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Envelope functions and asymptotic structures
in Banach spaces

by

Bünyamin Sarı (Edmonton)

Abstract. We introduce a notion of disjoint envelope functions to study asymptotic
structures of Banach spaces. The main result gives a new characterization of asymptotic-`p
spaces in terms of the `p-behavior of “disjoint-permissible” vectors of constant coefficients.
Applying this result to Tirilman spaces we obtain a negative solution to a conjecture
of Casazza and Shura. Further investigation of the disjoint envelopes leads to a finite-
representability result in the spirit of the Maurey–Pisier theorem.

1. Introduction. Asymptotic structures of infinite-dimensional Banach
spaces, introduced in [MMT], reflect the behavior at infinity of finite-dimen-
sional subspaces which repeatedly appear everywhere and far away in the
space and are arbitrarily spread out along, for instance, a basis. This ap-
proach to infinite-dimensional spaces serves as a bridge between finite-dimen-
sional and infinite-dimensional theories, in view of the outstanding develop-
ments in the Banach space theory in the 1990’s. For example, asymptotic-`p
spaces were discovered in [MT] in connection with the distortion problem;
and the game approach used in [MMT] to define asymptotic structures orig-
inated in [G]. For these and many other aspects of asymptotic approaches
to infinite-dimensional Banach spaces theory we refer the reader to the ex-
haustive survey by E. Odell [O].

In its simplest form, the asymptotic structure of a Banach space is de-
fined as follows. Given a Banach space X with a monotone basis, an n-
dimensional space E with a monotone basis {ei}ni=1 is an asymptotic space
for X if there exists a finitely supported normalized vector y1 (block) with
support arbitrarily far along the basis {xi}, then a normalized block y2 with
support arbitrarily far after the support of y1, then a normalized block y3

with support arbitrarily far after the support of y2, and so on, such that the
blocks y1, . . . , yn obtained after n steps have behavior as close to the behav-
ior of {ei}ni=1 as we wish. (This means that any linear combination of {yi}ni=1
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has norm in X arbitrarily close to the norm in E of the corresponding linear
combination of {ei}ni=1.)

The normalized blocks y1, . . . , yn are called permissible vectors. The set
of all n-dimensional asymptotic spaces of X will be denoted by {X}n. The
asymptotic structure of X consists of all E ∈ {X}n, for all n ∈ N.

A Banach space X is called an asymptotic-`p space if there exists a con-
stant C ≥ 1 such that for all n and E ∈ {X}n, the basis in E is C-equivalent
to the unit vector basis of `np (for the precise definition see below). That is,
asymptotic-`p spaces have only one type of asymptotic spaces. In [MMT], it
is shown that for 1 < p <∞, if for all n and E ∈ {X}n, E is C-isomorphic
to `np , then X is asymptotic-`p. This means that in such situations, there is
a natural isomorphism between E and `np , which is the equivalence between
respective bases. Up to a constant, for 1 < p <∞, asymptotic-`p spaces have
a unique asymptotic structure, and this in fact characterizes asymptotic-`p
spaces.

The main result of this paper gives a new characterization of asymptotic-
`p spaces. Our starting point is the following consequence of results in [KOS]
which, to build an easier intuition, we state for Banach spaces with a ba-
sis:

Suppose that for a Banach space X with an asymptotic unconditional
basis there exists a constant c > 0 such that for all n and all permissible
vectors {yi}ni=1 in X we have ‖∑n

i=1 yi‖ ≥ cn. Then X is an asymptotic-`1
space.

(This result is not stated in [KOS] as we formulated it here and we will
provide a sketch of proof in Corollary 4.3.)

The above result shows that asymptotic-`1 spaces can be fully charac-
terized by the `1-behavior of sums with constant coefficients of normalized
permissible vectors. A natural question arising in this context is whether
this remains true in general.

Question 1.1. Let 1 < p < ∞. Suppose that there is a constant C ≥ 1
so that for all n and for all (normalized) permissible vectors {yi}ni=1 in a

Banach space X we have n1/p/C ≤ ‖∑n
i=1 yi‖ ≤ Cn1/p. Is X an asymptotic-

`p space?

It turns out that the answer to this question is negative even for spaces
with an unconditional basis (see Section 6). However, in this case, if we ex-
tend the assumption to the set of all normalized vectors which have disjoint
supports with respect to permissible vectors (called disjoint-permissible vec-
tors), then the answer is affirmative. This is our main result (Theorem 4.1).
The proof uses a new notion of disjoint-envelope functions (which are anal-
ogous to envelope functions first introduced and used in [MT]) and relies on
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a characterization of the unit vector basis of `p (Proposition 4.2), which is
of independent interest.

The notion of disjoint-envelope functions is a convenient tool for studying
asymptotic structures of spaces with an unconditional basis (or more gener-
ally, with asymptotic unconditional structure). We shall study them at some
length here, in particular obtaining a theorem on finite-representability of `p
(Theorem 5.6), in the spirit of the classical Maurey–Pisier theorem. This re-
sult is, in a sense, equivalent to a theorem of Milman and Sharir [MS], and
can be viewed as a “disjoint-blocks” version of the Maurey–Pisier theorem.

The paper is organized as follows. Section 2 contains basic notation
and several preliminary definitions and facts related to asymptotic struc-
tures. In Section 3 we introduce the disjoint-envelope functions, and develop
some properties of these functions analogous to those of the original ones,
which will be used in what follows. The main result, the characterization of
asymptotic-`p spaces, and the characterization of the unit vector basis of `p
mentioned above are given in Section 4.

In Section 5, we return to the study of disjoint-envelope functions in more
detail. We introduce a natural notion of power types for envelope functions
and prove the above mentioned result on finite representability of `p.

The final Section 6 presents counter-examples to Question 1.1, which
turn out to be Tirilman spaces first introduced by Tzafriri [T] and studied
in [CS]. As an application of our main results, a negative solution to a
conjecture of Casazza and Shura on the structure of Tirilman spaces is
obtained: These spaces do not contain any symmetric basic sequences. As
a further consequence, unlike Tsirelson’s space, Tirilman spaces are shown
not to be isomorphic to their modified versions.

Acknowledgments. The paper is based on a part of the author’s Ph.D.
thesis written under the supervision of Nicole Tomczak-Jaegermann at the
University of Alberta. The author is grateful to her for introducing him to
the subject and for her continuous help. The author also wishes to thank
Edward Odell for many useful suggestions on earlier versions of the thesis
and the paper.

2. Notation and preliminaries. We follow standard Banach space
notation which can be found in [LT], and use [MMT] for the notation of
asymptotic structures.

A non-zero sequence {xi} is a (Schauder) basis for a Banach space X
if for all x ∈ X there exists a unique sequence {ai} of scalars such that
x =

∑
i aixi. A sequence {xi} is C-basic if ‖∑n

i=1 aixi‖ ≤ C‖
∑m

i=1 aixi‖ for
all {ai} and integers n < m. A basis is monotone if it is 1-basic. A basis
{xi} is C-unconditional if for all {ai} and sequences of signs {θi},
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∥∥∥
∑

i

θiaixi

∥∥∥ ≤ C
∥∥∥
∑

i

aixi

∥∥∥.

A basis is unconditional if it is C-unconditional for some constant C ≥ 1.

A basis {xi} is C-equivalent to a basis {yi}, written {xi} C∼ {yi}, if there
exist A,B > 0 with AB ≤ C such that for all scalars {ai},

1

A

∥∥∥
∑

i

aiyi

∥∥∥ ≤
∥∥∥
∑

i

aixi

∥∥∥ ≤ B
∥∥∥
∑

i

aiyi

∥∥∥.

A basis {xi} is C-subsymmetric if it is C-unconditional and C-equivalent
to each of its subsequences. It is C-symmetric if it is C-unconditional and
C-equivalent to {xπ(i)} for all permutations π of N.

Let X be a Banach space with a basis {xi}. The support of a vector
x =

∑
i aixi, denoted by suppx, is the set of all i such that ai 6= 0. A vector

is called a block if it has finite support. For non-empty subsets I, J of N we
write I < J if max I < minJ . For n ∈ N and x, y ∈ X we write n < x < y
if {n} < suppx < supp y. We say x and y are successive if x < y.

Asymptotic structures of a Banach space X are defined with respect to
families B(X) of subspaces which satisfy the so-called filtration condition:
For every X1,X2 ∈ B there exists X3 ∈ B such that X3 ⊂ X1 ∩ X2. The
family of finite-codimensional subspaces and the family of tail subspaces are
two such examples. The tail subspaces are subspaces of the form Xn =
span {xi}i>n, for some n ∈ N, and where {xi} is a basis (or more generally
a minimal system) in X. The following definition of asymptotic structure
can be given for an arbitrary family B of subspaces (see [MMT], where a
convenient game terminology is introduced to define asymptotic structures)
and the results of the paper can be easily extended to these general settings.
However, for the sake of clarity, we will only consider the tail family B
determined by a basis {xi} in X.

Let X be a Banach space with a basis {xi}. Consider the tail family B
of subspaces X with respect to {xi}. An n-dimensional space E with a
normalized basis {ei}ni=1 is an asymptotic space for X, written E ∈ {X}n
(or {ei}ni=1 ∈ {X}n), if the following holds for every ε > 0: For an arbitrary
Xm1 ∈ B there is a normalized block y1 ∈ Xm1 such that for an arbitrary
Xm2 ∈ B with Xm2 ⊂ Xm1 there is a normalized block y2 ∈ Xm2 , and so on,
such that y1 < · · · < yn obtained this way are (1 + ε)-equivalent to {ei}ni=1.
Formally this means that

∀m1 ∃y1 ∈ Xm1 . . . ∀mn ∃yn ∈ Xmn such that {yi}ni=1
1+ε∼ {ei}ni=1.

Such successive normalized vectors {yi}ni=1 are called ε-permissible. Thus,
ε-permissible vectors are (1 + ε)-representations of the asymptotic space E
in X. To avoid repetitions, in the rest of the paper we will use the imprecise
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term permissible to mean ε-permissible for a small 0 < ε ≤ 1. The asymptotic
structure of X consists of all asymptotic spaces of X, for all n.

A Banach space X has C-asymptotic unconditional structure if for all
n ∈ N and for every asymptotic space E ∈ {X}n the basis {ei}ni=1 in E is
C-unconditional. We say that X has asymptotic unconditional structure if
it has C-asymptotic unconditional structure for some C. This notion was
first introduced and studied in [MS].

A Banach space X is C-asymptotic-`p for 1 ≤ p ≤ ∞ if for all n and
E ∈ {X}n the basis {ei} in E is C-equivalent to the unit vector basis of `np .
That is, for some A,B with AB ≤ C,

1

A

( n∑

i=1

|ai|p
)1/p

≤
∥∥∥

n∑

i=1

aiei

∥∥∥ ≤ B
( n∑

i=1

|ai|p
)1/p

for all scalars (ai). We call X an asymptotic-`p space if it is C-asymptotic-`p
for some constant C ≥ 1.

Let c00 denote the linear space of finite scalar sequences. If a = (ai) ∈ c00,
then its `p-norm will be denoted simply by ‖a‖p (the sup norm, correspond-
ing to p =∞, is denoted by ‖a‖∞).

The asymptotic-`p spaces were first introduced in [MT] in a slightly
stronger form. The more general definition given above comes from [MMT].

The notion of envelope functions was introduced in [MT] as well (see also
1.9 in [MMT]). For any sequence of scalars a = (ai) ∈ c00 the upper envelope
is the function rX(a) = sup ‖∑i aiei‖, where the supremum is taken over all
natural bases {ei} of asymptotic spaces E ∈ {X}n and all n. Similarly, the
lower envelope is the function gX(a) = inf ‖∑i aiei‖, where the infimum is
taken over the same set. Clearly, X is an asymptotic-`p space if and only if
both rX and gX are equivalent to the norm ‖ · ‖p.

Finally, we will also use the following version of a classical theorem of
Krivine’s as stated in [M].

Krivine’s Theorem. Let r, s ≥ 1, and let X be a Banach space. Sup-
pose that for some κ > 0 and K ≥ 1 and for every n ≥ 2, X contains

a normalized K-unconditional sequence y(n) = (y
(n)
1 , . . . , y

(n)
n ) such that∥∥∑

i∈C y
(n)
i

∥∥ ≥ κ|C|1/r (respectively
∥∥∑

i∈C y
(n)
i

∥∥ ≤ κ|C|1/s) for every sub-
set C ⊂ {1, . . . , n}. Then for some p ≤ r (resp. p ≥ s) and for every k ≥ 1
and ε > 0, there is N(k, ε) such that whenever n ≥ N(k, ε), it is possible to

form k successive blocks of y(n) that are (1 + ε)-equivalent to the unit vector
basis of `kp.

3. Disjoint-envelope functions. Let X be a Banach space with as-
ymptotic unconditional structure (with a constant C ≥ 1). Define {X}d to
be the set of all normalized sequences of vectors {xi} which have disjoint
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support with respect to the natural basis of an asymptotic space. That is,
for n ∈ N, {xi}ni=1 ∈ {X}d if there exist {ej}mj=1 ∈ {X}m for some m ≥ n

and a partition {A1, . . . , An} of {1, . . . ,m} such that for each 1 ≤ i ≤ n,
xi =

∑
j∈Ai αjej for some scalars α = (αj) such that ‖xi‖ = 1. Obviously,

for all ε > 0 and {xi}ni=1 ∈ {X}d, there exists a sequence {x′i}ni=1 of vec-
tors which are disjointly supported on some permissible vectors in X such

that {x′i}ni=1
1+ε∼ {xi}ni=1. We will call such sequences of vectors disjoint-

permissible vectors.
First we make a few remarks about the set {X}d (where superscript “d”

stands for “disjoint”). Clearly, for all n ∈ N and {ei}ni=1 ∈ {X}n we have
{ei}ni=1 ∈ {X}d. That is,

⋃
n{X}n ⊂ {X}d. If {xi} ∈ {X}d, then {xi} is

an unconditional basic sequence (with constant C). It is also clear that if
{uj} is a (successive or just disjoint) block basis of some {xi} ∈ {X}d, then

{uj} ∈ {X}d as well. Finally, if {xi}ni=1 ∈ {X}d then {xπ(i)}ni=1 ∈ {X}d,
where π is a permutation of {1, . . . , n}. Obviously this property is not shared,
in general, by the bases of asymptotic spaces.

We also have the following property of {X}d which is inherited from
{X}n. If {xi}n1

i=1 and {yi}n2
i=1 are in {X}d, then there exists {zi}n1+n2

i=1 ∈
{X}d such that {zi}n1

i=1
1∼ {xi}n1

i=1 and {zi}n1+n2
i=n1+1

1∼ {yi}n2
i=1.

Indeed, if {xi}n1
i=1 and {yi}n2

i=1 are disjoint blocks of the bases {ei}m1
i=1 and

{fi}m2
i=1 of some asymptotic spaces respectively, then we can find an asymp-

totic space {gi}m1+m2
i=1 such that {ei}m1

i=1
1∼ {gi}m1

i=1 and {fi}ki=1
1∼ {gi}m1+m2

i=m1+1

(cf. [MMT, 1.8.2]). Hence the corresponding disjoint blocks {zi}n1+n2
i=1 of

{gi}m1+m2
i=1 have the desired property. When {xi}n1

i=1 and {yi}n2
i=1 are in {X}d,

to avoid repetitions, we will simply say that {xi, yi} ∈ {X}d without refer-
ring to {zi}.

We now define the natural analogs of the envelope functions on {X}d.

Definition 3.1. Let X be a Banach space with an asymptotic uncondi-
tional structure. For a = (ai) ∈ c00, let gd

X(a) = inf‖∑i aixi‖ and rd
X(a) =

sup‖∑i aixi‖, where the inf and the sup are taken over all {xi} ∈ {X}d. We

call gd
X and rd

X the lower and upper disjoint-envelope functions respectively.

It is easy to see that both functions gd
X and rd

X are 1-symmetric and 1-sign
unconditional. A function f on c00 is 1-symmetric if for all a ∈ c00 and per-
mutations π of N, f(a) = f(aπ), where aπ = (aπ(i)). It is 1-sign unconditional
if for all sequences of signs (θi) and a ∈ c00, f(θ1a1, θ2a2, . . .) = f(a1, a2, . . .).
Moreover, while rd

X defines a norm on c00, gd
X satisfies the triangle inequality

on disjointly supported vectors (of c00).
Indeed, let a = (ai) and b = (bi) be two vectors in c00 with disjoint

supports and let ε > 0 be arbitrary. Pick {xi} and {yi} in {X}d such that
gd
X(a) + ε/2 ≥ ‖∑i aixi‖ and gd

X(b) + ε/2 ≥ ‖∑i biyi‖. Then, by the above



Envelope functions and asymptotic structures 289

remark, {xi, yi} ∈ {X}d and hence

gd
X(a+ b) ≤ ‖a1x1 + b1y1 + a2x2 + b2y2 + · · · ‖

≤ ‖a1x1+a2x2+· · · ‖+‖b1y1+b2y2+· · · ‖ ≤ gd
X(a)+gd

X(a)+ε.

Since ε > 0 was arbitrary, it follows that gd
X(a+ b) ≤ gd

X(a) + gd
X(b).

The fact that rd
X is a norm and it is 1-sign unconditional implies that

rd
X(a) ≤ rd

X(b) for all a = (ai), b = (bi) ∈ c00 with |ai| ≤ |bi|. This may not

hold for the lower envelopes. However, it is easy to see that gd
X(a) ≤ Cgd

X(b),
where C is the asymptotic unconditionality constant.

It is convenient to think of both gd
X and rd

X as norms on c00 and use the
following notation. Let (ei) be the unit vector basis of c00. For a = (ai) ∈ c00,
occasionally we will write gd

X(
∑

i aiei) instead of gd
X(a). Moreover, for any

finite number of successive vectors bi = (bij) ∈ c00 such that gd
X(bi) = 1

for i = 1, 2, . . . and for any vector a = (ai) ∈ c00, we write gd
X(
∑

i aixi)

instead of gd
X(
∑

i aib
i), where xi =

∑
j b
i
jej are blocks of the basis (ei) of c00

normalized with respect to gd
X .

The following lemma lists some of the properties of the disjoint envelopes
analogous to properties of the original ones as in Lemma 5.3 of [MT].

Lemma 3.2. Let X be a Banach space with C-asymptotic unconditional
structure. Let {xi} and {ui} be sequences of vectors in c00 with disjoint
support (with respect to the unit vector basis {ei}) such that rd

X(xi) = 1 and

gd
X(ui) = 1, for all i.

(i) rd
X is submultiplicative, that is, for all a = (ai) ∈ c00,

rd
X

(∑

i

aixi

)
≤ rd

X

(∑

i

aiei

)
.

(ii) gd
X is C-supermultiplicative, that is, for all a = (ai) ∈ c00,

gd
X

(∑

i

aiei

)
≤ Cgd

X

(∑

i

aiui

)
.

(iii) The following inequalities hold for all a = (ai) ∈ c00:

gd
X

(∑

i

aiui

)
≤ rd

X

(∑

i

aiei

)
, gd

X

(∑

i

aiei

)
≤ Crd

X

(∑

i

aixi

)
.

Proof. Since both gd
X and rd

X are 1-symmetric, we may assume that {xi}
and {ui} are successive blocks of {ei} in c00.

(i) Let xi =
∑ki+1

j=ki+1 bjej for some 1 ≤ k1 < k2 < · · · be a block basis

of c00 with rd
X(xi) = 1 for all i = 1, 2 . . . , and let a = (a1, . . . , al) ∈ c00 and

ε > 0 be arbitrary. Then there exists {vj}kl+1
j=1 ∈ {X}d, which is a disjointly
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supported sequence of vectors in some asymptotic space E, such that

rd
X

( l∑

i=1

aixi

)
− ε = rd

X

( l∑

i=1

ai

( ki+1∑

j=ki+1

bjej

))
− ε ≤

∥∥∥
l∑

i=1

ai

( ki+1∑

j=ki+1

bjvj

)∥∥∥
E
.

Set ci = ‖∑ki+1

j=ki+1 bjvj‖E ; then ci ≤ rd
X(xi) = 1. Let wi = c−1

i

∑ki+1

j=ki+1 bjvj

for i = 1, . . . , l. Then {wi} ∈ {X}d. Thus the latter term above is equal to

∥∥∥
l∑

i=1

aiciwi

∥∥∥
E
≤ rd

X(a1c1, a2c2, . . . , alcl) ≤ rd
X(a1, a2, . . . , al).

The last inequality is due to 1-unconditionality of rd
X and the fact that ci ≤ 1

for i = 1, . . . , l. Since ε > 0 was arbitrary, we obtain

rd
X

( l∑

i=1

aixi

)
≤ rd

X

( l∑

i=1

aiei

)
,

as desired.
(ii) The proof proceeds along similar lines (with the inequalities reversed)

except that at the end we make use of the fact that gd
X(c1a1, c2a2, . . .) ≥

(1/C)gd
X(a1, a2, . . .) for ci ≥ 1.

(iii) To see the first inequality, let ui =
∑ki+1

j=ki+1 bjej for some 1 ≤ k1 <

k2 < · · · be a block basis of c00 with gd
X(ui) = 1 for all i = 1, 2, . . . ,

let a = (a1, . . . , al) be arbitrary scalars and let ε > 0. For each i, pick
{yij}j ∈ {X}d, where {yij}j ∈ Ei for some asymptotic space Ei, such that

∥∥∥
∑

j

bjy
i
j

∥∥∥
Ei
≤ gd

X(ui) + ε = 1 + ε.

Then {yij}i,j ∈ {X}d, which is a disjointly supported sequence of vectors in

some asymptotic space E. Let ci = ‖∑j bjy
i
j‖Ei and wi = (1/ci)

∑
j bjy

i
j for

i = 1, 2, . . . . Then

gd
X

(∑

i

aiui

)
= gd

X

(∑

i

ai

(∑

j

bjej

))

≤
∥∥∥
∑

i

ai

(∑

j

bjy
i
j

)∥∥∥
E

=
∥∥∥
∑

i

aiciwi

∥∥∥
E
,

and since {wi} ∈ {X}d, the latter term above is less than or equal to

rd
X(a1c1, . . . , alcl) ≤ (1 + ε)rd

X

(∑

i

aiei

)
,

where the last inequality follows from the unconditionality of rd
X . Finally,

since ε > 0 was arbitrary, the desired inequality follows. Again the second
inequality is proved similarly with a small difference as in part (ii).
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4. A characterization of asymptotic-`p spaces. The main result of
the paper is the following characterization for asymptotic-`p spaces.

Theorem 4.1. Let X be a Banach space with C-asymptotic uncondi-
tional structure. Suppose that there exist 1 ≤ p <∞ and a constant K > 0
such that for all n ∈ N and for all {xi}ni=1 ∈ {X}d, we have

n1/p

K
≤
∥∥∥

n∑

i=1

xi

∥∥∥ ≤ Kn1/p.

Then X is 41/pC3K6-asymptotic-`p.

For the proof, we will require the following characterization of the unit
vector basis of `p, which is of independent interest. The idea of the proof of
this proposition is inspired by the proof of Proposition 6.9 in [KOS].

Proposition 4.2. Let X be a Banach space with a 1-subsymmetric ba-
sis {xi}. Suppose that there exist 1 ≤ p < ∞ and a constant K ≥ 1 such
that for all n ∈ N and for all normalized vectors {yi}ni=1 in X with disjoint
supports, we have

n1/p

K
≤
∥∥∥

n∑

i=1

yi

∥∥∥ ≤ Kn1/p.

Then, for all scalars (ai) ∈ c00,

1

21/pK3

(∑

i

|ai|p
)1/p

≤
∥∥∥
∑

i

aixi

∥∥∥ ≤ 21/pK3
(∑

i

|ai|p
)1/p

.

That is, (xi) is 41/pK6-equivalent to the unit vector basis of `p.

Proof. First we give the proof of the left hand inequality. Suppose to
the contrary that the lower `p-estimate fails. That is, for some 0 < ε <

1/(21/pK3) there exists a=(ai)
k
i=1 such that ‖∑k

i=1 aixi‖<ε while
∑k

i=1 |ai|p
= 1. By the 1-unconditionality of the basis (xi) we can assume that all ai’s
are positive, and we take the pth root of the sequence (ai) to rewrite our

assumption in the form
∑k

i=1 ai = 1 while ‖∑k
i=1 a

1/p
i xi‖ < ε.

By a slight perturbation if necessary, we assume that ai’s are positive
rationals and we write ai = ni/N for 1 ≤ i ≤ k, where ni, N are natural num-
bers. Put alsoN = nimi+ki, 0 ≤ ki < ni, 1 ≤ i ≤ k. Now consider the vector

x =
∑k

i=1 a
1/p
i

∑N
j=1 x

i
j , where xij = x(i−1)N+j for 1 ≤ i ≤ k and 1 ≤ j ≤ N .

That is, x is of the form x = (a
1/p
1 , . . . , a

1/p
1 , a

1/p
2 , . . . , a

1/p
2 , . . . , a

1/p
k , . . . , a

1/p
k )

with respect to (x1, . . . , xkN ), where each block consists of N constant co-

efficients a
1/p
i . First, we estimate the norm of x from below.
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For each 1 ≤ i ≤ k, since N = ki(mi + 1) + (ni − ki)mi, we may fix a
partition

{1, . . . , N} =
( ki⋃

µ=1

Aµ,i

)
∪
(ni−ki⋃

v=1

Bv,i

)
,

where |Aµ,i| = mi + 1 for each µ = 1, . . . , ki and |Bv,i| = mi for each
v = 1, . . . , ni − ki. Then

‖x‖ =
∥∥∥

k∑

i=1

a
1/p
i

N∑

j=1

xij

∥∥∥ =

∥∥∥∥
k∑

i=1

(
ni
N

)1/p N∑

j=1

xij

∥∥∥∥(1)

=

∥∥∥∥
k∑

i=1

( ki∑

µ=1

(
ni
N

)1/p ∑

j∈Aµ,i
xij +

ni−ki∑

v=1

(
ni
N

)1/p ∑

j∈Bv,i
xij

)∥∥∥∥.

Now, using the assumption, we obtain lower estimates for the disjoint blocks
appearing in (1).

For each µ = 1, . . . , ki, since |Aµ,i| = mi + 1, we have
∥∥∥∥
(
ni
N

)1/p ∑

j∈Aµ,i
xij

∥∥∥∥ ≥
(mi + 1)1/p

K

(
ni
N

)1/p

=
(nimi + ni)

1/p

N1/pK
≥ 1

K
.

For each v = 1, . . . , ni − ki, since |Bv,i| = mi, we have

∥∥∥∥
(
ni
N

)1/p ∑

j∈Bv,i
xij

∥∥∥∥ ≥
n

1/p
i

N1/p

m
1/p
i

K
≥ 1

21/pK
.

Let

uiµ =

∑
j∈Aµ,i x

i
j

‖∑j∈Aµ,i x
i
j‖
, wiv =

∑
j∈Bv,i x

i
j

‖∑j∈Bv,i x
i
j‖
.

By the 1-unconditionality of the basis and by the above estimates for the
blocks uiµ and wiv appearing in (1), the expression (1) is greater than or
equal to

1

21/pK

∥∥∥
k∑

i=1

( ki∑

µ=1

uiµ +

ni−ki∑

v=1

wiv

)∥∥∥.(2)

The blocks uiµ and wiv have disjoint supports (in fact, note that the partition
can be chosen so that they become successive) and normalized, therefore by
the assumption, (2) is greater than or equal to

1

21/pK2

( k∑

i=1

ni

)1/p
=

N1/p

21/pK2
.
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Here we have used 1 =
∑k

i=1 ai =
∑k

i=1 ni/N . Thus we have obtained

‖x‖ ≥ N1/p

21/pK2
.(3)

On the other hand, letting yj =
∑k

i=1 a
1/p
i xij for 1 ≤ j ≤ N , by subsym-

metry of the basis {xi}, we have ‖yj‖ < ε. Since {yj} have disjoint supports,
it follows from the assumption that

‖x‖ =
∥∥∥

k∑

i=1

a
1/p
i

N∑

j=1

xij

∥∥∥ =
∥∥∥
N∑

j=1

yj

∥∥∥ < εKN1/p.(4)

From (3) and (4) it follows that

ε ≥ 1

21/pK3
,

which is a contradiction.
The proof of the upper `p-estimate is similar. Suppose to the contrary

that for some M > 21/pK3 there exists a positive scalar sequence (a
1/p
i )ki=1

such that ‖∑k
i=1 a

1/p
i xi‖ > M while

∑k
i=1 ai = 1. With the same setup as

in the first part of the proof, we estimate the norm of the vector x in (1)
from above. Thus,

∥∥∥
k∑

i=1

a
1/p
i

N∑

j=1

xij

∥∥∥ ≤ K221/pN1/p.

On the other hand, as in (4), using the assumption again we have

∥∥∥
k∑

i=1

a
1/p
i

N∑

j=1

xij

∥∥∥ ≥ MN1/p

K
.

From these two estimates we conclude that M ≤ 21/pK3, a contradiction.
The proof is now complete.

Let us remark that in the assumption of the above proposition disjointly
supported vectors cannot be replaced with successive blocks (see Section 6,
Theorem 6.1).

Moreover, note that the above proof also works in the “space” (c00, g
d
X),

if the assumptions are satisfied. That is, if for all disjointly supported vectors

{ui} in c00 with gd
X(ui) = 1 we have gd

X(
∑n

i=1 ui)
K2

∼ n1/p, then

(21/pCK3)−1‖a‖p ≤ gd
X(a) ≤ 21/pCK3‖a‖p,

where C is the asymptotic unconditionality constant of X.
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Proof of Theorem 4.1. Since for all n ∈ N and {ei}ni=1 ∈ {X}n, we have
gd
X(a) ≤ ‖∑n

i=1 aiei‖ ≤ rd
X(a), it is clearly sufficient to show that

(5) gd
X(a) ≥ 1

21/pC2K3
‖a‖p, rd

X(a) ≤ 21/pCK3‖a‖p,

for all a ∈ c00. The assumption of the theorem already implies that

n1/p

K
≤ gd

X

( n∑

i=1

ei

)
≤ rd

X

( n∑

i=1

ei

)
≤ Kn1/p,

where {ei} is the unit vector basis of c00.
Let {ui} and {wi} be arbitrary vectors with disjoint supports in c00 such

that gd
X(ui) = 1 and rd

X(wi) = 1 for all i = 1, 2, . . . . From Lemma 3.2 and
the above inequalities, it follows that

n1/p

CK
≤ 1

C
gd
X

( n∑

i=1

ei

)
≤ gd

X

( n∑

i=1

ui

)
≤ rd

X

( n∑

i=1

ei

)
≤ Kn1/p

and

n1/p

CK
≤ 1

C
gd
X

( n∑

i=1

ei

)
≤ rd

X

( n∑

i=1

wi

)
≤ rd

X

( n∑

i=1

ei

)
≤ Kn1/p.

That is, gd
X(
∑n

i=1 ui)
CK2

∼ n1/p and rd
X(
∑n

i=1wi)
CK2

∼ n1/p for all normal-

ized vectors (ui) and (wi) with disjoint supports in (c00, g
d
X) and (c00, r

d
X)

respectively. Thus, using the fact that rd
X is 1-unconditional and gd

X is
C-unconditional, the inequalities in (5) follow from the proof of Propo-

sition 4.2 (see the remark preceding the proof). Hence, X is 41/pC3K6-
asymptotic-`p.

As pointed out in the introduction, for p = 1 this result can be improved.

Corollary 4.3. Suppose that for a Banach space X with asymptotic
unconditional structure there exists a constant K > 0 such that for all n
and {ei}ni=1 ∈ {X}n we have

∥∥∥
n∑

i=1

ei

∥∥∥ ≥ n/K.

Then X is an asymptotic-`1 space.

Proof (sketch). It is sufficient to show that the lower (original) envelope
function satisfies gX(a) ≥ c‖a‖1 for some constant c. (The upper estimate
trivially follows from the triangle inequality.)

The proof runs along the same lines as the first part of the proof of
Proposition 4.2, when the argument is applied to the “space” (c00, gX), so
we only indicate the few differences.



Envelope functions and asymptotic structures 295

With the same setup as in the first part of the proof of Proposition
4.2, assume that the above estimate fails and consider the vector x in (1).
Then the estimate gX(x) ≥ N/2CK2 in (3) holds because, as we remarked
there, the blocks appearing in (2) can be chosen to be successive and we
have the asymptotic unconditionality assumption (with constant C). On
the other hand, the upper estimate gX(x) < εN in (4) simply follows from
the triangle inequality for gX on vectors with disjoint supports. Thus we
arrive at a contradiction for small enough ε > 0.

5. `p-estimates and finite representability of envelopes. The most
interesting fact about envelope functions is that they are always close to
some `p-norm. The following result for the (original) envelope functions is
stated in [MMT].

Proposition 5.1. There exist 1 ≤ p, q ≤ ∞ and C, c > 0 and for every
ε > 0 there exist Cε, cε > 0 such that for all a ∈ c00 we have

cε‖a‖q+ε ≤ gX(a) ≤ C‖a‖q, c‖a‖p ≤ rX(a) ≤ Cε‖a‖p−ε.
The proof of the rX case is sketched in [MMT], it follows from standard

arguments using the submultiplicativity of the function and an application
of Krivine’s theorem. Below we prove an analogous result for the disjoint-
envelope functions. However, since the lower disjoint envelope gd

X is not
necessarily a norm, to be able to use Krivine’s theorem, one needs to check
that the theorem holds in a more general setting, namely for functions which
satisfy the triangle inequality for vectors with disjoint supports. To avoid
this cumbersome work, we postpone the proof of the gd

X case to the end
of this section, where we give a different and self-contained proof. We also
observe that in our case the corresponding constants C, c > 0 of the above
inequalities can be taken to be 1.

Proposition 5.2. Let X be a Banach space with asymptotic uncondi-
tional structure. Then there exist 1 ≤ p, q ≤ ∞ such that for all ε > 0 there
exist Cε, cε > 0 such that for all a ∈ c00 we have

cε‖a‖q+ε ≤ gd
X(a) ≤ ‖a‖q, ‖a‖p ≤ rd

X(a) ≤ Cε‖a‖p−ε.
Here it is understood that if q = ∞ (resp. p = 1), then gd

X is equivalent

to ‖ · ‖∞ (resp. rd
X is equivalent to ‖ · ‖1). If p =∞, then for all r <∞ there

exists Cr <∞ such that rd
X(a) ≤ Cr‖a‖r.

Proof (the rd
X case). The proof of this case is identical for disjoint and

original envelopes. For the reader’s convenience we give the details.
For n,m ∈ N, the submultiplicativity of rd

X implies that

rd
X

( nm∑

i=1

ei

)
≤ rd

X

( n∑

i=1

ei

)
rd
X

( m∑

i=1

ei

)
.
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Hence, by induction, we get rd
X(
∑nk

i=1 ei) ≤ rd
X(
∑n

i=1 ei)
k for all n, k ∈ N.

Let

1/p = inf ln rd
X

( n∑

i=1

ei

)
/lnn.

Then, clearly, rd
X(
∑n

i=1 ei) ≥ n1/p for all n ∈ N. Moreover, for all ε > 0

there exists Cε > 0 such that for all n ∈ N, we have rd
X(
∑n

i=1 ei) ≤
Cεn

1/p−ε.
Now consider the space (c00, r

d
X). The unit vector basis {ei} is symmetric

and since rd
X(
∑n

i=1 ei) ≥ n1/p for all n, it follows from Krivine’s theorem
that there exists r ≤ p such that `r is block finitely representable in the
space (c00, r

d
X). That is, for all δ > 0 and n ∈ N, there exists a sequence of

successive blocks {xi}ni=1 in (c00, r
d
X) such that {xi}ni=1

1+δ∼ `nr . Moreover, by

the submultiplicativity of rd
X , for all n, we have

n1/r

1 + δ
≤ rd

X

( n∑

i=1

xi

)
≤ rd

X

( n∑

i=1

ei

)
≤ Cεn1/p−ε.

Since this is true for all ε and n, it follows that r ≥ p− ε for all ε > 0, and
thus r = p.

Finally, by the submultiplicativity of rd
X and the fact that δ > 0 can be

chosen arbitrarily, it follows that rd
X(a) ≥ ‖a‖p for all a ∈ c00.

To prove the upper `p−ε estimate for rd
X we make use of an auxiliary

norm σp−ε. For 1 ≤ s ≤ ∞, the unit ball of the norm σs is the convex

hull of all vectors α = (
∑

i |αi|)−1/s(αi)
n
i=1, where αi = ±1 or 0. (The

norm σs is equivalent to the norm of the Lorentz sequence space d(w, 1),

where the weight w = (wi) satisfies
∑n

i=1wi = n1/s.) A direct estimate
shows that for all s′ < s there exists Cs′ < ∞ independent of n so that
σs(a) ≤ Cs′‖a‖s′ for all a ∈ c00. Now fix ε > δ > 0. As remarked earlier,

there exists Cδ > 0 such that rd
X(
∑n

i=1 ei) ≤ Cδn1/p−δ. Put p− δ = s; hence

rd
X(a) ≤ Cδσs(a) ≤ CδCp−ε‖a‖p−ε for all a ∈ c00. Then for all a ∈ c00 we

have rd
X(a) ≤ Cε‖a‖p−ε, where Cε = CδCp−ε.

Using the C-supermultiplicativity of gd
X , as in the first part of the above

proof, we easily obtain the following:
There exists 1 ≤ q ≤ ∞ such that for all ε > 0 there exists a constant cε

such that for all n,

cεn
1/q+ε ≤ gd

X

( n∑

i=1

ei

)
≤ Cn1/q,(6)

where C is the asymptotic unconditionality constant.
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Definition 5.3. Let p be as in Proposition 5.2 and let q be as in (6).
We say that the lower disjoint envelope gd

X has power type q and the uppert

disjoin envelope rd
X has power type p.

Define the power types of the original envelope functions similarly. The
functions rX and gX have power types p and q respectively if 1 ≤ p, q ≤ ∞
are as in Proposition 5.1.

The following example shows that the power types of the original and
the disjoint-envelope functions can be very different.

Example 5.4. There exists a Banach space X with an unconditional
basis such that for every block subspace Y of X the power type of gY is 1
but gd

Y is equivalent to ‖ · ‖∞.

Proof. The Schlumprecht space S has this property. Recall that S = c00

with the norm defined as follows ([S]): For a ∈ c00, put

‖a‖ = max

{
‖a‖∞, sup

l≥2

1

log2(l + 1)

l∑

i=1

‖Ei(a)‖
}
,

where the inner sup runs through all subsets Ei of N such that maxEi <
minEi+1. Here ‖a‖∞ = supi |ai| and Ei(a) =

∑
j∈Ei ajej for a =

∑
i aiei

∈ c00. The unit vector basis {ei} is 1-subsymmetric and 1-unconditional.
From the definition of the norm, ‖∑n

i=1 xi‖ ≥ n/log2(n+ 1) for all suc-
cessive normalized blocks {xi}ni=1 in S. This implies that for every block
subspace Y of S the power type of gY is 1.

On the other hand, it is shown in [KL] by a delicate calculation that
c0 is disjointly finitely representable in every subspace of S. That is, for
all n ∈ N and ε > 0, there exists a sequence {xi}ni=1 of vectors in Y with

disjoint supports such that {xi}ni=1
1+ε∼ `n∞. Moreover, it can be deduced

from the proof in [KL] that one can find disjoint permissible vectors {xi}ni=1

such that {xi}ni=1
1+ε∼ `n∞ in every block subspace Y of S. Thus, for every

block subspace Y of S the envelope gY is close to the `1-norm and gd
Y is

equivalent to ‖ · ‖∞.
Also it is easy to verify that for the dual space S∗, the envelope rS∗ has

power type ∞ and rd
S∗ is equivalent to the `1-norm.

Next we consider a finite representability problem for the envelope func-
tions. We start with the following observation.

Proposition 5.5. Let X be a Banach space with asymptotic uncondi-
tional structure. Then

(i) gX (resp. gd
X) is equivalent to ‖ · ‖∞ if and only if `n∞ ∈ {X}n (resp.

`n∞ ∈ {X}d) for all n.
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(ii) rX (resp. rd
X) is equivalent to ‖ · ‖1 if and only if `n1 ∈ {X}n (resp.

`n1 ∈ {X}d) for all n.

Proof. The proof of part (i) is trivial. To prove the second part for rX ,
assume for simplicity that rX is 1-equivalent to ‖ · ‖1 (for the general case
the constants involved should be modified appropriately). Fix n ∈ N and
pick an asymptotic space E ∈ {X}n with the natural basis {ei}ni=1 such
that ‖∑n

i=1 ei‖ ≥ (1/2)rX(1, . . . , 1) ≥ n/2. Pick x∗ ∈ E∗ with ‖x∗‖ = 1
and x∗(

∑n
i=1 ei) = ‖∑n

i=1 ei‖. Consider the set I = {i : |x∗(ei)| ≥ 1/4}.
Since |x∗(ei)| ≤ 1 for all i, a standard argument shows that the cardinality
k of I satisfies k = |I| ≥ n/3. For an arbitrary scalar sequence a = (ai), let
εi = sgn aix

∗(ei) for i ∈ I. Then
∥∥∥
∑

i∈I
εiaiei

∥∥∥ ≥ x∗
(∑

i∈I
εiaiei

)
=
∑

i∈I
|ai| |x∗(ei)| ≥ (1/4)

∑

i∈I
|ai|.

This shows that {ei}i∈I is 4C-equivalent to the unit vector basis in an `k1,
by the unconditionality of the basis (with constant C). Since a block basis
of the basis in an asymptotic space spans an asymptotic space, we reduce
the constant to 1 + ε, by a well known blocking argument of James (cf. e.g.
Proposition 2 of [OS]). The proof of the rd

X case is similar.

A natural question we consider here is whether for every Banach space
X with asymptotic unconditional structure, `nq , `

n
p ∈ {X}n (`nq , `

n
p ∈ {X}d)

for all n ∈ N, where q and p are the power types of gX and rX (gd
X and rd

X)
respectively.

Quite remarkably, the disjoint-envelopes case has an affirmative answer.
Namely, we prove the following theorem.

Theorem 5.6. Let X be a Banach space with asymptotic unconditional
structure. Let 1 ≤ p ≤ q ≤ ∞ be the power types of rd

X and gd
X respectively.

Then `np , `
n
q ∈ {X}d for all n ∈ N.

This theorem can be viewed as a “disjoint-block” version of the clas-
sical Maurey–Pisier Theorem ([MP]). Such a “disjoint-block” version was
already proved by Milman and Sharir [MS] in a different formulation. They
have defined the notion of “asymptotic block type and cotype” and showed,
analogously to the Maurey–Pisier Theorem, that if q is the infimum of as-
ymptotic block cotype and p is the supremum of asymptotic block type of
the space X with an asymptotic unconditional structure, then `q and `p are
“disjointly” block finitely representable in X.

Although they make use of different notions, Theorem 5.6 is equivalent to
Milman–Sharir’s result. However, our proof here, which is based on a recent
presentation of the proof of the Maurey–Pisier Theorem given by Maurey
[M], is shorter than that in [MS].
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Proof of Theorem 5.6. For simplicity we assume that the asymptotic
unconditionality constant is C = 1 (in the general case the estimates in the
proof should be multiplied by C).

The gd
X case. Let q be the power type of gd

X . If q = 1, then since gd
X ≤ gX ,

the power type of gX is also equal to 1. Thus it follows immediately from
Krivine’s theorem that `n1 ∈ {X}n for all n.

Now suppose that q > 1. Let 1 < s < q and for all n ∈ N, let φ(n) be
the smallest real number for which

n∑

i=1

|ai|s ≤ φ(n)s
∥∥∥

n∑

i=1

aixi

∥∥∥
s

for all {xi}ni=1 ∈ {X}d and scalars {ai}.
Since the power type of gd

X is q and s < q, it follows that φ is not bounded
as a function of n, and it is easy to see that it is increasing.

We refer to the following argument as the “exhaustion” argument.
Fix 0 < ε < 1/2 and pick {xi}ni=1 ∈ {X}d and scalars {ai} such that∑n
i=1 |ai|s = 1 and

(7) 1 > (1− ε)φ(n)s
∥∥∥

n∑

i=1

aixi

∥∥∥
s
.

Let (Bα)α∈I be a maximal family of mutually disjoint subsets of {1, . . . , n},
possibly empty, such that

(8)
∑

i∈Bα
|ai|s ≤ ε

∥∥∥
∑

i∈Bα
aixi

∥∥∥
s
.

Let B =
⋃
α∈I Bα and m = |I| (note that m < n because |Bα| > 1). Then
∑

i∈B
|ai|s =

∑

α∈I

∑

i∈Bα
|ai|s ≤

∑

α∈I
ε
∥∥∥
∑

i∈Bα
aixi

∥∥∥
s

(9)

≤ εφ(m)s
∥∥∥
∑

α∈I

∑

i∈Bα
aixi

∥∥∥
s
≤ εφ(n)s

∥∥∥
n∑

i=1

aixi

∥∥∥
s
;

here the second inequality uses the definition of φ(m) applied to vectors
{uα}mα=1 ∈ {X}d, where uα =

∑
i∈Bα aixi/‖

∑
i∈Bα aixi‖ for all α ∈ I,

and the last inequality uses the unconditionality of {xi} and the fact that
φ(m) ≤ φ(n).

Let A denote the complement of B and for every j ≥ 0 let

Aj = {i ∈ A : 2−j−1 < |ai| ≤ 2−j}.
Then from (7) and (9) it follows that

∑

i∈A
|ai|s > (1− 2ε)φ(n)s

∥∥∥
n∑

i=1

aixi

∥∥∥
s
.(10)
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Let j1 be the smallest j ≥ 0 such that Aj is non-empty, and let k = |Aj0 |
be the cardinality of the largest set Aj0 among all Aj ’s. Then by (10),

k
∞∑

j=j1

2−js ≥
∞∑

j=j1

2−js|Aj | ≥
∑

i∈A
|ai|s

> (1− 2ε)φ(n)s
∥∥∥

n∑

i=1

aixi

∥∥∥
s
≥ (1− 2ε)φ(n)s2−j1s−s.

This shows that k is large when φ(n) is large, i.e., since φ(n) increases to
infinity with n, so does k.

Now by maximality of B,
∑

i∈C
|ai|s > ε

∥∥∥
∑

i∈C
aixi

∥∥∥
s

for every non-empty subset C ⊂ Aj0 . Since 2−j0−1 < |ai| ≤ 2−j0 for every
i ∈ Aj0 , it follows that∥∥∥

∑

i∈C
xi

∥∥∥ ≤ 2(1/ε)1/s|C|1/s ≤ (2/ε)|C|1/s

for all C ⊂ Aj0 .
Therefore we have shown that there exists a constant κ = 2/ε such that

for all k ∈ N there exists {xi}ki=1 ∈ {X}d such that ‖∑i∈C xi‖ ≤ κ|C|1/s for
all C ⊂ {1, . . . , k} and s < q.

Now by Krivine’s theorem, there is q′ ≥ s such that `nq′ ∈ {X}d for all n.

But since s < q was arbitrary and q is the power type of gd
X , it follows that

q′ = q, hence the proof of this case is complete.
The rd

X case. The proof of this case is similar but there are slight differ-
ences.

Let p be the power type of rd
X . If p = ∞, then since rX ≤ rd

X , the
power type of rX is also equal to infinity. Again it follows immediately from
Krivine’s theorem that `n∞ ∈ {X}n for all n.

Now suppose that p <∞, and fix p < r. For each n ≥ 1, let ψ(n) be the
smallest constant such that

∥∥∥
n∑

i=1

aixi

∥∥∥
r
≤ ψ(n)r

n∑

i=1

|ai|r

for all {xi}ni=1 ∈ {X}d and scalars {ai}. Since the power type of rd
X is p and

p < r, it follows that ψ(n) increases to infinity.
Fix 0 < ε < 1/2 and pick {xi}ni=1 ∈ {X}d and scalars {ai} such that∑n
i=1 |ai|r = 1 and

(11)
∥∥∥

n∑

i=1

aixi

∥∥∥
r
> (1− ε)ψ(n)r.
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Let (Bα)α∈I be a maximal family of mutually disjoint subsets of {1, . . . , n}
such that

(12)
∥∥∥

n∑

i=1

aixi

∥∥∥
r
≤ ε

∑

i∈Bα
|ai|r.

Let B =
⋃
α∈I Bα and m = |I|. Then
∥∥∥
∑

i∈B
aixi

∥∥∥
r

=
∥∥∥
∑

α∈I

∑

i∈Bα
aixi

∥∥∥
r
≤ ψ(m)r

∑

α∈I

∥∥∥
∑

i∈Bα
aixi

∥∥∥
r

(13)

≤ εψ(m)r
∑

α∈I

∑

i∈Bα
|ai|r ≤ εψ(n)r.

Let A denote the complement of B and for every j ≥ 0 let

Aj = {i ∈ A : 2−j−1 < |ai| ≤ 2−j}.
Then A =

⋃∞
j=0Aj because

∑n
i=1 |ai|r = 1. Let k = maxj≥0 |Aj |. Then

(14)
∥∥∥
∑

i∈A
aixi

∥∥∥ =
∥∥∥
∞∑

j=0

∑

i∈Aj
aixi

∥∥∥ ≤
∞∑

j=0

∥∥∥
∑

i∈Aj
aixi

∥∥∥ ≤ k
∞∑

j=0

2−j = 2k.

Hence, using (11), (13) and (14), we obtain

(1− ε)1/rψ(n) <
∥∥∥

n∑

i=1

aixi

∥∥∥ ≤
∥∥∥
∑

i∈B
aixi

∥∥∥+
∥∥∥
∑

i∈A
aixi

∥∥∥ ≤ ε1/rψ(n) + 2k,

which shows that k is large whenever ψ(n) is. Let j0 be such that |Aj0 | = k.
By maximality of B we deduce that for every non-empty subset C of Aj0 ,

∥∥∥
∑

i∈C
aixi

∥∥∥
r
> ε

∑

i∈C
|ai|r ≥ ε2−(j0+1)r|C|.

It follows that ∥∥∥
∑

i∈C
xi

∥∥∥ ≥ (1/2)ε1/r|C|1/r.

Since we can find such vectors {xi}ki=1 ∈ {X}d for all k ∈ N, the result again
follows from Krivine’s theorem. That is, `np ∈ {X}d for all n ∈ N.

We now give the proof of the remaining part of Proposition 5.2, as was
promised before.

Proof of Proposition 5.2 (the gd
X case). As already remarked in (6), there

exists 1 ≤ q ≤ ∞ such that for all ε > 0 there exists a constant cε > 0 such
that for all n, we have

cεn
1/q+ε ≤ gd

X

( n∑

i=1

ei

)
≤ Cn1/q.
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We first show the lower estimate, that is, for all ε > 0 there exists c′ε such
that gd

X(a) ≥ c′ε‖a‖q+ε.
For every ε > 0 and n ∈ N, let φε(n) be the smallest constant such that

‖a‖q+ε ≤ φε(n)gd
X

( n∑

i=1

aixi

)

for all vectors {xi}ni=1 with disjoint supports (in c00) such that gd
X(xi) = 1

for all i, and scalars a ∈ c00.
If supn φε(n) <∞ for every ε > 0, then there is nothing to prove.
Suppose that supn φε0(n) = ∞ for some ε0 > 0. Then it follows from

the exhaustion argument as in the proof of Theorem 5.6 (the gd
X case) that

there exists a constant κ > 0 such that for all n, there exist vectors {xi}ni=1

with disjoint supports such that gd
X(xi) = 1 for all i, and

gd
X

( n∑

i=1

xi

)
≤ κn1/q+ε0.

Now fix ε1 < ε0. Then there exists cε1 such that for all n,

cε1n
1/q+ε1 ≤ gd

X

( n∑

i=1

ei

)
≤ Cgd

X

( n∑

i=1

xi

)
≤ Cκn1/q+ε0.

When n is large enough, this is a contradiction. Therefore, for every ε > 0,
there exists 1/c′ε = supn φε(n) <∞ such that gd

X(a) ≥ c′ε‖a‖q+ε, as desired.

For the upper estimate, note that by Theorem 5.6, `nq ∈ {X}d for all

n ∈ N. This immediately implies that gd
X(a) ≤ ‖a‖q for all a ∈ c00. The

proof is now complete.

We end this section with a few remarks concerning the finite repre-
sentability problem for the (original) envelope functions.

First, observe that the answer to this problem is negative in general.
For instance, if (ei) is the summing basis for X = c0, then rX is equivalent
to ‖·‖1, where the asymptotic structure is with respect to the summing basis
(ei), but `n1 6∈ {X}n for large n. Moreover, a (non-reflexive) Banach space X
constructed in [KOS, Example 6.4] has the property that for all n, there
exists {ei}ni=1 ∈ {X}n such that ‖∑n

i=1 ei‖ = 1, in particular, gX ∼ ‖ · ‖∞,
and yet c0 is not block finitely representable in X, in particular, `n∞ 6∈ {X}n
for large n.

In these examples, the asymptotic structures are (necessarily) not un-
conditional (by Proposition 5.5).

It is likely that there are also examples of Banach spaces with asymptotic
unconditional structure with power types of the envelopes satisfying 1 <
p, q < ∞ and yet `np , `

n
q 6∈ {X}n for large n. However we do not know how

to construct such examples.
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Finally, we do not know if reflexivity plays a role in this problem. It is
open, for instance, if there exists a reflexive space X for which gX ∼ ‖ · ‖∞
and yet `n∞ 6∈ {X}n for large n. This was raised in [KOS, Problem 6.5].

6. Tirilman spaces. To complement the main result of the paper, we
show that the characterization of asymptotic-`p spaces given in Theorem 4.1
cannot be strengthened further, as stated in Question 1.1. Namely, we show
that for all 1 < p <∞, there is a Tirilman space X with the property that

for all n and permissible vectors {xi}ni=1 in X, we have ‖∑n
i=1 xi‖

K∼ n1/p

for some constant independent of n, and yet X is not an asymptotic-`p
space.

Additionally, as a consequence of Proposition 4.2, we also obtain a so-
lution to a conjecture of Casazza and Shura on the structure of Tirilman
spaces.

The Tirilman spaces are introduced and studied by Casazza and Shura
[CS]. Their definitions depend on a slight modification of the original spaces
constructed by L. Tzafriri [T] (the name “Tirilman” comes from the Roma-
nian surname of L. Tzafriri).

We now recall the definition and a few properties of these spaces, which
we shall use subsequently.

Let 1 < p <∞. Fix 0 < γ < 1. For all a = (ai) ∈ c00, let

‖a‖ = max

{
‖a‖∞, γ sup

∑k
j=1 ‖Eja‖
k1/q

}
,

where the inner supremum is taken over all finite successive sets of natural
numbers 1 ≤ E1 < · · · < Ek and all k, and 1/p+ 1/q = 1.

The Banach space (c00, ‖ ·‖), which is defined with the parameters p and
γ, is called a Tirilman space and denoted by Ti(p, γ).

It is immediate from the definition that the unit vectors {ei}∞i=1 form a
normalized 1-subsymmetric basis for Ti(p, γ).

Some of the known properties of these spaces, which we shall use, are
listed in the following theorem. For the proofs, see Lemma X.d.4 and The-
orem X.d.6 of [CS] (note that in [CS] the proofs are given for p = 2 only,
appropriate modifications are necessary for the general case).

Theorem 6.1. Let 1 < p < ∞. There exists 0 < γ < 1 such that the
following hold for Ti(p, γ).

(1) For any normalized successive blocks {xj}nj=1 of the basis {ei}i, we
have

γn1/p ≤
∥∥∥

n∑

j=1

xj

∥∥∥ ≤ 31/qn1/p.
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(2) Ti(p, γ) does not contain isomorphs of any `p (1 ≤ p <∞) or of c0.
In particular , Ti(p, γ) is a reflexive space.

Example 6.2. Let 1 < p < ∞. Then there exists 0 < γ < 1 such that
the Tirilman space X = Ti(p, γ) has the property that for all n and all

{ei}ni=1 ∈ {X}n, we have ‖∑n
i=1 ei‖

K∼ n1/p, where K depends on γ and p
only , and yet X is not an asymptotic-`p space.

Proof. By Theorem 6.1, there exists 0 < γ < 1 such that the Tirilman
space X = Ti(p, γ) has the property that for all n and successive blocks

{xj}nj=1 of the basis, we have γn1/p ≤ ‖∑n
j=1 xj‖ ≤ 31/qn1/p, and (2) holds.

In particular, the same estimates hold for all {ei}ni=1 ∈ {X}n, for all n. On
the other hand, since the basis {ei} is subsymmetric, if X were asymptotic-
`p, this would imply that the basis {ei} is equivalent to the unit vector basis
of `p. However, this contradicts part (2) of Theorem 6.1.

Moreover, Casazza and Shura conjecture that Ti(2, γ), where 0 < γ <
10−6, has a symmetric basis ([CS, Conjecture X.d.9]). (As shown in [CS],
for 0 < γ < 10−6 the conclusion of Theorem 6.1 holds.) However, this is not
the case, as the next theorem shows.

Theorem 6.3. Let 1 < p <∞ and let 0 < γ < 1 be as in Theorem 6.1.
Then Ti(p, γ) contains no symmetric basic sequences.

Proof. Suppose to the contrary that there is a symmetric basic sequence
{xi}∞i=1 in Ti(p, γ). By Theorem 6.1, Ti(p, γ) is reflexive, thus {xi} is weakly
null and by a sliding hump argument there exists a subsequence which is
equivalent to a block basis of the unit vector basis {ei} of Ti(p, γ) (cf. Propo-
sition 1.a.12 of [LT]). Since the sequence {xi} is symmetric, it is equivalent
to all of its subsequences, in particular, {xi} itself is equivalent to a block
basis of {ei}. Now it follows from the first part of Theorem 6.1 that for all n
and all normalized successive blocks {ui}ni=1 of {xi}, we have

γn1/p ≤
∥∥∥

n∑

i=1

ui

∥∥∥ ≤ 31/qn1/p.

By symmetry of {xi}, the same estimates hold for all normalized vectors
{ui}ni=1 with disjoint supports with respect to {xi}. Thus by Proposition
4.2, {xi} must be equivalent to the unit vector basis of `p, which contradicts
the second part of Theorem 6.1.

The definition of Ti(p, γ) in [CS] was modelled on spaces constructed by
Tzafriri in [T]. This definition was fully analogous to that of the Tirilman
spaces, except that in the implicit equation of the norm the inner supremum
is taken over all disjoint subsets Ej of the natural numbers (rather than
successive ones) [T]. In this case, as is easily seen, the unit vectors form a
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symmetric basis for the space. In the literature on Tsirelson-like spaces, the
Tzafriri spaces are the modified Tirilman spaces (cf. [CS]).

It is well known, for instance, that the modified Tsirelson space is canon-
ically isomorphic to the Tsirelson space, that is, the unit vector bases are
equivalent (cf. [CS]).

A natural question then was raised in [CS] (see X.D. Notes and Re-
marks 3) whether the same holds for the Tirilman spaces. It follows imme-
diately from Theorem 6.3 that the answer is negative. In fact, Theorem 6.3
has the following consequence.

Corollary 6.4. Let 1 < p < ∞ and let 0 < γ < 1 be as in Theorem
6.1. Then the Tzafriri space with these parameters p and γ does not imbed
into Ti(p, γ).

Final remarks. Recently, M. Junge, D. Kutzarova and E. Odell [JKO]
proved that a Banach space X satisfying the assumptions of Question 1.1
contains an asymptotic-`p subspace. In particular, any Tirilman space
Ti(p, γ) has an asymptotic-`p subspace. They have also shown that c0 is
disjointly finitely representable in Ti(p, γ). The latter result gives another
proof for Corollary 6.4, because c0 cannot be finitely representable in the
modified version of these spaces.
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