = 0, 1, . . .}
∪ {[−1, 1]× Q̃ : Q̃ ∈ Q̃2}
∪ {[2j , 2j+1]× Q̃ : Q̃ ∈ Q̃2j , j = 0, 1, . . .},

then conditions (D) and (K) hold. We omit the proof.
• One can check, using estimates derived e.g. in [K], [DZ2]–[DZ3], and

[Sh], that for V satisfying the reverse Hölder inequality with an exponent
q > d/2, d ≥ 3, and for the family Q of cubes defined as follows:

Q ∈ Q ⇔ Q is the maximal dyadic cube for which(8.1)

d(Q)2

|Q|
�

Q

V (y) dy ≤ 1,

conditions (D) and (K) are satisfied and, consequently, the norms ‖ · ‖H1
Q

and ‖ · ‖H1
L

are equivalent.
We now show how to verify (D) in a slightly simpler way than it was done

in [DZ2]–[DZ3]. Let m(x) = d(Q)−1, where Q is a cube from Q such that
x ∈ Q (the function m(x) is well defined for almost every x). By Lemma 1.4
of [Sh] there exist constants C > 0 and 0 < θ < 1 such that

C−1m(y)(1 + |x− y|m(y))−θ ≤ m(x)(8.2)

≤ Cm(y)(1 + |x− y|m(y))θ/(1−θ).

Then, by applying (2.1) and the Schwarz inequality, one gets

I =
( �
Kt(x, y) dx

)2
≤ 2
( �

|x−y|≤R
Kt(x, y) dx

)2

+
( �

|x−y|>R
Pt(x− y) dx

)2

≤ CRd
�

|x−y|≤R
Kt(x, y)2 dx+ CtR−2.

Using (8.2) and the Fefferman–Phong inequality (see [Sh, Lemma 1.9]) we
obtain

I ≤ CRdm(y)−2(1 +Rm(y))2θ
�

|x−y|≤R
m(x)2Kt(x, y)2 dx+ CtR−2

≤ CRdm(y)−2(1 +Rm(y))2θ〈LKt( · , y),Kt( · , y)〉+ CtR−2.

By (2.1) and the holomorphy of the semigroup {Kt}, we have

〈LKt( · , y),Kt( · , y)〉 ≤ Ct−1−d/2.

Hence, putting R = t(1+ε)/2m(y)ε with ε > 0 small enough, we get (D).
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9. Fractional Schrödinger operators. Let L = −(−∆)α + V , where
0 < α < 1 and V ≥ 0 is a polynomial. Then −L generates a semigroup
{Kt}t>0 of linear operators with integral kernels Kt(x, y) such that

(9.1) 0 ≤ Kt(x, y) ≤ Pαt (x− y),

where Pαt (x) are the convolution kernels of the symmetric stable semigroup
{Pαt }t>0 generated by −(−∆)α. Let Q be defined by the condition

Q ∈ Q ⇔ Q is the maximal dyadic cube for which

d(Q)2α

|Q|
�

Q

V (y) dy ≤ 1.

Set d(x) = d(Q), where Q ∈ Q is such that x ∈ Q. Then there exist constants
C > 0 and 0 < θ < 1 such that

(9.2) C−1d(x)
(

1 +
|x− y|
d(x)

)−θ/(1−θ)
≤ d(y) ≤ Cd(x)

(
1 +
|x− y|
d(x)

)θ
.

The estimates in (9.2) could be proved for V satisfying (1.4) with q = d/2α
(see [Sh, Lemma 1.4 and its proof]). It follows from (9.2) that Q forms a
covering of Rd such that the diameters of any two neighboring cubes from
Q are comparable.

We are now in a position to state the following two conditions that are
valid for Kt and V :

(Dα) there exist constants C, ε > 0 such that

sup
y∈Q∗

�
K2sd(Q)2α(x, y) dx ≤ Cs−1−ε for Q ∈ Q, s ∈ N,

(Kα) there exist constants C, δ > 0 such that
2t�

0

(1Q∗∗∗V )∗Pαs (x) ds≤C
(

t

d(Q)2α

)δ
for x∈Rd, Q ∈ Q, t≤d(Q)2α.

By using ideas similar to those of the proof of Theorem 2.2, one gets the
following theorem.

Theorem 9.3. The Hardy space H1
L defined by Kt is a local Hardy space

associated with Q, that is, the norms ‖ · ‖H1
L

and ‖ · ‖H1
Q

are comparable.

Sketch of the proof. It suffices to repeat the proof of Theorem 2.2 replac-
ing the classical heat kernel by Pαt . Condition (Kα) is valid for V satisfying
(1.4) with q = d/2α, and can be verified by the same method as in [DZ2]–
[DZ3] (see also [Sh] for the idea of the proof). We omit the details. The only
nontrivial fact we have to show is condition (Dα). Using arguments simi-
lar to those in Section 8 one can reduce the proof of (Dα) to the following
variant of the uncertainty principle (cf. [F]).
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Theorem 9.4. Let w(y) = d(x)−2α. Then there exists a constant C > 0
such that

(9.5)
�
w(x)|f(x)|2 dx ≤ C〈Lf, f〉.

Proof. Write ∇α = (−∆)α/2. Let φQ be a smooth resolution of identity
associated with the collectionQ (see Section 3). For ψ ∈ C∞c , ψ ≥ 0,

�
ψ = 1,

and a real number A > 0 let ψAQ(x) = (Ad(Q)−1)dψ(Ad(Q)−1x).

Obviously, |ψ̂(ω)− 1| ≤ C|ω|α. Hence, from the Plancherel formula, we
obtain�

Q∗

|ψAQ ∗ (φQf)− φQf |2 ≤ CA−2αd(Q)2α
�
|∇α(φQf)|2

≤ CA−2αd(Q)2α
( �
φ2
Q|∇αf |2 +

�
|[φQ,∇α]f |2

)
.

Moreover, the A∞ condition for V implies that there exist constants C, ξ > 0
such that for Ωε = Ωε(Q) = {x ∈ Q∗ : V (x) ≤ εd(Q)−2α} we have |Ωε| ≤
Cεξ|Q| independently of Q and ε. Therefore

�
|φAQ ∗ (φQf)|2 ≤ ‖φAQ‖2L2‖φQf‖2L1 ≤ (Ad(Q)−1)d

( �
|φQf |

)2

≤ C(Ad(Q)−1)d|Ωε|
�

Ωε

|φQf |2 + Cε−1d(Q)2αAd
�
V |φQf |2

≤ CAdεξ
�
|φQf |2 + Cε−1d(Q)2αAd

�
V |φQf |2.

Hence�

Q∗

|φQf |2 ≤ CA−2αd(Q)2α
�
φ2
Q|∇αf |2 + CA−2αd(Q)2α

�
|[φQ,∇α]f |2

+ CAdεξ
�
|φQf |2 + Cε−1d(Q)2αAd

�
V |φQf |2.

Summing up over Q ∈ Q we get
�
w|f |2 ≤

∑

Q∈Q

�
d(Q)−2α|φQf |2

≤ CA,ε〈Lf, f〉+ CA−2α
∑

Q

�
|[φQ,∇α]f |2

≤ CA,ε〈Lf, f〉+ CA−2α
�
w|f |2,

provided CAdεξ ≤ 1/2. The last inequality has been deduced from the
following lemma.

Lemma 9.6. The operator Tf(x,Q) = [φQ,∇α](w−1/2f)(x) is bounded
from L2(Rd) into l2(L2(Rd)).
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The theorem follows by fixing A sufficiently large and then taking ε > 0
small enough.

Proof of Lemma 9.6. It suffices to prove that T : L1 → l1(L1) and
T : L∞ → l∞(L∞) and then interpolate.

The first statement follows from
∑

Q

� |φQ(x)− φQ(y)|
|x− y|d+α d(y)α dx ≤ C ′

�

|x−y|≤Cd(y)

d(y)α

d(Q)|x− y|d+α−1 dx

+ C ′
�

|x−y|≥Cd(y)

d(y)α

|x− y|d+α dx ≤ C
′′,

where C ′′ is a constant independent of y. The second statement is a conse-
quence of

sup
x,Q

� |φQ(x)− φQ(y)|
|x− y|d+α d(y)α dy ≤ C ′

�

|x−y|≤Cd(x)

d(y)α

d(Q)|x− y|d+α−1 dy

+ C ′
�

|x−y|≥Cd(x)

d(y)α

|x− y|d+α dy ≤ C
′′,

with a constant C ′′ independent of x and Q. In the above estimates we have
used (9.2). The proof of the lemma is complete.

Remark. Let us finally point out that Theorem 9.4 for V being a non-
negative polynomial could also be proved by using nilpotent Lie groups
methods and maximal subelliptic estimates for accretive kernels proved by
P. Głowacki (see [G]).
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reverse Hölder inequality , Rev. Mat. Iberoamericana 15 (1999), 279–296.

[DZ3] —, Hp spaces for Schrödinger operators, in: Fourier Analysis and Related Topics,
Banach Center Publ. 56, Inst. Math., Polish Acad. Sci., 2002, 45–53.

[DZ4] —, Hp spaces associated with Schrödinger operators with potentials from reverse
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