
STUDIA MATHEMATICA 164 (3) (2004)

Generalizations of Cesàro means and poles of the resolvent

by

Laura Burlando (Genova)

Abstract. An improvement of the generalization—obtained in a previous article
[Bu1] by the author—of the uniform ergodic theorem to poles of arbitrary order is derived.
In order to answer two natural questions suggested by this result, two examples are also
given. Namely, two bounded linear operators T and A are constructed such that n−2Tn

converges uniformly to zero, the sum of the range and the kernel of 1 − T being closed,
and n−3∑n−1

k=0 A
k converges uniformly, the sum of the range of 1 − A and the kernel of

(1−A)2 being closed. Nevertheless, 1 is a pole of the resolvent of neither T nor A.

1. Introduction. Throughout this paper, when the scalar field is not
specified, we assume it may be either R or C and denote it by K. Also, we
denote the norm of any normed space X by ‖ ‖X .

For each Banach space X, let 0X , L(X) and IX denote respectively the
zero element of X, the Banach algebra of all bounded linear operators on X
and the identity element of L(X). For each T ∈ L(X), let N (T ) and R(T )
denote the kernel and the range of T , respectively. Furthermore, if T is
invertible in L(X), we denote the inverse of T in L(X) by T−1. A projection
of X is an element P of L(X) satisfying P 2 = P . We recall that if P is a
projection of X, then R(P ) is closed and X = R(P ) ⊕ N (P ). Conversely,
if Y and Z are closed subspaces of X satisfying X = Y ⊕ Z, then there
exists a unique projection P of X—called the projection of X onto Y along
Z—such that R(P ) = Y and N (P ) = Z.

Now suppose X to be a complex Banach space. For each T ∈ L(X), let
σ(T ) and %(T ) stand respectively for the spectrum of T and the resolvent
set C \ σ(T ) of T . As is well known, the resolvent function

R(·, T ) : %(T ) 3 λ 7→ (λIX − T )−1 ∈ L(X)

is holomorphic on %(T ). We set

P(T ) = %(T ) ∪ {λ ∈ σ(T ) : λ is a pole of R(·, T )}.
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Throughout this paper, N and Z+ will stand for the sets of all nonnegative
integers and of all positive integers, respectively. For each p ∈ Z+, we set

Pp(T ) = %(T ) ∪ {λ ∈ σ(T ) : λ is a pole of R(·, T ) of order ≤ p}.

We also set P0(T ) = %(T ). We recall that for each λ0 ∈ Pp(T ) (where p ∈ N)
we have X = N ((λ0IX − T )p) ⊕ R((λ0IX − T )p) and R((λ0IX − T )p) is
closed (see, for instance, Theorem 2.2 in the next section). Notice also that,
for each p ∈ N, Pp(T ) is an open subset of C and Pp(T ) ⊂ Pp+1(T ). Finally,
we remark that P(T ) =

⋃
p∈N Pp(T ).

We are concerned here with conditions—related to convergence in L(X)
of a convenient generalization of the Cesàro means of the sequence of the
iterates of T—ensuring that 1 ∈ Pp(T ).

The classical uniform ergodic theorem by N. Dunford ([D1], [D2]) shows
that 1 ∈ P(T ) and n−1‖Tn‖L(X) → 0 as n → ∞ if and only if the se-

quence n−1∑n−1
k=0 T

k converges in L(X); moreover, in this case, 1 ∈ P1(T )
and n−1∑n−1

k=0 T
k converges to the projection of X onto N (IX − T ) along

R(IX − T ) (which coincides with the residue of R(·, T ) at 1; see [TL, V,
(10-1) and 10.1]). Further conditions equivalent to the convergence of
n−1∑n−1

k=0 T
k in L(X), improving Dunford’s uniform ergodic theorem, have

been obtained more recently by several authors (see [Li], [MZ], [LM]). A
partial generalization of the uniform ergodic theorem to poles of arbitrary
order was provided in [W] by H.-D. Wacker, who proved that if p ∈ Z+,
1 ∈ Pp(T ) and n−p‖Tn‖L(X) → 0 as n → ∞, then n−p

∑n−1
k=0 T

k converges

in L(X) to (1/p!)(T − IX)p−1
P (where P denotes the projection of X onto

N ((IX − T )p) along R((IX − T )p); notice that (T − IX)p−1
P is the coeffi-

cient of order −p of the Laurent expansion of R(·, T ) in a punctured neigh-
borhood of 1 by [TL, V, (10-1), (10-7) and 10.1]). In [W] an example is
also constructed showing that convergence of n−p

∑n−1
k=0 T

k in L(X) is not
sufficient for 1 ∈ P(T ). In [Bu1] we obtained a converse of Wacker’s re-
sult, by proving that convergence of n−p

∑n−1
k=0 T

k in L(X), together with
an additional condition which is automatically satisfied for p = 1 (namely,
closedness ofR((IX − T )p−1)+N (IX−T )), is indeed equivalent to member-
ship of 1 in P(T ) plus convergence of n−p‖Tn‖L(X) to zero. The main result
of [Bu1] ([Bu1, 3.4]) actually provides several conditions that are equivalent
to the two conditions above, thus generalizing the uniform ergodic theorem,
as well as its improvements obtained in [Li], [MZ] and [LM], to poles of
arbitrary order.

We are going to recall all of these conditions here, in Theorem 2.8. In
this paper we mainly focus on the condition recorded here as (2.8.9), that
is, convergence of n−p‖Tn‖L(X) to zero, plus closedness of R((IX − T )k) +
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N ((IX − T )j) for some (k, j) ∈ N × N satisfying k ≥ p. Indeed, we are
interested in determining whether and how k < p can be allowed in (2.8.9),
maintaining equivalence with the conditions of [Bu1, 3.4].

In Section 2 we collect some preliminaries, to make this paper as self-
contained as possible. We begin Section 3 with a real Banach space version
of our generalization of the uniform ergodic theorem (Theorem 3.1). We also
derive a further condition equivalent to the ones provided in [Bu1, 3.4] from
a recent result obtained by S. Grabiner and J. Zemánek in [GZ]: more pre-
cisely, we observe that k < p can be allowed in (2.8.9), provided k ∈ Z+ and
k+j > p (Theorem 3.4). Furthermore, we construct an example showing that
1 ≤ k < p cannot be allowed in (2.8.9) for k+ j = p (Example 3.6). Finally,
by means of a convenient example (Example 3.10), we prove that closedness
of R((IX − T )p−2) + N ((IX − T )2), plus convergence of n−p

∑n−1
k=0 T

k in
L(X), does not imply the equivalent conditions of [Bu1, 3.4] even if p ≥ 3
(that is, even if p− 2 ∈ Z+).

2. Preliminaries. For every bounded linear operator T on a Banach
space X, let α(T ) and δ(T ) denote respectively the ascent and descent of T ,
that is,

α(T ) = inf{n ∈ N : N (Tn) = N (Tn+1)},
δ(T ) = inf{n ∈ N : R(Tn) = R(Tn+1)}.

Notice that α(T ), δ(T ) ∈ N ∪ {∞}, and that α(T ) ∈ N (respectively, δ(T )
∈ N) if and only if N (Tn) = N (Tn+1) (respectively, R(Tn) = R(Tn+1)) for
some n ∈ N. Moreover, in this case, we have N (T k) = N (Tα(T )) (respec-
tively, R(T k) = R(T δ(T ))) for all k ∈ N satisfying k ≥ α(T ) (respectively,
k ≥ δ(T )). We also remark that α(T ) = 0 (respectively, δ(T ) = 0) if and
only if T is one-to-one (respectively, onto).

Finiteness of the ascent and descent of T is related to a decomposition
of X into a direct sum of two closed subspaces (the range and kernel of a
convenient iterate of T ) by the following result.

Theorem 2.1 (see [TL, IV, 5.10 and V, 6.2–6.4]). Let X be a Banach
space and T ∈ L(X).

(2.1.1) If α(T ) and δ(T ) are finite, then α(T ) = δ(T ), R(T p)—where
p denotes the common value of α(T ) and δ(T )—is closed , and
X = R(T p)⊕N (T p).

(2.1.2) If X = R(T q)⊕N (T q) for some q ∈ Z+, then α(T ) = δ(T ) ≤ q.

We recall (see [TL, V.10]) that if T is a bounded linear operator on a
complex Banach space X and λ0 ∈ P(T ), then the residue of R(·, T ) at λ0 is
a projection P of X; furthermore, P 6= 0L(X) if and only if λ0 ∈ σ(T ), that



260 L. Burlando

is, if and only if λ0 is a pole of R(·, T ). P is called the spectral projection of
T associated with λ0.

The following classical result provides a characterization of membership
of a complex number λ0 in P(T ), as well as a characterization of the spectral
projection of T associated with λ0 in this case.

Theorem 2.2 (see [TL, V, 10.1 and 10.2]). Let X be a complex Ba-
nach space, T ∈ L(X) and λ0 ∈ C. Then λ0 ∈ P(T ) if and only if both
α(λ0IX − T ) and δ(λ0IX − T ) are finite. Moreover , in this case, if we set
p = min{k ∈ N : λ0 ∈ Pk(T )}, we have α(λ0IX − T ) = δ(λ0IX − T ) = p
(from which, by Theorem 2.1, we conclude that R((λ0IX − T )p) is closed and
X = N ((λ0IX − T )p) ⊕ R((λ0IX − T )p)) and the spectral projection of T
associated with λ0 coincides with the projection of X onto N ((λ0IX − T )p)
along R((λ0IX − T )p).

In [LM], K. B. Laursen and M. Mbekhta introduced the following con-
dition (E-k) (where k ∈ Z+) for a bounded linear operator T on a Banach
space X (see [LM, Definition 2]): T is said to satisfy condition (E-k) if

∥∥∥∥
1
n

(IX − T )k
n−1∑

j=0

T j
∥∥∥∥
L(X)

→ 0 as n→∞.

Clearly, since

(2.3) (IX − T )
n−1∑

j=0

T j = IX − Tn for all n ∈ Z+,

it follows that T satisfies (E-k) if and only if ‖n−1(IX − T )k−1
Tn‖L(X) → 0

as n → ∞ (see also [LM, Lemma 3] and [Bu1, comments on p. 79]). We
also recall that if T satisfies (E-k), then α(IX − T ) ≤ k (see [LM, Proposi-
tion 4]). Condition (E-k) is involved in the characterizations of convergence
of the sequence n−1∑n−1

j=0 T
j in L(X) which are given in [LM, Theorem 9].

Furthermore, in [LM, Theorem 6], several characterizations of membership
of 1 in Pk(T ) are provided for T satisfying (E-k).

Condition (E-k) is generalized in [Bu1] as follows (see [Bu1, 2.1]). Let
X be a Banach space, T ∈ L(X), and k, p ∈ Z+. Then T is said to satisfy
condition E(k, p) if

(2.4)
∥∥∥∥

1
np

(IX − T )k
n−1∑

j=0

T j
∥∥∥∥
L(X)

→ 0 as n→∞.

If norm convergence is replaced by strong convergence in (2.4), then T is
said to satisfy condition S(k, p). Clearly, E(k, p) implies S(k, p). Also, E(k, p)
(respectively, S(k, p)) implies E(k + 1, p) (respectively, S(k + 1, p)). From
(2.3) (see also [Bu1, 2.2]) it follows that
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(2.5) T satisfies condition E(k, p) (respectively , S(k, p)) if and only if
∥∥∥∥

1
np

(IX − T )k−1
Tn
∥∥∥∥
L(X)

→ 0 as n→∞ (respectively ,

∥∥∥∥
1
np

(IX − T )k−1
Tnx

∥∥∥∥
X

→ 0 as n→∞ for all x ∈ X).

Notice that E(k, 1) coincides with (E-k) for every k ∈ Z+. Also, for each
p ∈ Z+, from (2.5) it follows that T satisfies E(1, p) (respectively, S(1, p)) if
and only if n−p‖Tn‖L(X) → 0 as n→∞ (respectively, n−p‖Tnx‖X → 0 as
n→∞ for all x ∈ X).

The following result establishes a link between conditions E(k, p) (respec-
tively, S(k, p)) and E(k−j, p+j) (respectively, S(k−j, p+j)), j = 0, . . . , k−1.

Theorem 2.6 ([Bu1, 2.4]). Let X be a Banach space, T ∈ L(X) and
k, p ∈ Z+. If T satisfies condition E(k, p) (respectively , S(k, p)), then T
satisfies E(k− j, p+ j) (respectively , S(k− j, p+ j)) for all j = 0, . . . , k− 1.
This, for j = k − 1, gives n−p−k+1 ‖Tn‖L(X) → 0 as n → ∞ (respectively ,
n−p−k+1‖Tnx‖X → 0 as n→∞ for all x ∈ X).

No converse of Theorem 2.6 holds. Indeed, a convenient example ([Bu1,
2.6]) shows that, for each integer p ≥ 2, there exists an operator Tp which
satisfies E(1, p) and fails to satisfy S(2, p−1) (this, by Theorem 2.6, implies
that S(k + 1, p − k)—and, a fortiori, E(k + 1, p − k)—is satisfied by Tp for
no k = 1, . . . , p− 1; in particular, Tp does not satisfy (E-p), which therefore
turns out to be more restrictive than E(1, p)).

Now let X be a Banach space and T ∈ L(X). It is known that strong con-
vergence to zero of n−qTn as n→∞ (where q ∈ Z+) implies α(IX − T ) ≤ q
(see [W, Satz 2]). Hence from Theorem 2.6 we get the following result (see
also [Bu1, 2.5]).

(2.7) If T satisfies condition S(k, p) for some k, p ∈ Z+, then α(IX−T ) ≤
p+ k − 1.

We call a bounded linear operator A on a Banach space X Kato de-
composable if there exist two closed A-invariant subspaces M and N of X
such that X = N ⊕M , the operator N 3 x 7→ Ax ∈ N is nilpotent, A(M)
is closed in X and A(M) ⊃ N (An) ∩M for all n ∈ N. As noted in [MO,
Example (1) on p. 245], from the Kato decomposition theorem ([K, Theo-
rem 4]) it follows that every bounded linear semi-Fredholm operator on X
is Kato decomposable.

We recall that the Kato decomposable operators have been introduced
in [MO, Definition 3.1], where they are called quasi-Fredholm. Besides, the
quasi-Fredholm operators had been previously introduced by J. P. Labrousse
in the Hilbert space setting ([Lab, Definition 3.1.2]). For a bounded linear
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operator on a Hilbert space, the definition given by J. P. Labrousse is equiv-
alent to Definition 3.1 of [MO] (see [Lab, Definition 3.2.1, Theorem 3.2.1 (1)
and Theorem 3.2.2]; the Hilbert space is understood to be complex in [Lab],
but the proofs of [Lab, Theorems 3.2.1 and 3.2.2] can be repeated without
changes in the real Hilbert space case). We also recall that another definition
of quasi-Fredholm operator on a Banach space, different from [MO, Defini-
tion 3.1], is given in [MM] and [KMMP]. In the special case of a bounded
linear operator on a Hilbert space, this second definition is also equivalent
to Definition 3.1.2 of [Lab]. Consequently, it is equivalent to Definition 3.1
of [MO] in the Hilbert space setting.

In [Bu1] we have followed the terminology of [MO, Definition 3.1], using
the term “quasi-Fredholm” for Kato decomposable operators. Indeed, the
authors of [LM], in a result that is improved by [Bu1, 3.4], had done the
same (see [LM, Definition 5 and Theorem 6]). Nevertheless, we prefer here to
adopt the term “Kato decomposable”, in order to avoid misunderstanding,
as it is the definition of quasi-Fredholm operator provided in [MM] and
[KMMP], rather than the one given in [MO], that seems to be mostly used
in recent literature ([P], [Be]).

We are now ready to recall the main result of [Bu1].

Theorem 2.8 ([Bu1, 3.4]). Let p ∈ Z+, X be a complex Banach space
and T ∈ L(X). Then the following conditions are equivalent :

(2.8.1) n−p
∑n−1
k=0 T

k converges in L(X) and R((IX−T )p−1)+N (IX−T )
is closed ;

(2.8.2) n−p‖Tn‖L(X) → 0 as n→∞ and 1 ∈ P(T );

(2.8.3) T satisfies condition E(k, p) for some k ∈ Z+ and 1 ∈ Pp(T );

(1) We remark that the condition “A(N) ⊂ N” in [Lab, Theorem 3.2.1, b)] is not a
consequence of the two conditions “A(D(A) ∩M) ⊂ M” and “N ⊂ N (Ad)”, even for a
quasi-Fredholm operator of degree d and a decomposition of the Hilbert space satisfying
also a) and c) of [Lab, Theorem 3.2.1]. Indeed, if A is the bounded linear operator on
the Hilbert space K3 × `2, defined by A((λ0, λ1, λ2), x) = ((0, 0, λ1), Sx + λ0e0) for each
((λ0, λ1, λ2), x) ∈ K3×`2 (where S and e0 denote respectively the backward shift operator
on `2 and the vector of the canonical basis of `2 which spans N (S)), it is not difficult
to verify that A is a quasi-Fredholm operator of degree 2 according to Definition 3.1.2 of
[Lab]. Moreover, if we set N = K3 × {0`2} and M = {(0, 0, 0)} × `2, it follows that M
and N are closed subspaces of K3 × `2, K3 × `2 = M ⊕N , N ⊂ N (A2) and A(M) = M
(in particular, M is A-invariant, A(M) is closed and contains N (An) ∩M for all n ∈ N).
Nevertheless,N is not A-invariant, as for instance ((1, 0, 0), 0`2 ) ∈ N and A((1, 0, 0), 0`2) =
((0, 0, 0), e0) 6∈ N . Therefore the condition “A(N) ⊂ N” should be explicitly required in
b) of [Lab, Definition 3.2.1], independently of “A(D(A) ∩M) ⊂ M” and “N ⊂ N (Ad)”.
We also point out that the subspace N constructed in the proof of [Lab, Theorem 3.2.1]
is actually A-invariant.
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(2.8.4) T satisfies condition E(k, p) for some k ∈ Z+ and

X = N ((IX − T )p)⊕R((IX − T )p);

(2.8.5) n−p‖Tn‖L(X) → 0 as n→∞ and δ(IX − T ) <∞;
(2.8.6) T satisfies condition E(k, p) for some k ∈ Z+ and δ(IX−T ) ≤ p;
(2.8.7) T satisfies condition E(k, p) for some k ∈ Z+, δ(IX−T ) <∞ and

N((IX − T )p) has an algebraic complement which is invariant
under T ;

(2.8.8) n−p‖Tn‖L(X) → 0 as n→∞ and IX−T is a Kato decomposable
operator ;

(2.8.9) n−p‖Tn‖L(X) → 0 as n→∞ and R((IX − T )k)+N ((IX − T )j)
is closed for some (k, j) ∈ N× N satisfying k ≥ p;

(2.8.10) n−p‖Tn‖L(X) → 0 as n→∞ and R((IX − T )k)+N ((IX − T )j)
is closed for every (k, j) ∈ N× N satisfying k + j ≥ p.

Moreover , if the equivalent conditions (2.8.1)–(2.8.10) are satisfied , then
∥∥∥∥

1
np

n−1∑

k=0

T k − 1
p!

(T − IX)p−1
P

∥∥∥∥
L(X)

→ 0 as n→∞

(where P denotes the projection of X onto N ((IX−T )p) along R((IX−T )p)).

Notice that, for p = 1, the requirement of (2.8.1) that R((IX − T )p−1)+
N (IX − T ) be closed is automatically satisfied and so (2.8.1) reduces to
convergence of n−1∑n−1

k=0 T
k in L(X), that is, to uniform ergodicity of T .

We remark that Theorem 2.8, besides generalizing the uniform ergodic
theorem, generalizes also Theorem 6 of [LM], as condition (E-p) implies con-
vergence of n−p‖Tn‖L(X) to zero by Theorem 2.6 (see also [Bu1, comments
following 3.4]).

We recall that if T is a bounded linear operator on a Banach space X,
then

R(T k−j) +N (Th+j) = (T j)−1(R(T k) +N (Th))

for all (k, h) ∈ N× N and j = 0, . . . , k.

Hence ([Bu1, 3.1], [MM, Lemma 10])

(2.9) if R(Tn)+N (Tm) is closed for some (n,m) ∈ N×N, then R(Tn−j)
+N (Tm+j) is closed for all j = 0, . . . , n.

Another result that relates closedness of different sums of ranges and
kernels of iterates of a bounded linear operator is the following theorem by
S. Grabiner and J. Zemánek, which we will use in the next section to obtain
a new condition, equivalent to (2.8.1)–(2.8.10).
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Theorem 2.10 ([GZ, 2.1]). Let X be a Banach space and T ∈ L(X). If
α(T ) ∈ N and R(T k) +N (T j) is closed for some (k, j) ∈ Z+×N satisfying
k+j > α(T ), then R(Tn)+N (Tm) is closed for all (n,m) ∈ N×N satisfying
n+m ≥ α(T ).

We remark that in the special case of a Hilbert space operator, Theorem
2.10 can also be derived from [Lab, Proposition 3.3.1]—which is a result in
the Hilbert space setting—together with (2.9) and [TL, IV, 5.10 and V, 6.3].

3. Results and examples. We begin by remarking that the conditions
of Theorem 2.8—except (2.8.2) and (2.8.3)—can also be considered for an
operator on a real Banach space. Indeed, these conditions are equivalent in
the real case as well as in the complex one, as we are going to observe in
Theorem 3.1 below.

For every real Banach space X, let X̃ denote the complexification of X,
that is, the complex vector space of all x + iy, x, y ∈ X, where the vector
space operations are induced in the canonical way by the corresponding
operations on X, endowed with the complete norm defined by

‖x+ iy‖
X̃

= sup{‖(cos θ)x+ (sin θ)y‖X : θ ∈ [0, 2π)}
for each (x, y) ∈ X ×X.

Also, for every T ∈ L(X), let T̃ denote the complex extension of T , that is,
the bounded linear operator on X̃ defined by

T̃ (x+ iy) = Tx+ iTy for each (x, y) ∈ X ×X
(see [S, p. 261] for these definitions). It is easily seen that ‖T̃‖

L(X̃) =

‖T‖L(X), N (T̃ ) = N (T ) + iN (T ), R(T̃ ) = R(T ) + iR(T ), (T̃ )n = (Tn)∼

for every n ∈ N and ĨX = I
X̃

.

Theorem 3.1. Let p ∈ Z+, X be a real Banach space and T ∈ L(X).
Then conditions (2.8.1) and (2.8.4)–(2.8.10) are equivalent for T . Further-
more, T satisfies conditions (2.8.1) and (2.8.4)–(2.8.10) if and only if T̃ sat-
isfies (2.8.1)–(2.8.10). Finally , if T satisfies conditions (2.8.1) and (2.8.4)–
(2.8.10), then

∥∥∥∥
1
np

n−1∑

k=0

T k − 1
p!

(T − IX)p−1P

∥∥∥∥
L(X)

→ 0 as n→∞

(where P denotes the projection of X onto N ((IX−T )p) along R((IX−T )p)).

Proof. It is not difficult to verify that each of conditions (2.8.1), (2.8.4),
(2.8.5), (2.8.6), (2.8.9) and (2.8.10) is satisfied by T if and only if it is satis-
fied by T̃ . From Theorem 2.8 it follows that, for any h, k ∈ {1, 4, 5, 6, 9, 10},
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T satisfies (2.8.h) if and only if it satisfies (2.8.k). Furthermore, if T sat-
isfies the equivalent conditions (2.8.1), (2.8.4)–(2.8.6) and (2.8.9)–(2.8.10),
it clearly also fulfils (2.8.7) and (2.8.8). Conversely, if T satisfies one of
conditions (2.8.7)–(2.8.8), it is easily seen that also T̃ does. Hence, by The-
orem 2.8, T̃ satisfies the equivalent conditions (2.8.1), (2.8.4)–(2.8.6) and
(2.8.9)–(2.8.10). Then, as remarked above, also T does.

We have thus proved that each of conditions (2.8.1) and (2.8.4)–(2.8.10)
is satisfied by T if and only if also the remaining ones are, and that T
satisfies the equivalent conditions (2.8.1) and (2.8.4)–(2.8.10) if and only if
T̃ satisfies the equivalent conditions (2.8.1)–(2.8.10).

Now suppose that the equivalent conditions (2.8.1) and (2.8.4)–(2.8.10)
are satisfied by T . Then the equivalent conditions (2.8.1)–(2.8.10) are sat-
isfied by T̃ . In particular, we have X = N ((IX − T )p)⊕R((IX − T )p) and
X̃ = N ((I

X̃
− T̃ )p) ⊕ R((I

X̃
− T̃ )p). Notice also that the projection of X̃

onto N ((I
X̃
− T̃ )p) along R((I

X̃
− T̃ )p) coincides with P̃ . Hence the desired

result follows from Theorem 2.8.

Definition 3.2. Let p ∈ Z+. We call a bounded linear operator T on
a Banach space X uniformly p-ergodic if n−p

∑n−1
k=0 T

k converges in L(X)
and R((IX − T )p−1) +N (IX − T ) is closed.

Notice that T is uniformly 1-ergodic if and only if it is uniformly ergodic.
Clearly, if the Banach space X is complex (respectively, real), then T

is uniformly p-ergodic if and only if it satisfies the equivalent conditions
(2.8.1)–(2.8.10) (respectively, (2.8.1) and (2.8.4)–(2.8.10)). Moreover, from
Theorem 3.1 it follows that a bounded linear operator T on a real Banach
space is uniformly p-ergodic if and only if T̃ is uniformly p-ergodic.

Proposition 3.3. Let X be a Banach space and T ∈ L(X). If T is
uniformly p0-ergodic for some p0 ∈ Z+, then T is uniformly p-ergodic for
all p ∈ Z+ satisfying p ≥ p0.

Proof. It suffices for instance to remark that since condition (2.8.5) is
satisfied for p = p0, it is also satisfied for all positive integers p satisfying
p ≥ p0.

Now we are going to derive a further characterization of uniform p-
ergodicity from Theorem 2.10.

Theorem 3.4. Let p ∈ Z+, X be a Banach space and T ∈ L(X). Then
T is uniformly p-ergodic if and only if it satisfies the following condition:

(3.4.1) n−p‖Tn‖L(X) → 0 as n→∞ and R((IX − T )k) +N ((IX − T )j)
is closed for some (k, j) ∈ Z+ × N satisfying k + j > p.
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Proof. If T is uniformly p-ergodic, it satisfies condition (2.8.10), and
consequently also (3.4.1).

Conversely, assume that (3.4.1) is satisfied. Since n−p‖Tn‖L(X) → 0 as
n→∞, from (2.7) it follows that α(IX−T ) ≤ p. By applying Theorem 2.10,
we conclude thatR((IX − T )k)+N ((IX − T )j) is closed for all (k, j) ∈ N×N
satisfying k + j ≥ p. Hence T satisfies (2.8.10) and the proof is finished.

We point out that, since norm convergence of n−pTn to zero cannot be
replaced by strong convergence to zero in condition (2.8.10), as the example
constructed in [Bu1, 3.8] shows (indeed, as remarked in [Bu1], [Bu1, 3.8]
also shows that the same holds for each of conditions (2.8.2), (2.8.5), (2.8.8)
and (2.8.9), and that condition E(k, p) can be replaced by S(1, p) in none of
conditions (2.8.3), (2.8.4), (2.8.6) and (2.8.7)), it follows that norm conver-
gence of n−pTn to zero cannot be replaced by strong convergence to zero in
condition (3.4.1), either.

Now let X be a complex Banach space, T ∈ L(X) and p ∈ Z+. It is well
known that if σ(T ) = {1}, we have (IX − T )p = 0L(X) if and only if 1 ∈
Pp(T ) (see Theorem 2.2 and [TL, V, 10.6]). Also, it follows from a theorem
by E. Hille (see for instance [HP, Theorem 4.10.1]) that (IX − T )p = 0L(X)
implies n−p‖Tn‖L(X) → 0 as n→∞ (indeed, (IX − T )p = 0L(X) implies

1
np−1 T

n → 1
(p− 1)!

(T − IX)p−1

in L(X) as n→∞; see [W, Hilfssatz 3]). Hence from Theorems 2.8 and 3.4
we obtain the following result.

Corollary 3.5. Let p ∈ Z+, X be a complex Banach space and T ∈
L(X). Then (IX − T )p = 0L(X) if and only if σ(T ) = {1}, n−p‖Tn‖L(X)→ 0

as n → ∞ and R((IX − T )k) + N ((IX − T )j) is closed for some (k, j) ∈
Z+ × N satisfying either k = p and j = 0, or k + j > p.

We remark that Corollary 3.5 generalizes Corollary 2 of [MZ], which
states that T = IX if and only if σ(T ) = {1}, n−1‖Tn‖L(X) → 0 as n→∞
and R((IX − T )k) is closed for some k ∈ Z+. Moreover, since convergence
of n−p‖Tn‖L(X) to zero is less restrictive than condition (E-p) (see Theorem
2.6 and comments thereafter), it follows that Corollary 3.5 is also an im-
provement of Corollary 7 of [LM], in which (IX − T )p is proved to be zero
if and only if σ(T ) = {1}, T satisfies condition (E-p) and R((IX − T )k) is
closed for some k ≥ p.

We observe that for k + j > p, convergence of n−p‖Tn‖L(X) to zero
can be replaced in Corollary 3.5 by the weaker condition α(IX − T ) ≤ p,
although in Theorem 3.4 it cannot even be replaced by strong convergence
of n−pTn to zero (which is a stronger condition than α(IX − T ) ≤ p, by
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(2.7)). Indeed, if α(IX −T ) ≤ p and R((IX − T )k)+N ((IX − T )j) is closed
for some (k, j) ∈ Z+ × N satisfying k + j > p, from Theorem 2.10 we
conclude that R((IX − T )p+1) is closed. Since 1 is a boundary point of σ(T )
(as σ(T ) = {1}), from [Lay, 2.7] we obtain 1 ∈ Pp(T ) (see also [GZ, 2.3]).
This, together with σ(T ) = {1}, yields (IX − T )p = 0L(X), as recalled in the
comments preceding Corollary 3.5. On the contrary, for k = p and j = 0, the
requirement in Corollary 3.5 that n−p‖Tn‖L(X) → 0 as n → ∞ cannot be
replaced by α(IX − T ) ≤ p: indeed, in [Bu1, 3.5] we constructed a bounded
linear operator T on `2 × `2 such that σ(T ) = {1}, α(I`2×`2 − T ) = 1,
R(I`2×`2 − T ) is closed and nevertheless 1 6∈ P(T ). Actually, for k = p
and j = 0, norm convergence of n−pTn to zero cannot even be replaced by
strong convergence to zero, as proved by the example with spectrum {1}
constructed in [GZ, 1.3].

The following example shows that when p ≥ 2 and 1 ≤ k < p, the
condition “k + j > p” cannot be replaced by “k + j ≥ p” in (3.4.1). Indeed,
we will construct a bounded linear operator T on a Hilbert space X such
that n−2‖Tn‖L(X) converges to zero as n→∞, R(IX − T ) +N (IX − T ) is
closed and nevertheless T is not uniformly 2-ergodic (actually, it is uniformly
p-ergodic for no p ∈ Z+).

We will denote the scalar product in any Hilbert space by 〈·, ·〉. Also, for
every subset S of a linear space V , let Span(V ) denote the linear subspace
of V spanned by S.

Example 3.6. Let X be an infinite-dimensional separable Hilbert space,
{en}n∈N be an orthonormal basis of X and (θn)n∈N be a sequence in (0, π/2]
such that θn → 0 as n→∞. For every n ∈ N, let fn ∈ X be defined by

fn = −(cos θn)e3n+1 + (sin θn)e3n+2.

Notice that ‖fn‖X = 1. We also remark that the set {e3n, e3n+1, fn} is
linearly independent for every n ∈ N: indeed, if λ0, λ1, λ2 ∈ K satisfy

0X = λ0e3n + λ1e3n+1 + λ2fn

= λ0e3n + (λ1 − λ2 cos θn)e3n+1 + λ2(sin θn)e3n+2,

then since the set {e3n, e3n+1, e3n+2} is linearly independent it follows that




λ0 = 0,

λ1 = λ2 cos θn,

λ2 sin θn = 0,

which, since θn ∈ (0, π/2] and consequently sin θn > 0, gives λ0 = λ1 =
λ2 = 0.

For each n ∈ N, we set Xn = Span({e3n, e3n+1, fn}). Since Xn is three-
dimensional and is contained in Span({e3n, e3n+1, e3n+2}), it follows that
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Xn = Span({e3n, e3n+1, e3n+2}). For every n ∈ N, let Tn ∈ L(Xn) be defined
by

Tne3n = e3n, Tne3n+1 = −
√

1− cos θne3n + e3n+1,

Tnfn = (1−
√

1− cos θn)fn.

We are going to provide an upper bound for ‖Tn‖L(Xn).
For every (x, y, z) ∈ K3, we have

(3.6.1) ‖xe3n + ye3n+1 + zfn‖2X
= ‖x e3n + (y − z cos θn)e3n+1 + z(sin θn)e3n+2‖2X
= |x|2 + |y − z cos θn|2 + |z|2 sin2 θn,

from which we obtain

(3.6.2) ‖xe3n + ye3n+1 + zfn‖2X
≥ |x|2 + (|y| − |z| cos θn)2 + |z|2 sin2 θn

= |x|2 + |y|2 + |z|2 − 2|y| |z| cos θn

≥ |x|2 + (1− cos θn)(|y|2 + |z|2)

(as 2|y| |z| ≤ |y|2 + |z|2). We also remark that

(3.6.3) Tn(xe3n + ye3n+1 + zfn)

= xe3n + y(e3n+1 −
√

1− cos θn e3n) + z(1−
√

1− cos θn)fn

= xe3n + ye3n+1 + zfn −
√

1− cos θn (ye3n + zfn)

= (x− y
√

1− cos θn)e3n + ye3n+1 + z(1−
√

1− cos θn)fn.

Since the set {e3n, fn} is orthonormal, (3.6.2) and (3.6.3) yield

‖Tn(xe3n + ye3n+1 + zfn)‖X
= ‖xe3n + ye3n+1 + zfn −

√
1− cos θn (ye3n + zfn)‖X

≤ ‖xe3n + ye3n+1 + zfn‖X +
√

1− cos θn ‖ye3n + zfn‖X

= ‖xe3n + ye3n+1 + zfn‖X +
√

(1− cos θn)(|y|2 + |z|2)

≤ 2‖xe3n + ye3n+1 + zfn‖X .
We conclude that ‖Tn‖L(Xn) ≤ 2.

For each n ∈ N, let Pn denote the orthogonal projection of X onto Xn.
Since (Xn)n∈N is a sequence of pairwise orthogonal closed subspaces of X
and

Span
( ⋃

n∈N
Xn

)
= Span({en}n∈N),



Generalizations of Cesàro means 269

which is dense in X, we conclude (by applying, for instance, [Bu2, 5.3]) that
for every x ∈ X we have

(3.6.4) x =
∞∑

n=0

Pnx, ‖x‖2X =
∞∑

n=0

‖Pnx‖2X ,

which gives
∞∑

n=0

‖TnPnx‖2X ≤
∞∑

n=0

‖Tn‖2L(X)‖Pnx‖
2
X ≤ 4

∞∑

n=0

‖Pnx‖2X = 4‖x‖2X .

Since (TnPnx)n∈N is an orthogonal sequence in X, we conclude that the
series

∑∞
n=0 TnPnx converges in X and ‖∑∞n=0 TnPnx‖X ≤ 2‖x‖X .

Let us consider the bounded linear operator

T : X 3 x 7→
∞∑

n=0

TnPnx ∈ X.

Notice that ‖T‖L(X) ≤ 2. Moreover,

Tx = Tnx for every x ∈ Xn and for every n ∈ N.
We begin by proving that T is uniformly p-ergodic for no p ∈ Z+. Sup-

pose first K = C. We remark that, for each n ∈ N,

Te3n = Tne3n = e3n, Tfn = Tnfn = (1−
√

1− cos θn)fn.

Hence 1 ∈ σ(T ) and 1 −
√

1− cos θn ∈ σ(T ) for every n ∈ N. Since θn ∈
(0, π/2], it follows that cos θn ∈ [0, 1) and consequently 1 −

√
1− cos θn ∈

[0, 1). Furthermore, since θn → 0 as n→∞, it follows that 1−
√

1− cos θn
→ 1 as n → ∞. We conclude that 1 is not an isolated point of σ(T ), and
consequently is not a pole of the resolvent of T . Hence 1 6∈ P(T ). For K = R,
the same argument yields 1 6∈ P(T̃ ). Now from Theorem 2.8 for K = C, and
from Theorem 3.1 for K = R, it follows that T is uniformly p-ergodic for no
p ∈ Z+. In particular, T is not uniformly 2-ergodic.

Now we prove that R(IX − T ) +N (IX − T ) is closed. Since it contains
N (IX−T ), which is closed, it suffices to prove that (R(IX−T )+N (IX−T ))∩
(N (IX − T ))⊥ is closed. Let P denote the orthogonal projection of X onto
(N (IX − T ))⊥. We remark that since R(IX−T )+N (IX−T ) ⊃ N (IX−T ),
we have

(3.6.5) (R(IX − T ) +N (IX − T )) ∩ (N (IX − T ))⊥

= P (R(IX − T ) +N (IX − T )) = R(P (IX − T )).

Notice also that

(3.6.6) N (P (IX − T )) = {x ∈ X : (IX − T )x ∈ N (P )} = N ((IX − T )2).
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Since the subspaces Xn, n ∈ N, are pairwise orthogonal, from (3.6.4) it
follows that for each x ∈ X we have

x ∈ N (IX − T ) ⇔
∞∑

n=0

TnPnx =
∞∑

n=0

Pnx(3.6.7)

⇔ TnPnx = Pnx for every n ∈ N
⇔ Pnx ∈ N (IXn − Tn) for every n ∈ N.

Consequently, for each x ∈ X,

(3.6.8) x ∈ N ((IX − T )2) ⇔ (IX − T )x ∈ N (IX − T )

⇔ N (IXn − Tn) 3 Pn(IX − T )x = (IXn − Tn)Pnx for all n ∈ N
⇔ Pnx ∈ N ((IXn − Tn)2) for all n ∈ N.

We prove that

(3.6.9) (N (IX − T ))⊥ = {x ∈ X : Pnx ∈ (N (IXn − Tn))⊥ for all n ∈ N}.
We first observe that, by (3.6.7), we haveN (IXn−Tn) ⊂ N (IX−T ) for every
n ∈ N. Consequently, (N (IX − T ))⊥ ⊂ (N (IXn − Tn))⊥ for each n ∈ N,
which gives 0 = 〈x, y〉 =

∑∞
k=0〈Pkx, y〉 = 〈Pnx, y〉 for all x ∈ (N (IX − T ))⊥

and y ∈ N (IXn − Tn). Hence

(N (IX − T ))⊥ ⊂ {x ∈ X : Pnx ∈ (N (IXn − Tn))⊥ for all n ∈ N}.
On the other hand, for each x ∈ X such that Pnx ∈ (N (IXn − Tn))⊥ for all
n ∈ N, we have

〈x, y〉 =
〈 ∞∑

n=0

Pnx,
∞∑

n=0

Pny
〉

=
∞∑

n=0

〈Pnx, Pny〉 = 0

for every y ∈ N (IX − T )

(as Pny ∈ N (IXn − Tn) for all n ∈ N by (3.6.7)). This proves the opposite
inclusion and gives (3.6.9).

For each n ∈ N, let Qn denote the orthogonal projection of X onto
Xn ∩ (N (IXn − Tn))⊥. Since R(Qn) ⊂ Xn = R(Pn) for every n ∈ N, from
(3.6.4) it follows that

∞∑

n=0

‖Qnx‖2X ≤
∞∑

n=0

‖Pnx‖2X = ‖x‖2X for every x ∈ X.

Since the ranges of the projections Qn, n ∈ N, are pairwise orthogonal, we
conclude that the series

∑∞
n=0Qnx converges in X for every x ∈ X. We

prove that

(3.6.10) Px =
∞∑

n=0

Qnx for every x ∈ X.
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Let x ∈ X. We remark that for each n ∈ N we have

Pn

∞∑

k=0

Qkx =
∞∑

k=0

PnQkx = Qnx ∈ (N (IXn − Tn))⊥

and

Pn

(
x−

∞∑

k=0

Qkx
)

= Pnx−Qnx
= (IX −Qn)Pnx ∈ Xn ∩ (Xn ∩ (N (IXn − Tn))⊥)⊥

= Xn ∩ (X⊥n ⊕N (IXn − Tn)) = N (IXn − Tn).

So
∑∞
n=0 Qnx ∈ (N (IX − T ))⊥ by (3.6.9) and x−∑∞n=0 Qnx ∈ N (IX − T )

by (3.6.7). We conclude that
∑∞
n=0 Qnx = Px, which establishes (3.6.10).

Since (IXn − Tn)e3n = 0X and (IXn − Tn)e3n+1 =
√

1− cos θn e3n ∈
N (IXn−Tn)\{0X} and fn ∈ N ((1−

√
1− cos θn)IXn−Tn), which has zero

intersection with N ((IXn − Tn)2) as 1−
√

1− cos θn 6= 1, it follows that

(3.6.11)
N (IXn − Tn) = Span({e3n}),

N ((IXn − Tn)2) = Span({e3n, e3n+1}) for all n ∈ N.
Notice also that

Xn ∩ (N (IXn − Tn))⊥ = Span({e3n+1, e3n+2})(3.6.12)

= Span({e3n+1, fn}) for all n ∈ N.
Let x ∈ X. Then there exists a unique triple ((xn)n∈N, (yn)n∈N, (zn)n∈N) of
scalar sequences such that Pnx = xne3n + yne3n+1 + znfn for every n ∈ N.
Notice that, by (3.6.1) and (3.6.4), we have

‖x‖2X =
∞∑

n=0

‖Pnx‖2X =
∞∑

n=0

‖xne3n + yne3n+1 + znfn‖2X(3.6.13)

=
∞∑

n=0

(|xn|2 + |yn − zn cos θn|2 + |zn|2 sin2 θn).

Hence each of the scalar sequences (xn)n∈N, (yn − zn cos θn)n∈N and
(zn sin θn)n∈N is square summable.

We remark that

P (IX − T )x =
∞∑

n=0

Qn(IX − T )x =
∞∑

n=0

Qn

∞∑

k=0

(IXk − Tk)Pkx

=
∞∑

n=0

Qn(IXn − Tn)Pnx
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=
∞∑

n=0

Qn(IXn − Tn)(xne3n + yne3n+1 + znfn)

=
∞∑

n=0

√
1− cos θnQn(yne3n + zn fn) =

∞∑

n=0

zn
√

1− cos θn fn

by (3.6.4) and (3.6.10)–(3.6.12). Since (fn)n∈N is an orthonormal sequence,
it follows that

(3.6.14) ‖P (IX − T )x‖2X =
∞∑

n=0

|zn|2(1− cos θn).

Since (xne3n + (yn − zn cos θn)e3n+1)n∈N is an orthogonal sequence in X
and

∞∑

n=0

‖xne3n + (yn − zn cos θn)e3n+1‖2X

=
∞∑

n=0

(|xn|2 + |yn − zn cos θn|2) ≤ ‖x‖2X

by (3.6.13), it follows that the series
∑∞
n=0(xne3n + (yn − zn cos θn)e3n+1)

converges in X. Furthermore, for each n ∈ N, we have

Pn

∞∑

k=0

(xke3k + (yk − zk cos θk)e3k+1)

= xne3n + (yn − zn cos θn)e3n+1 ∈ N ((IXn − Tn)2)

by (3.6.11). Consequently,
∞∑

n=0

(xne3n + (yn − zn cos θn)e3n+1) ∈ N ((IX − T )2)

by (3.6.8). Hence

dist(x,N (P (IX − T )))

= dist(x,N ((IX − T )2)) ≤
∥∥∥x−

∞∑

n=0

(xne3n + (yn − zn cos θn)e3n+1)
∥∥∥
X

=
∥∥∥
∞∑

n=0

(Pnx− (xne3n + (yn − zn cos θn)e3n+1))
∥∥∥
X

=
∥∥∥
∞∑

n=0

(xne3n + yne3n+1 + znfn − (xne3n + (yn − zn cos θn)e3n+1))
∥∥∥
X

=
∥∥∥
∞∑

n=0

zn(fn + (cos θn)e3n+1)
∥∥∥
X

=
∥∥∥
∞∑

n=0

zn(sin θn)e3n+2

∥∥∥
X
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=

√√√√
∞∑

n=0

|zn|2 sin2 θn =

√√√√
∞∑

n=0

|zn|2(1− cos θn)(1 + cos θn)

≤
√

2

√√√√
∞∑

n=0

|zn|2(1− cos θn) =
√

2 ‖P (IX − T )x‖X

by (3.6.4), (3.6.6) and (3.6.14). Now [TL, IV, 5.9] implies that R(P (IX−T ))
is closed, and so is (R(IX−T )+N (IX−T ))∩(N (IX − T ))⊥, which coincides
wit R(P (IX − T )) by (3.6.5). Hence R(IX − T ) +N (IX − T ) is closed.

Finally, we prove that n−2‖Tn‖L(X) → 0 as n → ∞. Proceeding by
induction, it is easy to check that

(3.6.15) Tnx =
∞∑

k=0

Tnk Pkx for every x ∈ X and n ∈ N.

Furthermore, by induction on n and using (3.6.3), it is not difficult to verify
that

(3.6.16) Tnk (xe3k + ye3k+1 + zfk)

= (x− ny
√

1− cos θk)e3k + ye3k+1 + z(1−
√

1− cos θk)nfk
for all n, k ∈ N and (x, y, z) ∈ K3.

Now let n ∈ N. For each x in X, let (xk)k∈N, (yk)k∈N, (zk)k∈N be scalar
sequences such that Pkx = xke3k + yke3k+1 + zkfk for every k ∈ N. Then,
from (3.6.15) and (3.6.16), we obtain

(3.6.17) (Tn − Tn+1)x =
∞∑

k=0

Tnk Pkx−
∞∑

k=0

Tn+1
k Pkx

=
∞∑

k=0

Tnk (xke3k + yke3k+1 + zkfk)−
∞∑

k=0

Tn+1
k (xke3k + yke3k+1 + zkfk)

=
∞∑

k=0

((xk − nyk
√

1− cos θk)e3k + yke3k+1 + zk(1−
√

1− cos θk)nfk)

−
∞∑

k=0

((xk − (n+ 1)yk
√

1− cos θk)e3k

+ yke3k+1 + zk(1−
√

1− cos θk)n+1fk)

=
∞∑

k=0

√
1− cos θk (yke3k + zk(1−

√
1− cos θk)nfk).
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Since (yke3k + zk(1 −
√

1− cos θk)nfk)k∈N is an orthogonal sequence in X
and {e3k, fk} is orthonormal for every k ∈ N, this gives

‖(Tn − Tn+1)x‖X

=

√√√√
∞∑

k=0

(1− cos θk)‖yke3k + zk(1−
√

1− cos θk)nfk‖2X

=

√√√√
∞∑

k=0

(1− cos θk)(|yk|2 + |zk|2(1−
√

1− cos θk)2n)

≤

√√√√
∞∑

k=0

(1− cos θk)(|yk|2 + |zk|2)

≤

√√√√
∞∑

k=0

‖xke3k + yke3k+1 + zkfk‖2X =

√√√√
∞∑

k=0

‖Pkx‖2X = ‖x‖X

by (3.6.2) and (3.6.4).
We have thus proved that ‖Tn − Tn+1‖L(X) ≤ 1 for all n ∈ N. Hence

1
n
‖Tn − Tn+1‖L(X) → 0 as n→∞.

From (2.5) we derive that T satisfies condition E(2, 1). Consequently, by
Theorem 2.6, we conclude that n−2‖Tn‖L(X) → 0 as n→∞.

Notice that from Theorems 2.8, 3.1 and 3.4 it follows that R((IX − T )2)
is not closed and R((IX − T )k) + N ((IX − T )j) is closed for no (k, j) ∈
Z+ × N satisfying k + j > 2.

Let p ∈ Z+, p ≥ 3. We remark that each uniformly p-ergodic bounded
linear operator T on a Banach space X satisfies the following condition:

(3.7) n−p
∑n−1
k=0 T

k converges in L(X) and R((IX−T )p−2)+N ((IX−T )2)
is closed.

Notice that p − 2 is a positive integer. Also, from (2.9) it follows that for
each T ∈ L(X) satisfying (3.7), R((IX − T )j) + N ((IX − T )p−j) is closed
for all j = 1, . . . , p− 2.

We are going to prove that condition (3.7) is not necessary for p-ergodi-
city.

We first need a preliminary result. We recall that if (ξn)n∈N is a sequence
in a normed space X , x ∈ X and (τn)n∈N is a strictly increasing sequence
of real numbers such that limn→∞ τn = +∞ and (ξn+1 − ξn)/(τn+1 − τn)
converges to x in X as n → ∞, then also τ−1

n ξn converges to x in X as
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n → ∞ (2). By applying this with τn =
(
n
p+1

)
(p ∈ N) and ξn =

∑n−1
k=0 xk

for a sequence (xn)n∈N in a normed space, the following consequence is
obtained.

Proposition 3.8. Let p ∈ N, X be a normed space, (xn)n∈N be a se-
quence in X and x ∈ X. Then

lim
n→∞

∥∥∥∥
1(
n
p

) xn − x
∥∥∥∥
X

= 0 ⇒ lim
n→∞

∥∥∥∥
1(
n
p+1

)
n−1∑

k=0

xk − x
∥∥∥∥
X

= 0.

Since limn→∞
(
n
k

)
/nk = 1/k! for every k ∈ N, Proposition 3.8 yields the

following result (which we will use in the next example).

Proposition 3.9. Let p ∈ N, X be a normed space, (xn)n∈N be a se-
quence in X and x ∈ X. Then

lim
n→∞

∥∥∥∥n−pxn − x
∥∥∥∥
X

= 0 ⇒ lim
n→∞

∥∥∥∥
1

np+1

n−1∑

k=0

xk −
1

p+ 1
x

∥∥∥∥
X

= 0.

We take this opportunity to remark that [Bu1, 2.4] (which is recorded
here as Theorem 2.6) can also be derived from Proposition 3.9.

The following example shows that condition (3.7) is not sufficient for
uniform p-ergodicity. Indeed, we are going to construct a bounded linear
operator (on a Hilbert space) which satisfies (3.7) for p = 3 and nevertheless
is not uniformly 3-ergodic (actually, it is uniformly p-ergodic for no p ∈ Z+).

Example 3.10. Let X be an infinite-dimensional separable Hilbert
space and T ∈ L(X) be the operator constructed in Example 3.6. We have
proved there that n−2‖Tn‖L(X) → 0 as n→∞, R(IX − T ) +N (IX − T ) is

(2) Although this result is surely known, we have not been able to find any specific
bibliographical reference for it in the normed space case (for the scalar case, see for instance
[PS, 4.1]). Anyway, it is not difficult to prove. Indeed, for each ε > 0, let νε ∈ N be such
that ‖(ξn+1 − ξn)/(τn+1 − τn) − x‖X < ε and τn > 0 for all n ∈ N satisfying n ≥ νε.
Then, for each n ∈ N satisfying n ≥ νε + 1, we have
∥∥∥∥

1
τn

ξn − x
∥∥∥∥
X

=
1
τn

∥∥∥∥ξνε +
n−1∑

k=νε

(ξk+1 − ξk)− τnx
∥∥∥∥
X

=
1
τn

∥∥∥∥ξνε − τνεx+
n−1∑

k=νε

(τk+1 − τk)
(
ξk+1 − ξk
τk+1 − τk

)
−

n−1∑

k=νε

(τk+1 − τk)x
∥∥∥∥
X

≤ 1
τn
‖ξνε‖X +

τνε
τn
‖x‖X +

1
τn

n−1∑

k=νε

(τk+1 − τk)
∥∥∥∥
ξk+1 − ξk
τk+1 − τk

− x
∥∥∥∥
X

<
1
τn
‖ξνε‖X +

τνε
τn
‖x‖X +

ε(τn − τνε)
τn

.

Hence lim supn→∞ ‖τ−1
n ξn − x‖X ≤ ε, from which the desired result follows.
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closed and nevertheless T is uniformly p-ergodic for no p ∈ Z+. We refer to
Example 3.6 also for all the definitions, notations and results concerning T
which we do not explicitly recall here.

Let Q denote the orthogonal projection of X onto N (IX − T ). Notice
that Q = IX −P . Now let A be the bounded linear operator on the Hilbert
space X ×X defined by

A(x, y) = (x−Qy, Ty) for every (x, y) ∈ X ×X.
We prove that A satisfies condition (3.7) for p = 3.

We begin by proving that R(IX×X − A) + N ((IX×X − A)2) is closed.
We remark that

(3.10.1) (IX×X − A)(x, y) = (Qy, (IX − T )y) for every (x, y) ∈ X ×X.
Hence R(IX×X−A) ⊂ N (IX−T )×R(IX −T ). We prove that the opposite
inclusion also holds. For each (u, v) ∈ N (IX − T )×R(IX − T ), there exists
y ∈ X such that (IX − T )y = v. Then

(IX×X − A)(0X , u+ y −Qy) = (Q(u+ y −Qy), (IX − T )(u+ y −Qy))

= (Qu, (IX − T )y) = (u, v),

which gives the desired result. We have thus proved that

(3.10.2) R(IX×X −A) = N (IX − T )×R(IX − T ).

Proceeding by induction, it is not difficult to derive from (3.10.1) that

(3.10.3) (IX×X − A)n(x, y) = (Q(IX − T )n−1
y, (IX − T )ny)

for all (x, y) ∈ X ×X, n ∈ Z+.

It follows that for each n ∈ Z+ and each (x, y) ∈ X ×X, we have

(IX×X − A)n(x, y) = (0X , 0X)

⇔
{
Q(IX − T )n−1

y = 0X
(IX − T )ny = 0X

⇔ (IX − T )n−1
y ∈ (N (IX − T ))⊥ ∩ N (IX − T ) = {0X}

⇔ y ∈ N ((IX − T )n−1).

Hence

(3.10.4) N ((IX×X − A)n) = X ×N ((IX − T )n−1) for every n ∈ Z+.

In particular,
N ((IX×X − A)2) = X ×N (IX − T ),

which, together with (3.10.2), yields

R(IX×X − A) +N ((IX×X − A)2) ⊂ X × (R(IX − T ) +N (IX − T ))

= {0X}×R(IX −T )+X×N (IX −T ) ⊂ R(IX×X −A)+N ((IX×X − A)2).
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Hence

R(IX×X − A) +N ((IX×X − A)2) = X × (R(IX − T ) +N (IX − T )),

which is a closed subspace of X ×X, as R(IX − T ) +N (IX − T ) is closed
in X.

Now we prove that n−3∑n−1
k=0 A

k converges in L(X×X). Proceeding by
induction, it is not difficult to verify that

An(x, y) =
(
x−

n−1∑

k=0

QT ky, Tny
)

for all (x, y) ∈ X ×X and n ∈ Z+.

Consequently, for each n ≥ 2, we have

(3.10.5)
n−1∑

k=0

Ak(x, y)

= (x, y) +
n−1∑

k=1

(
x−

k−1∑

j=0

QT jy, T ky
)

=
(
nx−

n−1∑

k=1

k−1∑

j=0

QT jy,
n−1∑

k=0

T ky
)

for every (x, y) ∈ X ×X.

We are going to determine the sequence (
∑n−1
k=1

∑k−1
j=0 QT

j)n≥3.
We begin by proving that the sequence (QT n −QTn+1)n∈N is constant.

For each x ∈ X, let (xn)n∈N, (yn)n∈N and (zn)n∈N be scalar sequences
such that Pkx = xke3k + yke3k+1 + zkfk for every k ∈ N. Since Pk −Qk
is the orthogonal projection of X onto N (IXk − Tk) (which is contained
in Xk = Span({e3k, e3k+1, fk})) for every k ∈ N and the subspaces Xj ,
j ∈ N, are pairwise orthogonal, from (3.6.4), (3.6.10)–(3.6.12) and (3.6.17)
it follows that, for each n ∈ N,

(QTn−QTn+1)x=Q
∞∑

j=0

√
1−cosθj (yje3j+zj(1−

√
1−cosθj)

n
fj)

=(IX−P )
∞∑

j=0

√
1−cosθj (yje3j+zj(1−

√
1−cosθj)nfj)

=
∞∑

k=0

(Pk−Qk)
∞∑

j=0

√
1−cosθj (yje3j+zj(1−

√
1−cosθj)

n
fj)

=
∞∑

k=0

√
1−cosθk (Pk−Qk)(yke3k+zk(1−

√
1−cosθk)nfk)

=
∞∑

k=0

√
1−cosθk yke3k,
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which is independent of n. Hence QT n − QTn+1 = Q − QT for all n ∈ N,
which is the desired result. It follows that

Q−QTn =
n−1∑

k=0

(QT k −QT k+1) = n(Q−QT ) for every n ∈ Z+,

which gives

(3.10.6) QTn = nQT − (n− 1)Q = nQ(T − IX) +Q for every n ∈ N.
By using the well known formula (see for instance [Bu1, (1.9)])

k∑

j=2

(
j

2

)
=
(
k + 1

3

)
for all k ≥ 2,

from (3.10.6) we conclude that for n ≥ 3 we have

n−1∑

k=1

k−1∑

j=0

QT j =
n−1∑

k=1

k−1∑

j=0

(jQ(T − IX) +Q)

=
n−1∑

k=1

(
k(k − 1)

2
Q(T − IX) + kQ

)

=
(n−1∑

k=2

(
k

2

))
Q(T − IX) +

n(n− 1)
2

Q

=
(
n

3

)
Q(T − IX) +

(
n

2

)
Q.

Hence

(3.10.7)
∥∥∥∥

1
n3

n−1∑

k=1

k−1∑

j=0

QT j − 1
6
Q(T − IX)

∥∥∥∥
L(X)

→ 0 as n→∞.

Let B ∈ L(X ×X) be defined by

B(x, y) = (Q(T − IX)y, 0X) for every (x, y) ∈ X ×X.

We prove that n−3∑n−1
k=0 A

k converges to − 1
6B in L(X×X) as n→∞. Let

n ≥ 2. From (3.10.5) it follows that for each (x, y) ∈ X ×X we have
∥∥∥∥

1
n3

n−1∑

k=0

Ak(x, y) +
1
6
B(x, y)

∥∥∥∥
X×X

=
∥∥∥∥
(

1
n2 x−

1
n3

n−1∑

k=1

k−1∑

j=0

QT jy +
1
6
Q(T − IX)y,

1
n3

n−1∑

k=0

T ky

)∥∥∥∥
X×X
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≤ 1
n2 ‖x‖X +

∥∥∥∥
1
n3

n−1∑

k=1

k−1∑

j=0

QT j − 1
6
Q(T − IX)

∥∥∥∥
L(X)
‖y‖X

+
1
n3

∥∥∥∥
n−1∑

k=0

T k
∥∥∥∥
L(X)
‖y‖X

≤
(

1
n2 +

∥∥∥∥
1
n3

n−1∑

k=1

k−1∑

j=0

QT j − 1
6
Q(T − IX)

∥∥∥∥
L(X)

+
1
n3

∥∥∥
n−1∑

k=0

T k
∥∥∥
L(X)

)
‖(x, y)‖X×X .

Hence

(3.10.8)
∥∥∥∥

1
n3

n−1∑

k=0

Ak +
1
6
B

∥∥∥∥
L(X×X)

≤ 1
n2 +

∥∥∥∥
1
n3

n−1∑

k=1

k−1∑

j=0

QT j − 1
6
Q(T − IX)

∥∥∥∥
L(X)

+
1
n3

∥∥∥
n−1∑

k=0

T k
∥∥∥
L(X)

for n ≥ 2. Since limn→∞ n−2‖Tn‖L(X) = 0, from Proposition 3.9 it follows
that

lim
n→∞

1
n3

∥∥∥
n−1∑

k=0

T k
∥∥∥
L(X)

= 0.

This, together with (3.10.7) and (3.10.8), yields

lim
n→∞

∥∥∥∥
1
n3

n−1∑

k=0

Ak +
1
6
B

∥∥∥∥
L(X×X)

= 0,

which is the desired result.
We have thus proved that A satisfies condition (3.7) for p = 3.
Finally, we prove that A is uniformly p-ergodic for no p ∈ Z+. We begin

by remarking that (3.10.3) yields

(3.10.9) R((IX×X − A)n) ⊂ X ×R((IX − T )n) for all n ∈ Z+.

Since n−2‖Tn‖L(X) → 0 as n → ∞ and T is not uniformly 2-ergodic, from
Theorems 2.8 and 3.1 it follows that δ(IX−T ) =∞. Hence, for each n ∈ Z+,
there exists yn ∈ X such that (IX − T )nyn 6∈ R((IX − T )n+1), which, by
(3.10.3) and (3.10.9), gives

(Q(IX − T )n−1
yn, (IX − T )nyn)

∈ R((IX×X − A)n) \ (X ×R((IX − T )n+1))

⊂ R((IX×X − A)n) \ R((IX×X − A)n+1).
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We have thus proved that δ(IX×X − A) = ∞. Consequently, by Theorems
2.8 and 3.1, A is uniformly p-ergodic for no p ∈ Z+. In particular, A is not
uniformly 3-ergodic.

We remark that since A is not uniformly 3-ergodic and n−3∑n−1
k=0 A

k

converges in L(X×X), it follows thatR((IX×X − A)2)+N (IX×X−A) is not
closed. Consequently, by (2.9), R((IX×X − A)3) is not closed. Furthermore,
by Theorem 3.4,R((IX×X − A)k)+N ((IX×X − A)j) is closed for no (k, j) ∈
Z+ × N satisfying k + j > 3.
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