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Descriptive compact spaces and renorming

by

L. Oncina and M. Raja (Murcia)

Abstract. We study the class of descriptive compact spaces, the Banach spaces gen-
erated by descriptive compact subsets and their relation to renorming problems.

1. Introduction. Compact Hausdorff spaces which are fragmentable by
a finer metric have been studied by many authors; see the book [7] for an ac-
count of this class of compacta. In this paper we shall consider a subclass D
of fragmentable compact spaces [26] that will allow us to construct an equiv-
alent dual strictly convex norm on a dual Banach space X∗ if the dual unit
ball lies in D. We have to introduce some terminology. Let {Hi : i ∈ I} be
a family of subsets of a topological space (X, τ). The family is said to be
isolated if it is discrete in its union endowed with the relative topology, that
is, if for every i ∈ I and every x ∈ Hi, there is a τ -neighbourhood U of x
such that Hj ∩ U = ∅ for every j ∈ I, j 6= i. If it is possible to pick U from
some given family S ⊂ τ , we say that the family is isolated with respect to S.
If there is a decomposition I =

⋃∞
n=1 In such that every family {Hi : i ∈ In}

is isolated (with respect to S), then the family {Hi : i ∈ I} is said to be
σ-isolated (with respect to S). Finally, a family N of subsets of X is said to
be a network for the topology of X if every open set is a union of members
of N.

Definition 1.1. A compact Hausdorff space K is said to be a descrip-
tive compact space if its topology has a σ-isolated network.

The class of topological spaces having a σ-isolated network generalizes in
a natural way metrizable spaces (Bing–Nagata–Smirnov Theorem, see e.g.
[16]). These spaces were first studied by Hansell in his pioneering work [10]
recently published in [12]. He proved there, among other results, that if a
topological space is fragmented by a finer metric, then it has a σ-isolated
network if, and only if, it has a certain covering property, namely, the space is

2000 Mathematics Subject Classification: 46B26, 46B03, 46B20, 54D20.
Research partially supported by the D.G.E.S. grant PB98-0381.

[39]



40 L. Oncina and M. Raja

hereditarily weakly θ-refinable. Descriptive Banach spaces have been studied
in [12, 21] and also in the context of renorming theory in [18, 19, 23–25].

The first clear example of a descriptive compact space one may come
across is any metrizable compactum. Embeddings into c0(Γ ) of Eberlein
compacta show that they are descriptive, since (c0(Γ ), pointwise) has a
σ-isolated network [12, 21]. More generally, Gul’ko compact spaces are also
known to be descriptive (see for instance [26]). Scattered compacta K with
K(ω1) = ∅ are also descriptive: just consider as singletons the points of
each relatively discrete set {K(α) \ K(α+1) : 0 ≤ α < γ}, where γ < ω1

is such that K(γ) = ∅. Corson compact spaces defined by “almost disjoint
families of sets” are also descriptive (see Remark 4.6), which includes an
interesting compactum (Example 4.5), built by Argyros and Mercourakis
[1]. On the other hand, the compactum [0, ω1] is not descriptive ([12], see
also Example 4.4).

Let us now turn our attention to renorming problems. Some results have
recently been obtained showing that geometrical properties such as the ex-
istence of equivalent Kadec or locally uniformly rotund (LUR) norms in a
Banach space X can be characterized by the existence of certain types of
networks of the norm topology which are σ-isolated for the weak topology
of X (LUR norms [18, 19, 24], dual LUR norms [24, 25] and Kadec norms
[23]). Recently, in [8], it has been proved that the dual unit ball (with its
weak∗ topology) is uniformly Eberlein if, and only if, the dual space has
a w∗-UR equivalent norm, which is equivalent to X having a uniformly
Gateaux smooth equivalent norm. We shall introduce a general concept of
τ -LUR norm, for τ a locally convex topology.

Definition 1.2. A norm ‖ · ‖ on X is said to be τ -locally uniformly
rotund at a point x ∈ X if for every (xn) ⊂ X with limn ‖xn‖ = ‖x‖ and
limn ‖x+ xn‖ = 2‖x‖, we have τ -limn xn = x.

A norm ‖ · ‖ on X is said to be τ -locally uniformly rotund (τ -LUR) if it
is τ -lower semicontinuous and τ -locally uniformly rotund at every x ∈ X.

For the case of the weak topology, Moltó, Orihuela, Troyanski and Val-
divia [19] proved that a w-LUR Banach space has an equivalent LUR norm.
Mercourakis showed that the space c1(Σ′×Γ ) has a pointwise-LUR equiva-
lent norm. He used that fact to build an equivalent w∗-LUR norm in a dual
of a WCD Banach space (see also [6]). The main result in [26] shows that a
dual Banach space X∗ admits an equivalent w∗-LUR norm if, and only if,
(BX∗ , w∗) is a descriptive compact space.

In this paper we give sufficient and necessary conditions on a Banach
space X and a locally convex topology τ to obtain a τ -LUR norm (equiv-
alent or coarser) on X. For a total subspace F ⊂ X∗ we shall consider its
associated norm pF (x) = sup{x∗(x) : x∗ ∈ BX∗ ∩ F}. Recall that F is
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called norming if pF is an equivalent norm on X. Our main result concerns
“descriptively generated spaces”:

Theorem 1.3. Let X be a Banach space, F ⊂ X∗ a total subspace and
K ⊂ X a descriptive σ(X,F )-compact subset such that X = span‖·‖(K).
Then:

(1) X admits a coarser σ(X,F )-LUR norm and the topology σ(X,F ) on
X has a σ-isolated network.

(2) Moreover , if K is fragmented by pF , then X admits a coarser norm
which is pF -LUR and σ(X,F )-lower semicontinuous.

(3) The norms given in (1) and (2) can be taken equivalent to the original
norm of X if , and only if , F is norming.

This theorem covers both the cases of weakly compactly generated Ba-
nach spaces and dual Banach spaces such that (BX∗ , w∗) is a descriptive
compactum. Since a weakly compact subset of a Banach space is descrip-
tive and norm fragmented, we get Troyanski’s result: a WCG Banach space
is LUR renormable (see [6]). The theorem also applies to Banach spaces
with a Markushevich basis. Indeed, if {xα, fα} is an M-basis on X, and
F = span‖·‖{fα}, then {xα}∪ {0} is a descriptive σ(X,F )-compact set that
generates X. Statement (2) above can also be deduced from the results
of [25]. The topological properties of Banach spaces generated by a norm
fragmentable compact space have recently been studied in [5].

Recall that descriptive compact spaces are fragmentable ([26], see Corol-
lary 2.6 for a self-contained proof). In Section 2 we study the structure of
a descriptive compactum with respect to a finer fragmenting metric. Sec-
tion 3 is devoted to renorming, including the proof of Theorem 1.3. In the
last section we show that the class of descriptive compacta has behaviour
similar to the class of fragmentable compacta, studied by Ribarska [27] (see
also [7]). Moreover, descriptive compact spaces have nicer properties than
fragmentable ones (see Proposition 4.2). We also discuss some examples to
show the scope of the class of descriptive compacta.

2. Spaces with σ-isolated network. Hansell’s definition of descrip-
tive topological spaces [12], later called isolated-analytic spaces in [11], is
quite technical. In the case of a compact topological space, being descrip-
tive in the sense of Hansell is equivalent to satisfying the condition of Defi-
nition 1.1.

The following definition has been used in [23–25].

Definition 2.1. Let S1 and S2 be families of subsets of a given set X.
We say that X has P (S1,S2) with a sequence (An) of subsets of X if for
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every x ∈ X and every V ∈ S1 with x ∈ V , there is n ∈ N and U ∈ S2 such
that x ∈ An ∩ U ⊂ V .

One can easily realize that this generalized property P is also transitive,
that is, if X has P (S1,S2) and P (S2,S3) then X has P (S1,S3).

Very often one of families linked by the symbol P ( , ) is a topology
on X. In this context, the topology generated by a given metric d will also
be denoted by d.

The following result links our property P with the existence of σ-isolated
networks. The implication (i)⇔(iii) appears in [10] for topologies.

Theorem 2.2. Let (X, τ) be a regular topological space and let S be a
subfamily of τ . The following statements are equivalent :

(i) τ has a network which is σ-isolated with respect to S.
(ii) There is a finer metric d such that X has P (d,S).
(iii) There is a finer metric d such that X has P (d,S) with a sequence

of τ -closed sets.
(iv) There exists a finer metric d, τ -closed sets An and families {Ui : i ∈

In} of τ -open sets which are unions of sets from S, such that the
families {An∩Ui : i ∈ In} are disjoint and {An∩Ui : n ∈ N, i ∈ In}
is a network for d.

Proof. (i)⇒(iii). The first step will be to show that there is a metric d
such that X has P (d, τ) with a sequence of τ -closed sets, so it is enough to
assume that the network is simply σ-isolated. Let {Hi : i ∈ I} be a network
and I =

⋃∞
n=1 In, where each family {Hi : i ∈ In} is isolated. Since X is

regular, the family {Hτ
i : i ∈ I} is also a network for τ . Take now τ -open

sets Ui for i ∈ In such that
Hi ⊂ Ui, Ui ∩

⋃
{Hj : j ∈ In, j 6= i} = ∅.

Set A1
n =

⋃
i∈In Hi

τ
. Since Ui is open, we have Hi ⊂ A1

n ∩Ui ⊂ H
τ
i . This

implies that {A1
n ∩ Ui : n ∈ N, i ∈ In} is a network for τ .

Put A2
n = A1

n \
⋃
i∈In Ui. For every n ∈ N, the family

Bn = {A2
n, X \A1

n, A
1
n ∩ Ui : i ∈ In}

is a partition of X. It is easy to see that
⋃∞
n=1 Bn is a subbasis for a metriz-

able topology. Let d be a compatible metric with that topology. It is clear
that d is finer than τ because

⋃∞
n=1 Bn contains a network of τ . On the

other hand, every basic d-open set is a finite intersection of a τ -open set
with, possibly, sets of type A1

n and A2
n. This shows that X has P (d, τ) with

the countable collection of the finite intersections of A1
n’s and A2

n’s.
Assume now that the network is σ-isolated with respect to S. We claim

that X has P (τ,S) with a sequence of τ -closed sets. As above consider
A1
n =

⋃
i∈In Hi

τ
. Take x ∈ X and some τ -neighbourhood U of x. Take a
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τ -neighbourhood V of x such that V
τ ⊂ U . For some n ∈ N, there is i ∈ In

such that x ∈ Hi ⊂ V . Take S ∈ S such that x ∈ S and Hi ∩ S ⊂ V . Then

A1
n ∩ S ⊂ Hi ∩ Sτ ⊂ U,

which proves the claim. Transitivity of P shows that X has P (d,S) with a
sequence of τ -closed sets.

(iii)⇒(iv). Assume that X has P (d,S) with a sequence (An) of τ -closed
sets. Let {Bj : j ∈ J} be a basis of the d-topology with J =

⋃∞
n=1 Jn, where

every family {Bj : j ∈ Jn} is discrete. This is possible by the Bing–Nagata–
Smirnov Theorem [16]. Put

I = J × N, In,m = Jn × {m}, An,m = Am.

For i = (j,m) ∈ In,m let Ui the largest union of sets from S (maybe empty)
such that Am ∩ Ui ⊂ Bj. Then {An,m ∩ Ui : i ∈ In,m} is disjoint and
{An,m ∩Ui : (n,m) ∈ N×N, i ∈ In,m} is a network for d. Finally enumerate
N× N.

(iii)⇒(ii) is trivial.
(ii)⇒(i). The same proof as in (iii)⇒(iv) gives a network for d which is

σ-isolated with respect to S. A network for d is also a network for τ because
the d-topology is finer that τ .

Recall the definition of fragmentability, due to Jayne and Rogers [14].

Definition 2.3. Let (X, τ) be a topological space and d a metric on X.
We say that X is fragmentable by d if for every ε > 0 and every nonempty
A ⊂ X there is U ∈ τ such that A ∩ U 6= ∅ and diam(A ∩ U) < ε.

The following notion has been considered in topology, among the so
called “covering properties” (see [3]).

Definition 2.4. A topological space X is said to be weakly θ-refinable
(or weakly submetacompact) if every open cover of X has a σ-isolated (not
necessarily open) refinement. If every subspace of X is weakly θ-refinable,
then X is hereditarily weakly θ-refinable.

The interest of the notion of hereditarily weakly θ-refinable space is that
it seems to be the most general and reasonable ingredient that allows one
to pass from “scattered” properties to “isolated” ones. Compare this result
with Theorem 2.2:

Theorem 2.5. Let X be a hereditarily Baire space and let d be a finer
metric on X. Then the following statements are equivalent :

(i) X is hereditarily weakly θ-refinable and fragmented by d.
(ii) X has P (d, τ) with a sequence of τ -closed sets.

Proof. (i)⇒(ii) is shown in [26].
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(ii)⇒(i). By Theorem 2.2, X has a σ-isolated network. It is easy to check
that a topological space having a σ-isolated network is hereditarily weakly
θ-refinable. Let X have P (d, τ) with a sequence (An) of τ -closed sets. Fix
ε > 0 and let C ⊂ X be a nonempty τ -closed set. Define

Cn = {x ∈ C ∩An : ∃U ∈ τ, x ∈ U, diam(An ∩ U) < ε}.
Since C =

⋃∞
n=1Cn, by the Baire property for some n ∈ N there exists

V ∈ τ such that ∅ 6= C ∩ V ⊂ C
τ
n. In particular we can take x ∈ Cn ∩ V .

Let U ∈ τ be such that x ∈ U and diam(An ∩ U) < ε. We have

x ∈ C ∩ V ∩ U ⊂ Cτn ∩ U ⊂ An ∩ U
and therefore diam(C ∩ V ∩ U) < ε.

Corollary 2.6. Let X be a hereditarily Baire space with a σ-isolated
network. Then the finer metric d given by Theorem 2.2(iii) is a fragmenting
metric.

Corollary 2.7. If (X, τ) is a regular hereditarily weakly θ-refinable
topological space fragmented by a finer metric d, then the τ -Borel sets coin-
cide with the d-Borel sets in X.

Proof. Property P (d, τ) with a sequence of τ -Borel sets easily implies
that every d-Borel set is a τ -Borel set (see [23] for details).

3. Banach spaces and renorming. The first basic relation between τ -
LUR renormability and the existence of σ-isolated networks for some vector
topology τ is given by the following result.

Proposition 3.1. Let (X, τ) be a locally convex space. If X admits a
τ -LUR norm, then (X, τ) has a network which is σ-isolated with respect to
τ -open halfspaces.

Proof. In [19] it is proved that the weak topology of a w-LUR Banach
space has a σ-isolated network. For the weak∗ topology of a w∗-LUR Banach
space this is shown in [26] using a different approach. Both methods can be
easily adapted to prove that if X has a τ -LUR norm, then (X, τ) has a
σ-isolated network.

By Theorem 2.2 we may consider a finer metric d defined on X such that
X has P (d, τ). In order to prove the proposition, we need to show that X has
P (d,S), where S denotes the family of τ -open halfspaces. The transitivity
of P implies that it is enough to prove that X has P (τ,S).

Fix x ∈ X and a τ -neighbourhood U of x. We claim that there exist two
rational numbers 0 < s < r with s < ‖x‖ < r such that the inequalities

s < ‖y‖ < r and 2s < ‖x+ y‖ < 2r
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imply that y ∈ U . If not, then we could obtain a sequence yn ∈ X \ U such
that

lim
n
‖yn‖ = ‖x‖, lim

n
‖x+ yn‖ = 2‖x‖,

which would contradict the fact that ‖ · ‖ is τ -LUR. By the Hahn–Banach
Theorem, we can find a τ -open halfspace H such that x ∈ H and B[0, s] ∩
H = ∅. Now, if y ∈ B[0, r] ∩H, then s < ‖(x+ y)/2‖ < r, so y ∈ U . This
proves that X has P (τ,S).

The following result is in [26].

Theorem 3.2. Let K be a descriptive compact space and let d be a finer
metric fragmenting K. Then there is an equivalent dual norm ||| · ||| on C(K)∗

such that for every bounded d-continuous function f : K → X with values
in a normed space,

lim
n

∥∥∥
�
f dµn −

�
f dµ

∥∥∥ = 0

whenever the measures µ, µn ∈ C(K)∗ are such that limn |||µn||| = |||µ||| and
limn |||µ+ µn||| = 2|||µ|||. In particular , ||| · ||| is a w∗-LUR norm.

It follows from the previous result that a compact Hausdorff space is
descriptive if, and only if, it embeds as a weak∗-compact subset of a w∗-LUR
dual Banach space.

The following is a version for w∗-LUR norms of the transfer technique
of Godefroy, Troyanski, Whitfield and Zizler [6, Theorem II.2.1] developed
for LUR norms.

Proposition 3.3. Let T : Y ∗ → X∗ be a w∗-w∗-continuous linear op-
erator between dual Banach spaces. If the norm of Y ∗ is w∗-LUR, then X∗

has an equivalent dual norm which is w∗-LUR at the points of T (Y ∗)
‖·‖

.

Proof. If T were surjective, it is not difficult to prove that an equivalent
w∗-LUR norm ||| · ||| on X∗ would be defined by the formula

|||x∗||| = inf{‖y∗‖ : T (y∗) = x∗}.
In the general case, the construction can be done as follows. For every

k ∈ N define an equivalent dual norm ‖ · ‖k on X∗ by the formula

‖x∗‖2k = inf{‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 : y∗ ∈ Y ∗}.
Notice that due to the weak∗ continuity of the map and the lower semi-
continuity of the norms, the infimum is attained. Define

|||x∗|||2 =
∞∑

k=1

2−k‖x∗‖2k.

It is not difficult to show that ||| · ||| is an equivalent norm. In order to show
that it is w∗-LUR we shall follow the proof of [6, Theorem II.2.1]. So assume
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x∗ ∈ T (Y ∗)
‖·‖

and (x∗n) ⊂ X∗ are such that

lim
n

(2|||x∗|||+ 2|||x∗n||| − |||x∗ + x∗n|||) = 0.

Given ε > 0 and x ∈ BX , let y∗ ∈ Y ∗ be such that for k large enough,

‖x∗‖2k = ‖x∗ − T (y∗)‖2 + k−1‖y∗‖2 ≤ ε/4,
in particular ‖x∗ − T (y∗)‖ ≤ ε/4. For this fixed k, let y∗n ∈ Y ∗ be such that

‖x∗n‖2k = ‖x∗n − T (y∗n)‖2 + k−1‖y∗n‖2.
Following a standard convexity argument we obtain

lim
n
‖x∗n − T (y∗n)‖ = ‖x∗ − T (y∗)‖,(1)

lim
n

(2‖y∗‖2 + 2‖y∗n‖ − ‖y∗ + y∗n‖) = 0.(2)

Now since ‖ ·‖ on Y ∗ is w∗-LUR, (2) implies y∗n → y∗ in the weak∗ topology.
Also, for n ≥ n0, |(T (y∗n−y∗))(x)| ≤ ε/4, and by (1), |(T (y∗n)−x∗n)(x)| ≤ ε/2.
So |(x∗ − x∗n)(x)| ≤ ε as we wanted.

Corollary 3.4. Continuous images of descriptive compacta are descrip-
tive.

Proof. Let T : K1 → K2 be a continuous surjection and suppose that K1
is descriptive. The map T can be extended to a linear w∗-w∗-continuous sur-
jective operator T̃ : C(K1)∗ → C(K2)∗. Since C(K1)∗ has an equivalent w∗-
LUR norm, by the former proposition C(K2)∗ is also w∗-LUR renormable,
and this implies that K2 is descriptive.

Remark 3.5. More generally, it is known that the properties of having
a σ-isolated network and being hereditarily weakly θ-refinable are preserved
under perfect maps [4].

Corollary 3.6. Let X and Y be Banach spaces and let F ⊂ X∗ be
a total subspace. Assume that Y ∗ is w∗-LUR and there is a bounded linear
operator T : Y ∗ → X with dense range which is also w∗-σ(X,F )-continuous.
Then there exists a coarser norm on X which is σ(X,F )-LUR (the norm
can be taken equivalent if and only if F is norming).

Proof. We may consider (X,σ(X,F )) as a topological subspace of
(F ∗, w∗). We shall regard T as an operator into F ∗. Clearly T is bounded
and w∗-w∗-continuous. Let ‖ · ‖∗ be the dual norm on F ∗. Since the restric-
tion to X of ‖ · ‖∗ is ‖ · ‖F and this norm is coarser than the norm of X we
get X ⊂ span‖·‖

∗
(TY ∗). The application of Proposition 3.3 will give a dual

norm on F ∗ (so equivalent to ‖ · ‖∗) which is w∗-LUR at the points of X
and the restriction to X of this norm is the desired σ(X,F )-LUR norm.

Denote by acow
∗
(K) the w∗-closed absolutely convex hull of a subset

K ⊂ X∗. The following is an easy consequence of Corollary 3.4.
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Corollary 3.7. Let K be a w∗-compact subset of a dual Banach
space X∗. If K is descriptive, then acow

∗
(K) is also descriptive.

Proof. By [26], the unit ball of C(K)∗ is a descriptive compactum. Each
point of acow

∗
(K) is the barycenter of some measure from BC(K)∗ and the

map is continuous, thus acow
∗
(K) is the continuous image of a descriptive

compactum.

We are now able to prove our Main Theorem from the introduction.

Proof of Theorem 1.3. As in the proof of Corollary 3.6 we may embed X
into the dual space F ∗. Thus, without loss of generality we shall assume that
K ⊂ X∗ is a descriptive w∗-compact subset. We have to prove that X∗ ad-
mits an equivalent dual norm which is w∗-LUR at the points of span‖·‖(K).
Consider the operator T : C(K)∗ → F ∗ defined by T (µ) = � I dµ.

Statement (1) follows by direct application of Proposition 3.3.
If K is fragmented by pF , that is, the norm of F ∗, then we shall use

Theorem 3.2 in its full generality. In that case, the w∗-LUR norm ‖ · ‖ on
C(K)∗ given by the theorem has the following property: if

lim
n
‖µn‖ = ‖µ‖, lim

n
‖µn + µ‖ = 2‖µ‖ for µ, µn ∈ C(K)∗,

then
lim
n
‖T (µn − µ)‖ = 0.

Minor changes in the proof of Proposition 3.3 show that the norm ||| · ||| on
F ∗ is LUR.

To prove (3) observe that the norms obtained in X are equivalent to pF ,
and that norm is equivalent to the norm of X if, and only if, F is norming.
On the other hand, if X has an equivalent σ(X,F )-LUR norm, then F
should be a norming subspace.

Corollary 3.8. Let X be a Banach space, F ⊂ X∗ a total subspace and
K ⊂ X a descriptive σ(X,F )-compact subset such that X = span‖·‖(K).
Then X admits an equivalent rotund norm.

Proof. Let ‖·‖1 be the coarser σ(X,F )-LUR norm given by Theorem 1.3.
It is easy to verify that the norm ‖ · ‖2 = ‖ · ‖+ ‖ · ‖1 is an equivalent rotund
norm on X.

The proof of Theorem 1.3 actually gives the following.

Corollary 3.9. If X∗ is a dual Banach space and K ⊂ X∗ is a de-
scriptive w∗-compact subset , then X∗ has an equivalent dual norm which is
w∗-LUR at the points of span‖·‖(K). Moreover , if span‖·‖(K) = X∗ then
(BX∗ , w∗) is also a descriptive compact space.

We also collect the stability properties of the class of Banach spaces with
descriptive dual ball.
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Proposition 3.10. The class of Banach spaces with descriptive dual
unit ball , which we shall denote by D∗, has the following properties:

(i) If X ∈ D∗ and T : X → Y is a bounded linear operator such that
T (X) is dense in Y , then Y ∈ D∗. In particular D∗ is stable under
quotients.

(ii) If Y ∈ D∗ and T : X → Y is a bounded linear operator such that
T ∗(Y ∗) is dense in X∗, then X ∈ D∗. In particular D∗ is stable
under closed subspaces.

(iii) If Xi ∈ D∗ for i ∈ I then
⊕

i∈I Xi ∈ D∗ for c0 and `p sums where
1 < p <∞. If I is countable, the result also holds for p = 1.

Proof. (i) T ∗ is one-to-one and therefore T ∗((BY ∗ , w∗)) is homeomorphic
to a w∗-compact subset of X∗, hence descriptive.

(ii) follows from Proposition 3.3.
(iii) Fix, on each space Xi, a norm such that the dual norm on X∗i is

w∗-LUR. For the c0 sum we may define an equivalent norm ||| · ||| on
(⊕c0

i∈I
Xi

)∗
=
⊕`1

i∈I
X∗i

by the formula

|||(x∗i )i∈I |||2 =
(∑

i∈I
‖x∗i ‖

)2
+
∑

i∈I
‖x∗i ‖2.

It is not difficult to check that the norm ||| · ||| is an equivalent w∗-LUR norm.
For the `p sum with p ∈ (1,∞), the `q sum of the dual spaces, where q is
the conjugate exponent, is w∗-LUR. For I countable, it is easy to verify that
the unit ball of (

⊕`1
i∈I Xi)∗ =

⊕`∞
i∈I X

∗
i is homeomorphic to the descriptive

compact space
∏
i∈I BX∗i (see Proposition 4.1).

Remark 3.11. The class D∗ fails to have the three space property. In [7,
Theorem 2.3.1] there is given an example of a Banach space X which is not
weak Asplund and has a separable subspace Y such that X/Y is Asplund
and WCG.

4. Topological properties of descriptive compact spaces. In this
section we study how “nice” the topology of a descriptive compactum is,
and the behaviour under topological operations of the class of descriptive
compacta. We shall also discuss some examples.

The following proposition puts together some stability properties of the
class of descriptive compact spaces. Notice that fragmentable compacta have
the same properties [7].

Proposition 4.1. Denote by D the class of descriptive compact spaces.
The class D is stable under closed subspaces, countable products, one-point



Descriptive compact spaces and renorming 49

compactifications of discrete collections, and continuous images. If K ∈ D,
then BC(K)∗ ∈ D. Finally , if K is compact , d a lower semicontinuous metric
on K and there are closed subsets Kn ⊂ K such that Kn ∈ D and K =⋃∞
n=1Kn

d
, then K ∈ D.

Proof. The nontrivial properties follow from Corollary 3.4 and Theo-
rem 3.2. Only the last one needs a proof. Assume that d is a lower semi-
continuous metric on K. By a result in [13] we may assume that K is a
w∗-compact subset of a dual X∗ and d is induced by the norm metric. Take

K0 =
∞⋃

n=1

n−1Kn ∪ {0},

which is a descriptive w∗-compact subset of X∗. Corollary 3.9 implies that
there is a dual norm onX∗ which is w∗-LUR at the points of Y = span‖·‖(K0).
Proposition 3.1 shows that (Y, σ(Y,X)) has a σ-isolated network. The hy-
pothesis implies that K is a subset of Y , therefore it is a descriptive com-
pactum.

A topological space X is said to be Fréchet–Urysohn if every cluster
point of some subset A ⊂ X is the limit of a sequence in A. The following
result shows that descriptive compacta are close to Fréchet–Urysohn spaces.

Proposition 4.2. If K is a descriptive compact space, then:

(i) K is sequentially compact.
(ii) Countably compact subsets of K are closed.
(iii) Hereditarily separable closed subsets of K are metrizable.

Proof. (i) Any fragmentable compact space is sequentially compact
[7, 20].

(ii) In [3, Theorem 9.2] it is proved that any weakly θ-refinable countably
compact space is compact.

(iii) follows from a much more general result [15, Corollary 9].

Corollary 4.3. A descriptive compact space has countable tightness
and its sequentially closed subsets are closed.

A straightforward consequence of this corollary is the following example
of a nondescriptive compactum (see also [12]).

Example 4.4. The interval [0, ω1] is not descriptive.

Alternative ways to obtain the same conclusion is to prove that the Borel
sets in [0, ω1] do not coincide with the Borel sets for the discrete topology
[29] and to apply Corollary 2.7; or to prove that [0, ω1] is not a Gruenhage
space [28]. The “long James space” J(ω1) (see [2]) is a bidual Banach space
with the Radon–Nikodym property which contains a weak∗ compact subset
homeomorphic to [0, ω1], so its unit ball cannot be descriptive.
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The unit ball of a dual space having a strictly convex dual norm is
weak∗ fragmentable. Neither fragmentable nor Radon–Nikodym compacta
[20] can be characterized by embeddings into dual Banach spaces with a
strictly convex dual norm. Indeed, small changes in the proof of [6, Theorem
VII.5.2] imply that the compact space [0, ω1] does not embed into a dual
Banach space with an equivalent strictly convex dual norm. We do not know
if C(K)∗ can be renormed with a strictly convex dual norm when K is a
fragmentable compact space not containing a copy of [0, ω1].

There are separable, nonmetrizable and scattered compacta K such that
K(3) = ∅ (see e.g. [6, Example VI.8.7]). In consequence, there exist descrip-
tive compact spaces which are not Gul’ko, nor even Corson. Recall that a
compact space is called Corson if it is homeomorphic to a subset of [0, 1]Γ

made up of elements with countable support, and it is called Rosenthal if
it is homeomorphic to a subset of functions of first Baire class on a Pol-
ish space. Since Gul’ko compacta are Corson (see e.g. [6, 7]), the following
example is interesting to distinguish between those classes.

Example 4.5. There exists a compact Hausdorff space K which is Cor-
son, Rosenthal, not Gul’ko and descriptive.

Proof. That compactum was built by Argyros and Mercourakis [1] and
we only have to prove its descriptiveness. To do that we use the construction
of the compactum as presented in [7, Section 7.3]. Consider the sets Dn of
continuous functions on K defined for n ≥ 2, and take D =

⋃
n≥2Dn (the

set D in [7] also contains the constant function 1, but for our argument it
is better to avoid it). A bounded linear operator T : C(K)∗ → c0(D) is
defined. In the following, consider C(K)∗ with the weak∗ and c0(D) with
the pointwise topologies, which also make T continuous. In particular, T (K)
is Eberlein. From the definitions of K and T it follows easily that L =
{x ∈ K : T (x) = 0} is the one-point compactification of a discrete set and
T is a homeomorphism from K \ L onto T (K) \ {0}. We deduce that the
relative topologies on the sets L and K \ L have a σ-isolated network, and
therefore K is descriptive.

Remark 4.6. Using a similar argument, it is not difficult to show that
any Corson compact space defined by an almost disjoint family of subsets
of N (for the definition see [1, 17]) is descriptive.

We finish with an approximation to [6, Problem VII.2], where topological
conditions on the bidual ball BX∗∗ are suggested to guarantee that X has
an equivalent LUR norm.

Proposition 4.7. Let X be a Banach space such that (BX∗∗ , w∗) is de-
scriptive. Then (BX∗∗ , w∗) is a compact Fréchet–Urysohn space and X has
an equivalent LUR norm.
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Proof. The restriction of a w∗-LUR norm on X∗∗ to X is a w-LUR
norm, thus X has an equivalent LUR norm by [19]. Since BX∗∗ is sequen-
tially compact, X cannot contain an isomorphic copy of l1(N). If A ⊂ BX∗∗
and x∗ ∈ A

w∗
, then since BX∗∗ has countable tightness, there is A0 ⊂ A

countable such that x∗ ∈ A
w∗

0 . Using again the countable tightness, take
a separable subspace X0 ⊂ X such that A0 ⊂ X

w∗

0 . This implies that we
can work inside X∗∗0 . By a well known result of Rosenthal, BX∗∗0 is Fréchet–
Urysohn, thus we can find a sequence in A0 weak∗ convergent to x∗.

The following example shows that not much more can be expected. The
James Tree Space JT (see e.g. [9]) is a separable space such that JT ∗ is not
separable and JT ∗∗ is isomorphic to JT⊕l2(Γ ) with Γ uncountable, so JT ∗∗

is WCG and thus BJT ∗∗ endowed with the weak∗ topology is a descriptive,
Radon–Nikodym, Rosenthal, separable and nonmetrizable compact space.

Now [6, Problem VII.2] can be rewritten as follows: If a compact space is
fragmentable and Corson, will it be descriptive? If the fragmenting metric is
lower semicontinuous the answer is yes as a consequence of a result by Ori-
huela, Schachermayer and Valdivia [22], because in this case the compactum
is Eberlein.
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