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Quantum limit theorems
by

KATARZYNA LUBNAUER (L6d7)

Abstract. A noncommutative analogue of limit theorems in classical probability the-
ory for distributions of canonical pairs of observables is considered. A complete description
of all limit probability operators which are quantum counterparts of the classical infinitely
divisible and semistable laws is obtained in the case when scalar norming is generalised
to norming by 2 X 2 matrices.

1. Introduction. The aim of this paper is to find limit probability op-
erators (states) for two cases which in the field of classical probability theory
dealing with sums of independent random variables correspond to infinitely
divisible and operator semistable laws, respectively. The problem has its
origin in C. D. Cushen and R. L. Hudson’s work [1], and may be briefly
described as follows.

For a canonical pair (p,q) of observables acting on a separable Hilbert
space H, let

V(z,y) = P9, (z,y) € R,

be the Weyl operators, and denote by (po, go) the Schrédinger pair of position
and momentum operators in L2(R) with its Weyl operator Vy(z,y).

The celebrated von Neumann uniqueness theorem asserts that there exist
a Hilbert space I and a unitary mapping

Upg : H— L*(R)® K

such that

(1.1) V(z,y) = UZ;ql(Vo(:U,y) R@1x)Upq, (z,y) € R2.

Now if g is a state on B(7{), then the map g, , on B(L?(R)) defined as
(1.2) opq(B) = Q(UEI(B ®1x)Upgq), BE B(L*(R)),

is a state on B(L?(R)), called the distribution of the canonical pair (p,q) in
the state o.
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Assume now that H carries several pairs of canonical observables (p1, 1),
, (Pm, @m) such that the corresponding Weyl operators

Vk(xay) = ei(xpk—’—qu)a (l’,y) € RQa k= 17 sy M,

pairwise commute. The multidimensional version of the von Neumann theo-
rem asserts that there exist a Hilbert space R and a unitary mapping

Up1.g1 o pmogm = H — LQ(R) Q@ LQ(R) ®R

m times

such that
k

v ( ) Upl}le 7pm7Qm(1L2(R) - ® ‘/b(m?y) Q-
® 1L2(R) ® 1R)Up17QI7~~~7p7H7Qm’ k= 17 ceey M.

We may thus define the joint distribution ©p, ;... py,qms» a5 a state on
B(L?(R)®™), by the formula

(13) Qp17QI:-~~7pm7Qm(B)

= 0U o 0 (BOIR)Upygroipmam)s B € B(L*(R)®™).

The pairs (p1,q1),-- -, (Pm, qm) are said to be stochastically independent in
the state o if
Op1,a1,cPmstm = Op1,q1 © " @ Oppy -

Let now (Pgn,qkn), k= 1,...,kn, n =1,2,..., be a triangular array of
canonical pairs stochastically independent in each row, and let {Ay, : k =
1,...,kp,n=1,2,...} be a family of 2 x 2 matrices

kn kn
e[ 4]
a1 Qo9
such that the sums

kn
(14) (ﬁn’ qn) = Z Akn(pkna an)
k=1
kn
k k k
Z a11 pkn + aggn)ana agln)pkn + aggn)an)
k=1

kn kn
(Z a11 pkm + a§2 )an) Z(agin)le + ag;n)an))
k=1 k=1

are canonical pairs for each n. We say that the sequence {(p,,q,) : n =
1,2,...} converges in distribution in the state o to a limit distribution (state)
0o if the states g5 5 converge to the state o, i.e.

05,,(B) — 00(B)  for each B € B(L*(R)).
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We want to characterise all the limit distributions g9 under one of the fol-
lowing two assumptions:

(i) a natural uniform infinitesimality assumption imposed on the distri-
butions gp,, q., and norming matrices Ay, (general infinitely divisi-
ble case);

(1) Oprugin = °* = Opppmiaiyns @ = 1,2,..., and kpy1/ky — 7 > 1
(semistable case).

Observe that in the pioneering work [1] where the central limit theorem
is proved, we have a particular case of (ii) above with k,, = n and norm-
ing matrices Ay, = --- = Ap, = (1/y/n)I, I being the identity matrix.
Also further generalisations of [1] in [13] and [2] follow the same pattern.
On the other hand, the general situation described in (i) was considered in
[14], where the limit distributions were found for “multidimensional” canon-
ical pairs and scalar norming. This paper may be treated as a generalisa-
tion of some results in [14] to matrix norming. Because of the close con-
nection between [14] and our work we have found it convenient to adopt
the same setup as in [14]; in particular, the problems as well as their so-
lutions are formulated solely in the language of the so-called characteristic
functions, without referring to canonical pairs. The idea of such an approach
is as follows. Given a canonical pair (p,q) on H, to each state ¢ on B(H)
there corresponds in a 1-1 way a complex-valued function p on R? defined
by

@\(:Cay) = Q(V(l’,y)), (l‘,y) € RQ,

and called the characteristic function of p. In particular, the characteristic
function of the distribution g, , of the canonical pair (p,q) in the state o
is

0p.q(T,y) = 0pq(Vo(z,9)), (z,y)€ ]R27

and on account of (1.1) and (1.2), we have

/Q\p,q(l': y) = Z)\(J}, y)'

Of paramount importance is the intrinsic characterisation of the character-
istic functions as continuous functions taking value 1 at 0 and satisfying
some kind of positive-definiteness condition; moreover, to each such function
f there corresponds exactly one state oo on B(L?(R)) such that o = f
(Bochner’s theorem). (Observe that g, 4, is just the distribution of the
Schrédinger pair (pg, go) in the state o.)

Now if

A:

ai CL12]

az1 a2
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is a 2 x 2 matrix such that (p',¢') = A(p, q) = (a11p + a12¢, a21p + a22q) is
a canonical pair, an easy calculation yields

Ep’,q’(xa y) = §p,q(A*(l", @/)) = @a,q(anﬂc + a1y, a1 + a22l/)-

Thus taking into account the above-mentioned description of the class of
characteristic functions, we can consider all 2 x 2 matrices A (call them
admissible) such that for each characteristic function f the function f o A*
is again a characteristic function.

Performing a similar calculation for the pair (p,,,q,,) defined by (1.4), we
obtain, by stochastic independence of (pin, qin); - - -5 (Pkun, Wenn),

Eﬁn@n (2) = /Q\Pln,qm (ATnZ) T Epknn:ann(Aznnz)’ z=(2,y),

so we can again consider all k,,-tuples (Ay,..., Ay, ) of 2 X 2 matrices (called
admissible tuples) such that for any characteristic functions fi,..., fi, the
product (f1 o A7)---(fk, © Aj ) is a characteristic function. To complete
the passage from canonical pairs to characteristic functions it remains to
invoke the “quantum continuity theorem” proved in [1], which says that the
convergence of states on B(L?(R)) is equivalent to the pointwise convergence
of their characteristic functions. Thus we are led to the problem of finding the
class of limits of products of characteristic functions, normed by admissible
tuples of 2 x 2 matrices.

The “quantum limit theorems” which are investigated in this paper were
one of the first subjects of so called “quantum probability”—a field that
emerged in the 1970’s. Today this field has reached some maturity—an in-
terested reader may consult for instance [3, 9, 10] to learn more about it.

2. Preliminaries and notation. Let II be the lattice of orthogo-
nal projections in a separable infinite-dimensional Hilbert space H. A non-
commutative analogue of a probability measure is a state, i.e. a function
o:IT — |0, 1] satisfying

(i) o(1) =1,

(i) o> 021 Pn) = >0, 0o(Py) for any sequence {P,} of mutually or-

thogonal projections, where the series on the left hand side converges
in the strong operator topology.

A typical (important!) example of a state is as follows. Let ¢ be a unit
vector in H. Define g by

o(P) = (Pp,p)n = || P

Such states are called pure (or vector states), and are in a sense basic for
quantum mechanics. Notice that pure states have the form o(P) = tr PT,
where T is the projection onto the one-dimensional space generated by the
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vector ¢,
T¢ = <wa 90>H’ ¢ eH.

The celebrated Gleason theorem [4] says that the same is true for every state
0, i.e. we have
o(P)=tr PT, Pell,

where T is a probability operator, i.e. a positive operator on H of unit trace.
This in turn implies that every state has an extension from the lattice of
projections IT to the algebra B(H) of all bounded operators on H, given by
the formula
o(B)=trBT, B € B(H).

This extension is a bounded positive linear functional on B(H) of norm
one, and the formula above yields a 1-1 correspondence between states and
probability operators. In what follows we shall often use the terms “state” and
“probability operator” interchangeably. The set of all probability operators
on ‘H will be denoted by P.

Let z — V/(2) be a projective unitary representation of the group R2,
satisfying the Weyl-Segal commutation relation

V(2)V(¢) = W20V (2 4 ),
where z,2' € R?, z = (z,y), 2’ = (¢/,%), and
Az, 7)) = zy' —ya'.
By D we shall denote the operator on R? corresponding to the skew form
A, ie.
(2, D2y = A(z,7") for all z, 2/ € R?,

where (-, -) is the Euclidean inner product in R%2. We know from [5] that
the map T +— T (where T is from Li, the set of nuclear operators on H)
given by

T(z) =trTV(z)
extends uniquely to a linear isometric transformation from £, the set of

Hilbert-Schmidt operators on H, onto the space L?(R?) of all complex-valued
square integrable (with respect to Lebesgue measure) functions f on R? with

the norm
1 ) 1/2
11 = (5 § 1FRa:)

R2

The function 7 is called the characteristic function of the probability oper-
ator T.

DEFINITION 1. A complex-valued function f on R? is said to be A-
positive-definite if for arbitrary complex numbers cy,..., ¢, and vectors
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Z1,...,%n € RZ,

Z cinf(zj — 2,)eWPDAE2) > .
J,k=1

“Quantum Bochner’s theorem” states that f = T for a certain probability
operator T if and only if f is A-positive-definite, continuous at the origin
and f(0) =1 (cf. [5]).

DEFINITION 2. A probability operator T is said to be Gaussian if

f(z) _ e—%(qz,z)-{-i(z,zo)’
where zp € R? and ¢ is a nonnegative self-adjoint operator on R2. The
operator ¢ is called the Gaussian covariance operator.

A necessary and sufficient condition for ¢ to be the covariance operator
for a certain Gaussian probability operator is given by the inequality

(2.1) (qz,2) + (g2, 2)) > A(z,2)

for all 2,2’ € R? (see [5, p. 252]). Let ¢ = [{1! #2] be the representation of ¢
in the canonical basis of R2.

LEMMA 1. A symmetric matric [q;)jr=12 is the matriz of a Gaussian
covariance operator if and only if g11 > 0 and det [q;,] > 1/4.

Proof. q is a Gaussian covariance operator if and only if (2.1) holds for
z=(z,y), 2 = (¢, y'), that is,

(1 + qr2y)x + (12 + ¢229)y + (q12" + q129") 2’ + (212" + g2’y

>ay —a'y
for all x,y,2’,y’ € R, which is equivalent to the positivity of the matrix
[ q11 @12 + ¢21) 0 : ]
Haqi2 + g21) q22 3 0
0 3 q11 5(q12 + g21) 7
i -1 0 (@12 + g21) g2 |
or equivalently, for a = (q12 + ¢21)/2 and b = q11¢22,
q1 > 0,
b—a®>0,
b—-—a?>0,
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that is,
qi1 >0, det[gjz] >1/4. =

COROLLARY 1. All Gaussian covariance operators are invertible.

The projections belonging to P will be called pure states. Since every
such projection having unit trace must be one-dimensional, this perfectly
agrees with the term “pure state” introduced before. A projection T is said
to be a ground state if it is a symmetric Gaussian probability operator. The
probability operators of the form () o u, where @ is a ground state and
p € M(R?), will be called quasi-classical probability operators. Let M(R?)
denote the set of all Borel probability measures on R2. By J, (a € R?) we
shall denote the probability measure on R? concentrated at a. For any T € P
and p € M(R?) we put

Top= | V(D2)TV*(Dz) u(dz),
R2
where the integral is taken in the weak sense. From [14] we know that T/o\,u =
fﬂ, where [1 denotes the classical characteristic function of p.

For the sake of completeness we collect below some important results
proved in [14].

PROPOSITION 1 (|14, Proposition 1.1]). We have

(i) (Top)ov=To (uxv).

(i) Let T € P and pn € M(R?). Then T o u is a projection if and only

if T is a projection and ju = 6, for a certain vector a € R2.

PROPOSITION 2 ([14, Proposition 1.2]). A probability operator is Gauss-
ian if and only if it is of the form Q oy, where Q is a ground state and -y is
a Gaussian measure on R

ProPOSITION 3 ([14, Corollary 1.1]). A pure state is quasi-classical if
and only if it is of the form Q o ,, where Q is a ground state and a € R?.

Let us also note the following important fact which can be found in [5].

PROPOSITION 4. Let T be a probability operator. Then T? is the charac-
teristic function of some pu € M(R?).

LEMMA 2. If u = fQ, where T' is a probability operator, then p is a full
measure on R?, i.e. u is not concentrated on a line.

Proof. We have Te L?(R?), so 11 = T2 ¢ L(R) and thus p is absolutely
continuous with respect to Lebesgue measure on R?. It follows that x cannot
be concentrated on any line. m
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Let B be the subset of L?(IR?) consisting of all continuous functions van-
ishing at co. Then B contains all 7' where T € P (see [7]). It is shown in [14]
that B is the closure of £ in the norm || f|| = max,cp2 |f(2)| + || f|l2- Let &

be the set of all Hilbert—Schmidt operators 1" for which 7" € B. We define
the convolution x in 2 by setting

Tl/’-(\TQ = ﬁfz-
Moreover, we put || T|| = ||T|. Then
| Ty * Tof| < |71 (T2,

and consequently, the convolution algebra 2{ is a Banach algebra without
unit.

A sequence {7}, },,>1 of elements of 2 is said to be an approzimate unit if
for every S € 2, T, xS — S in the norm || || as n — co. Notice that {7}, },>1
forms an approximate unit if and only if T n — 1 uniformly on every compact
subset of R2.

We have the inclusions

PC Ly CUAC L.

An important fact is that if T,, € P and T\n converges pointwise to a limit
function f on R? which is continuous at the origin, then there exists 7' € P
such that T = f. This follows from the fact that A-positive definiteness is
preserved under limits, and from Bochner’s theorem.

By means of the isomorphism 7' — T between £y and L2(R2), for each
2 x 2 matrix A we define a linear transformation /4 of Ly by setting

(UAT)(2) = T(Az).
It is clear that:
(1) Uap = Uallg,
(2) |UAT||2 = (det A)_1/2||T||2 if A is nonsingular,

2)
(3) the algebra 2l is invariant under all transformations Uy,
(4) Us(Ty x To) = UA(Th) *UA(T?).

DEFINITION 3. An n-tuple (Ay,...,A,) of 2 x 2 matrices is said to be
admissible if
n
(2.2) * Uy, Ty €P
j=1

for any probability operators T7i,...,T,. Let A,, n = 1,2,..., denote the
set of all admissible n-tuples.

An n-tuple (A41,...,A4,) of 2 x 2 matrices is said to be conditionally
admissible if (2.2) holds for a given choice T1, .. ., T, of probability operators.
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EXAMPLE 1. Let

4 — 1/y/n 0
G R R WAV
Then norming by the matrices (41,..., 4,) is in fact norming by the scalars

(1/4/n,...,1/4/n), and according to the considerations after Proposition 2.5
in [14], (A1,...,Ay) is admissible.

j=1...,n.

EXAMPLE 2. Let 1/v/2n < a < 1/4/n, and put

a 0
A = , j=1,...,n.
! 0 a] J
Let T1,...,T, be Gaussian probability operators with the characteristic
functions
Ti(z) = = Tp(z) = e 227,
Then

n

( R UAJ_T])A(Z) — Hefaaz,az) — e*%noﬂ(z,z)’
Jj=1 i

so the covariance operator is Q = [”8‘2 n32:|’ hence det Q = n%a* > 1/4,
which means that

n

* U AJ-Tj eP,

j=1

thus (Aq,...,A,) is conditionally admissible.
Now let 77, ..., T, be Gaussian probability operators with the character-
istic functions
Ti(z) = - = Th(z) = 737,
We have

n
4 N —_ —Haz, _ —ina?(z,2)
RS | e
7=1
2
so the covariance operator is Q' = | "*/2 0 | and det Q' = 1n2a% < 1/4,
0 na?/2 4
which means that @’ is not the covariance operator of a probability operator,
i.e.

* UAJz}, € P?
j=1
and thus (A1,...,A,) is not admissible.

A large class of admissible tuples is provided by Lemma 3 below.
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LEMMA 3. For an arbitrary n-tuple (¢1,...,ey,), where e, = —1 or 1,
r=1,...,n, we have

{(Al,...,An) : ierdetAr — 1} c A,
r=1

Proof. Tt is easy to check that if f is A-positive-definite then so is f,

and consequently, for any T1,...,T, € P, z1,...,2m € R?, 2 x 2 matrices
Ay,...,Ayand e, = —1or 1,r=1,...,n, the matrices
[T (A (25 — zp))el/Per Az Aoy,

are positive-definite.
For A = [} ai2] we have

ail ai2| (T ailp a12| [Tk
)
a1 a22| |Yj a1 a22| | Yk

= A((anz; + a12y;, 2125 + azey;), (a112k + a2y, 4217k + a22yk))

= (an1zj + a12y;)(a212k + azeyr) — (@112, + a12yk) (@212 + az2y;)
= an1a22(Tjyr — Tryj) + ar2021 (Y — ypxj) = det AA(zy, z1).
From the fact that if the matrices

T T
a a
11 %12
], r=1,...,n,

AT = T T
o1 Qo9

are positive-definite, then so is their entry-by-entry product

B =

aty...aly aly...at
1 1 ’
A3y ...0% Qy...05
and from the equality above, we deduce that the matrix
n
[H fr<Ar(Zj o))/ detATA(zj,zk)}
r=1

m

Jk=1

is positive-definite. If now ) _,e,det A, = 1, then []"_, To(A,2) is A-

positive-definite, so
n
* MATTT' € P)

r=1

which completes the proof. =

3. Limit theorems. Let {Ty,},{Awn}, k = 1,....kp, n = 1,2,...,
be triangular arrays of probability operators and 2 x 2 matrices such that
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(Ain, ..., Ag,n) € Ag, for n =1,2,.... Then
kn,
* uAknTkn e P.
k=1

The triangular array {Ua, Tin: k = 1,...,ky; n = 1,2,...} of operators
from 2 is said to be uniformly infinitesimal if for every choice of r,, 1 <
rn < kyn, the sequence {Uy, Tp.n:n = 1,2,...} forms an approximate
unit in the convolution algebra 2, or equivalently, in terms of characteristic
functions,

li 1— T, (A -
Jim 12%252”! kn(Agnz)| =0

uniformly on every compact subset of R2.

Suppose that for a uniformly infinitesimal triangular array there exists a
sequence {c, }n>1 of vectors from R? such that the sequence of probability
operators

(3.1) (iuAknTkn) 0 e,

converges to an operator S in 2. Our aim is to characterise the limit proba-
bility operators .S in two basic cases. Namely, we shall prove

THEOREM 1. The set D of all limit operators of the sequence (3.1) con-
sists of all quasi-classical probability operators Q o u, where Q@ is a ground
state and p is an infinitely divisible probability measure from M(R?).

THEOREM 2. The set D of all limit operators of the sequence (3.1) in
the case when kyi1/ky, — 1> 1, A1y = Aoy = -+ = Apny T = T, consists
of all Gaussian probability operators.

To prove these theorems we need some facts from the theory of o-positive-
definite functions on locally compact groups. To keep the paper as self-
contained as possible, we present the main points of this theory below. For
a more detailed account the reader is referred to [11, 12].

In what follows we assume that G is a locally compact group.

DEFINITION 4. Let I be the group of complex numbers z with |z| = 1.
A Borel function 0 : G x G — [ is called a multiplier if

ole,g1) = o(g2,e) =1,
(91, 92)0 (9192, 93) = 0(92, 93)o (91, 9293)
for all g1, g2, 93 € G, e being the group unit.
LEMMA 4. The function o given by the formula
(3.2) o(z1, 29) = e/2AGL2) o) o € R2

is a multiplier on the vector group R2.
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Proof. Let e = (0,0), z1 = (z1,v1), 22 = (x2,Y2), 23 = (z3,y3). Then
=0

ole, 1) = 0(20,€) = @A) — ((i/DAE0) _

and
o(z1,22)0(21 + 22,23) = e(1/2)A(21,22)+ A(21+22,23)]

e(1/2)(T1y2—T2y1 +T1Y3+T2y3 —T3Y1 —T3Y2)

= (DAG A =] = (2 25)0 (2, 22 + 23),

which proves the claim. u

DEFINITION 5. Let U(H) denote the group of all unitary operators on
H with the weak topology. A Borel map U : g — U, from G into U(H)
satisfying
Ue - Ia UglUg2 = 0(91792)[]91927 g1, 92 S G7

is called a o-multiplier representation of the group G in H.

DEFINITION 6. A continuous function s : G x G — C is called an additive
multiplier if

(1) s(g1,e) = s(e,g1) =0,

(2) s(9192.93) + s(g1,92) = s(g1, 9293) + (g2, 93),

(3) s(g1,92) +s(g1 "9, ') =0
for all g1, 92,93 € G.

LEMMA 5. The map s given by the formula
(3.3) s(z1,22) = %A(Zl,zg), 21, 22 € R2,
is an additive multiplier for the vector group R2.

Proof. Conditions (1), (2) and (3) follow from calculations similar to
those in the previous lemma. The continuity of s is obvious. =

DEFINITION 7. Let ¢ be a multiplier. A complex-valued function ¢ on
G is called o-positive-definite if for any complex numbers ci,...,c, and
gis---59n € G,
> cinp(9ig; )o(g5. 9r) > 0.
Jik
Note that for T € P the function 7 is o-positive-definite for o(z1,22) =
e(i/Q)A(Zl’ZQ) .

DEFINITION 8. A triple (U, o, x), where (U, o) is a o-multiplier represen-
tation of G in H and z is a unit vector in H, is called a cyclic o-multiplier rep-
resentation if the set {Uyx : g € G} spans H. The function ¢(g) = (Uyx, z)
is then called the characteristic function (expectation value) of (U,o,x).
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It is easily seen that the characteristic function ¢ is o-positive-definite.
Moreover, by a version of the Raikov theorem it follows that for any o-
positive-definite function ¢ there is a cyclic o-multiplier representation
(U, 0, x) for which ¢ is the characteristic function.

DEFINITION 9. Let s be an additive multiplier on G x G. A continuous
function ¢ : G — C is called conditionally s-positive-definite if the map
(g,h) — ¥(h~tg) +is(hlg) is conditionally positive-definite on G x G.

DEFINITION 10. A cyclic o-multiplier representation (U, o, x) is called
canonical if its characteristic function is nonnegative.

DEFINITION 11. A sequence (U (n), On, Ty) of cyclic o,-multiplier repre-
sentations is said to converge to a cyclic o-multiplier representation (U, o, x)
if the corresponding characteristic functions ¢,, converge pointwise to ¢ and
o, converge pointwise to o.

DEFINITION 12. A family {(U™®) o0, xp): k=1,... kp, n=1,2,...}
of cyclic o, -multiplier representations is called uniformly infinitesimal if for
any g € G,

lim sup (1—|enk(g)]) =0,
n—=00 1< k<k,

where @, is the characteristic function of (U k) ook Tnk)-

The convolution *iil(U (k) gk, Znk) of the cyclic o, ;-multiplier repre-
sentations (U (k) gk, Znk) is defined to be the tensor product of the factors.
It is clear that the characteristic function of the convolution is the product
of the characteristic functions of the factors.

THEOREM 3 ([12, Theorem 4.1]). Let {(U™®) opp, znp): k=1,...  kp,
n=1,2,...} be a uniformly infinitesimal family of cyclic multiplier repre-
sentations of a locally compact second countable group G in Hilbert spaces
Hni- If the sequence of convolutions

(U(n)) On, xn) = k*n (U(n7k)7 Onk, xnk)
k=1
converges to a cyclic multiplier representation (U,o,z) of G in a Hilbert
space H with inner product (-, -), then the set G' = {g : (Ugz,x) # 0}
is an open subgroup of G. Furthermore, there exists a real-valued additive
multiplier s on G' X G’ and a conditionally s-positive-definite function 1
on G such that for any g,h € G',

(Ugnw, 2){(Ugz, x)(Unz, 2)} "o (g, h) = exp{y(gh) —¢(g) — 1 (h) +is(g, h)}.
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If the cyclic multiplier representation (U,o,x) is canonical, then we can
choose (s,1) such that

(Uyz,2) = expiplg) and o(g,h) = expis(s, )
for all g,h € G'.

THEOREM 4 ([11, Theorems 4.3 and 5.3]). Let G be a locally compact
abelian second countable group. Each conditionally s-positive-definite con-
tinuous function ¥ on G satisfies the Lévy—Khinchin formula

vig)= | [(9,7) —1—im(g,7)]dF(7)

Ir— {1}
Z%ke + Za(g)

with the Gaussian part

1
(3.4) —3 > 4k0;(9)0k(9)
J.k
where 01,605, ... is a sequence of continuous homomorphisms of G into the

complex plane, forming a basis of the space T(G) of homomorphisms from G
into C, such that any 6 € T(G) can be written as 0(g) = =1 @ibi(9); (qk]jk
s a positive-definite matrixz and a is a real-valued continuous function such
that a(g) = —a(—g). Moreover,

5(g1,92) = ——quk (9101 (92) — 05(92)0k(91)].

Note that for G = R? each homomorphism of G into C has the form
O(x,y) = ax + by for some a,b € C,

so as a basis for T(G) we can take 01(x,y) = = and 02(x,y) = y.
Consequently, the Gaussian part (3.4) has the form

1 — 1
(3.5) ) Z k05 (2, y)Ok(z,y) = 5 [q117° + (q12 + 21) 2y + g229”].
k=1

In what follows we shall only be concerned with o and s as defined by
(3.2) and (3.3). In this case s has the form

(36) 3((9517y1)7 (1‘2,y2)) = =
+

1
% (i1 (2122 — 2221) + qr2(z1Y2 — T2y1)
q21(z2y1 — T1Y2) + q22(Y1y2 — Yoy1)]

1
= - Z (961y2 - $2y1)(CI12 - CI21)-

Now we are in a position to start proving our theorems.
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Proof of Theorem 1. Necessity. Suppose that T' € D. Then

k.
kn ~ . no
T = lim ( * L{AknT;m) 00, T(2) = lim ) [ Thn(Arn2),

n—o0 r=1 n—oo

k=1
SO
kn,
2 1 i(2¢n,2) 2
T(2) = T}Lr%oe H Tion (Agnz).
k=1
By Proposition 4,
Vkn = T2, ©=T2
for some probability measures vy, v € M(R?). We have
kn
P(2) = tim €20 T Dpn(Apn2),
n—oo
k=1
and because Uy, 0 Agp, K = 1,...,k,, n = 1,2,..., are the characteristic

functions of the probability measures A}, v}, forming a uniformly infinitesi-
mal array, by the classical limit theorems v is infinitely divisible. Moreover,
v yields the Lévy-Khinchin formula:

D(2) = exp {2<m 2) — % (2 2) + st{o} [ei<u7z> 1 %} M’(du)},

where m’ € R?, ¢ is a nonnegative operator on R?, and M’ is Lévy’s measure.
Hence

(3.7) T(z) = exp {z(m, z) — % (qz, 2)
ei(u,z) 1 i<u7 Z> w
" S 0 -1 | o |

where m =m//2, g =¢'/2, M' = M/2.
Let now p be Poisson’s measure in formula (3.7), i.e.

fi(z) = exp{i(m, 2) + RQ_S{O} [ei<u,z> 11— %] M(du)}.

For the measure x given by
A(E) = u(~E), E e BRY),
we have [i(z) = u(—z) = i(z), so we obtain
(3.8) e~ fi(2)2 = e A i(2)i(2) = T(2)i(2)

|

ko
= lim e'{en?) kan(Aan)ﬁ(Z)‘

n—oo
k=1
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1/kn we obtain

Since 7 is infinitely divisible, putting fig, (z) = e*cn/kn2) [7i(2)]
from (3.8)
1 kn ~
fi(2) P29 = lim ] [Thn(Arn2)firn(2)].
n—oo
k=1

As the matrices Ay, are admissible, the map z — Hz’;l T\kn(Aknz) is the
characteristic function of some probability operator 7},, so the function

kn

on(2) = e T Tion(An2)7i(2) = €2 Ti(2) T (2),
k=1

being the product of the characteristic function of a probability measure
and the characteristic function of a probability operator, is the characteristic
function of some probability operator. Consequently, it is o-positive-definite,
where o is given by (3.2), and hence it is the characteristic function of some
cyclic o,-multiplier representation of R? with ¢, = ¢. The limit function
z ]ﬁ(z)|267%<qz’z> is also o-positive-definite, so it is the characteristic
function of some cyclic o-multiplier representation of R?. Moreover, it is
positive-definite, so by Theorem 3 we obtain

(3.9) ‘ﬁ(z)’2e—(i/2)(qz,z> _ ew(z)7
where v is a conditionally s-positive-definite function. Moreover,
A =R = ep] | (e —1 - s ara
R2—{0} 1+ luf
i—uz) _q_ U= 2) |
- {e T+ gz ) M
R2—{0}
= eXp{ S [ei<“vz> . M] M (du)
R2—{0} 1+ [Jul?
i) _q_ _Hw2) |4z
- {e T+ | M
R2—{0}

where M(E) = M(—E). Putting My = M + M we get

(3.10) 17i(2)]? = exp{ g{ }[eﬂu@ —1- %} Ml(du)}
R2—{0

:exp{ | [cos(u,z>—1]M1(du)}.

R2—{0}
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From (3.9) and (3.10) we finally obtain
1
P(z) = S [cos(u, z) — 1] M (du) — 5 (qz, z).
R2—{0}

Since 1 is s-conditionally positive-definite, its Gaussian part has the form
given by (3.5). The (complex) matrix [g;;] is positive-definite, thus

1,922 >0,  qi2 =Gy, det|gjx] > 0.

Put
%] = qu1 (q12 + q21)/2
] = )
’ (q12 + q21)/2 qo2
This is a real matrix with
(3.11) det [q5] = 411052 — Giad31 = Q11422 — Q1221 — 5 (@12 — g21)?

= det [gjx] — 2(q12 — ¢21)* > —3(q12 — ¢21)%,
since det [g;1] > 0.
Now taking into account the connection between o and A given by for-
mulae (3.3) and (3.6), we get the equality
1 1
—2—2.(33192 —22y1)(q12 — q21) = 5(53192 — Tay1),

and thus ¢12 — ¢g21 = i. Consequently, from inequality (3.11) we obtain
det [q;;] > 1/4.

From Lemma 1 it follows that [g},] is the matrix of a Gaussian covariance
operator, so the Gaussian part of the characteristic function of 7' is nonzero.

Sufficiency. This follows from [14] where it is shown that we can take the
norming operators A, to be multiples of the identity operator. m

Proof of Theorem 2. Necessity. Let

T = lim ( % uAknT,m) o8, ,
n—00 \ p—1
where Ay, = Ao =+ = Ak, ny Thon = S and kpy1/kn — 7 > 1.

Putting 7(z) = S2(2) = T2, and fi(2) = limy, oo [[5", D(Apn2)e?) we
have Ji(z) = T%(z), and 1. is an operator semistable probability measure (see
[6, 8] for a more detailed description of such measures).

By Theorem 1, T has nonzero Gaussian part, and from Corollary 1 it
follows that this Gaussian part is full on R?. Now by [6, Theorem 1.1], we
conclude that 4 and thus 7" must be Gaussian.

Sufficiency. This is proved as Theorem 3.3 in [14] for s = 1, k,, = n and
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REMARK. Observe that Theorems 1 and 2 can be slightly generalised.

Namely, we may consider limits of sequences as in (3.1) assuming only that
the norming matrices Ay, ..., Ay, , are conditionally admissible. It follows
from the proofs of Theorems 1 and 2 that in this case we obtain the same
limit classes.
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