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Some properties of packing measure with doubling gauge
by

SHENG-YOU WEN (Hubei) and ZHI-YING WEN (Beijing)

Abstract. Let g be a doubling gauge. We consider the packing measure P9 and the
packing premeasure Pg in a metric space X. We first show that if ’Pg (X) is finite, then as
a function of X, 7367 has a kind of “outer regularity”. Then we prove that if X is complete
separable, then Asup P§(F) < P9(B) < sup P§(F) for every Borel subset B of X, where
the supremum is taken over all compact subsets of B having finite Pg -premeasure, and A
is a positive number depending only on the doubling gauge g. As an application, we show
that for every doubling gauge function, there is a compact metric space of finite positive
packing measure.

1. Introduction. Let g: [0,00) — [0,00) be a gauge, i.e., a function
which is non-decreasing for ¢t > 0, right-continuous at ¢ = 0, and g(t) = 0
if and only if £ = 0. A gauge g is said to be doubling if there are numbers
¢,d > 0 such that g(2t) < cg(t) for all ¢t € (0,6). For a doubling gauge g we
introduce a non-decreasing function g.(z) as follows:

(1) g«(x) = lim inf z € [0,00).
We write g.(1 — 0) for the left limit of g.(z) at x = 1.

Let X be a metric space. Let £ C X and § > 0. A é-packing of E
is defined to be a countable family {B(z;,r;)} of disjoint closed balls with
2r; < 0 and centers z; € E. The packing premeasure of E with respect to
the gauge ¢ is defined by

PY(E) = lim PI(E),
where P{(E) :=sup Y g(2r;), the supremum being taken over all §-packings
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of E. The packing measure of E with respect to the gauge ¢ is defined by

1nf{z730 ECUE}

The packing premeasure and measure with respect to the gauge t* (s>0),
which we denote by P§ and P? respectively, are the ordinary s-dimensional
packing premeasure and measure. From the definitions above, P§ is mono-
tonic and finitely subadditive, and PY is an outer measure of PJ; for more
details, we refer to [3], [8], [9].

Let K C R"™ be a compact set and 0 < s < n. Feng, Hua and Wen [4]
proved that if P§(K) < oo, then

(2) Pi(K) = P3(K).
The above conclusion may fail for doubling gauges. M. Csornyei [1] con-
structed a compact set K C R! and a doubling gauge g such that

(3) PI(K) < PIK) < .

Motivated by this fact, we discuss some measure-theoretic properties of the
packing measure PY and the premeasure P§ with respect to a doubling gauge
g in a metric space X. It will be shown that if P§(X) < oo then P is “outer
regular-like”, meaning that

g+(1 = 0)inf P§(U) < P§(F) < inf P§(U)

for any compact set F' C X, where the infimum is over all open sets contain-
ing F' (Theorem 1). Furthermore we get a relationship between P9 and P§
when X is complete separable. Namely, for any Borel set B C X we have

(9:(1 = 0))*sup P§(F) < PY(B) < sup P (F),

where the supremum is taken over all compact subsets contained in B with
PJ(F) < oo (Theorem 2). As a corollary, we show that for every doubling
gauge function there is a compact metric space of finite positive packing
measure (Theorem 3), which can be regarded as a dual to a result on the
Hausdorff measure obtained by A. Dvoretzky [2].

2. The “outer regularity” of a packing premeasure. We start
with some statements equivalent to the doubling condition.

LEMMA 1. Let g be a gauge. Then the following statements are equiva-
lent:

(a) g is doubling;

(b) g«(x) > 0 for some x € (0,1);
(¢) g«(x) > 0 for all x > 0;

(d) g«(1 = 0) > 0.
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Proof. (a)=(b). The doubling condition implies that there is a constant
¢ € (0,00) such that g(t) < cg(t/2) for all ¢ > 0 small enough, so g.(1/2) >
1/c>0.

(b)=(c). Let a € (0,1) with g.(a) > 0. Then g(at) > 3g.(a)g(t) for
t > 0 small enough. For every x > 0 choose a positive integer m such that
x > a™. For all ¢ > 0 small enough we get inductively

olet) > gla™) > Ga. (@™ ) > > (a(a)) gl

which yields g.(z) > (2g.(a))™ > 0.

(¢)=-(d). This is trivial since g, is non-decreasing.

(d)=(a). Since g«(1 —0) > 0, we obtain g.(x) > 0 for some z € (0,1).
By an argument analogous to (b)=-(c), we get g.(1/2) > 0, which implies
that g is doubling. =

In the rest of the paper, we assume that ¢ is a doubling gauge. The
following theorem shows that if the packing premeasure is finite then it is
“outer regular”.

THEOREM 1. Suppose X is a metric space with P§(X) < oo. Then for
any compact subset F' of X,

(4) 9+(1 = 0)Ar < PJ(F) < AF,
where Ap = inf{PJ(U) : U open and U D F}.

Proof. From the monotonicity of P§, the second inequality of (4) is evi-
dent, so we only need to prove the first. Let ¢ denote the metric of X. For
€ > 0 denote by F; the open e-neighborhood of F, i.e.

(5) F.={z € X :o(z,y) < e for some y € F}.

Then Ap = inf.~o PJ(F:) and 0 < Ap < oo since P§(X) is finite. Let w > 0
be arbitrary and choose € > 0 small enough such that

(6) Ap < PYUF) < Ap +w.
Then, by the definition of P§, we have
(7) Pg(FE)SP(g(FE)SPg(FE)+W

for § > 0 small enough. Now let {B(x;,r;)}", be a d-packing of F, such
that

m
(8) PIF) —w <> g(2r;) < PY(F.).
i=1
By the compactness of F, we may choose {y;}I"; C F such that
o(zi,yi) = o(zi, F), 1<i<m.
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Let

”";K = max{ri - Q(xiayi)a 0}7 T‘Z** = mln{g($“ yz) Tz}
By the definitions above, we easily see that r7 + r’* = r;. Let I = {i :
B(z;,ri)NF # 0,1 <i < m}. It is obvious that {B(y;, r}) }icr is a d-packing
of F. Thus

(9) F)y=> g(2r) Z (2r¥).

el i=1
Now let J = {i :2z; ¢ F;,1 < i <m}and 1/2 <t < 1, and choose
0 < e1 < 3d such that Fo, N{U,c; B(xg, tr;*) = 0. We see that if {B(z;,1;)}72,
is a 37 1ei-packing of F3-1., then {B(z;, ;)}32,U{B(x;, tr;*) }ic s is a 0-packing
of F.. Thus, in view of (6) and (7), we have

D g2+ g2trf) < Ap + 2w,

i=1 ic
SO
Zg(%r?*) < 2w,
ieJ
which together with the doubling property of g yields
m
(10) D g =) g(2ri) < g(2tr]) < 2w,
i=1 icd icJ

where ¢ > 0 is a constant.
Now we are going to estimate the sum on the right hand side of (9). Let

z(w) = w+ 2sup{z > 0: g.(2) < w/?}.

From Lemma 1, we have lim,, .0 z(w) = 0 and lim,,_ow/g«(z(w)) = 0.
Let I, = {i : " > rjz(w)} and J, = {i : r/* < rjz(w)}. Then, by (10),
we have

274Z . te(w)\ !
(1) Y g2 Zg 2n 20w<0££5%> ’

i€l i€l
which combined with (6), (7), (8) and (11) yields

(12) Z 2T1 Zg 27'1 Z 9(27'1')

iEJw Zelw

ZAF—w—2cw< inf M)_

o<t<s  g(t)
From (9) and (12),

P(_;](F) > Z Z g 27"1 - 2rl))))g(2ri)

ler ZEJ
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0<t<§ g(t) =
G =) (L gla@) !
2ol o) <AF ’ <o<éa o) ) )

Thus by letting § — 0 we get
2cw
PUE) 2 0u(1 = a(o))(Ap -0 - 22
0 gx(z(w))
Letting w — 0, finally we obtain P§(F) > ¢.(1 —0)Ap. =

3. The relationship between PY and P§. In this section, we will
investigate the relation between the packing measure and the premeasure
with respect to a doubling gauge in a complete separable metric space.

LEMMA 2. Let X be a metric space and let g be a gauge. Then:

(a) for any subset F' of X, we have
(13) 9+(1 = 0)Pg (cl(F)) < PG (F) < Pi(cl(F)),

where cl(F) denotes the closure of F;

(b) if g is left-continuous for t > 0, then P§(F) = P§(cl(F)).

Proof. (a) To prove (13), it suffices to prove the first inequality. Let
g,0 € (0,1). For every d-packing {B(z;,r;)} of cl(F'), choose {y;} C F such
that {B(y;, (1 —¢€)r;)} is a d-packing of F. Then we have

) 1—e)t)
g > _ N > g(( .
PUF) > Y g1 =) > inf HEZID S o),
S0

PF) = int A Py,

Letting § — 0 and ¢ — 0, we immediately get the desired inequality.

(b) Now assume that g is left-continuous for ¢ > 0. In this case, from a
d-packing {B(z;,7;)} of cl(F') we may construct a d-packing {B(y;,r})} of
F such that for every 1,

9(2r}) = g(2ri) — /2",
From this we get P§(F) > P§(cl(F)), which yields the required equality
immediately. m

LEMMA 3. Let X be a metric space. Then for any compact subset K with

PY(K) < oo, we have

(14) (9+(1 = 0)*Pg(K) < PI(K) < Pg(K).
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Proof. Tt suffices to prove the first inequality of (14). Let £ > 0. By the
definition of P9, there exists a countable family {F;};>1 of sets such that
Ui Fi = K and

IK)+e>) PYF
i=1

From Theorem 1 we see that for every ¢ there is an open set U; such that
U; D cl(F;) and

(15) P3(cl(F;)) = g(1 = 0)(PJ(U;) — £/2Y).

Since K is compact and {U;} is an open covering of K, we may choose a

finite subcovering, say K C Uf\; 1 Ui. From the finite subadditivity of P§ and
the inequalities (13) and (15), we get

+€>Z730 ) > gs 1—0)ZP3(C1(FZ'))

Lemma 3 implies immediately

COROLLARY 1. For any compact set K C X with P§(K) < oo, we have:

(a) 0 < PIK) <0< 0< PY(K) < oo;

(b) g«(1—=0)=1= PI(K) = PJ(K).

REMARK 1. It is known that a countable compact subset E of R% may
have strictly positive upper box-counting dimension. However, from the re-
sult above we see that either P§(E) = 0 or PJ(E) = oo for every doubling
gauge g.

LEMMA 4. Let X be a complete separable metric space with P9(X) < oo

and let B be a Borel subset of X. Then for any € > 0, there is a compact
set F C B with P§(F) < oo such that

(16) PI(F) > PI(B)—e.

Proof. Since P9 is a finite Borel measure on a complete separable metric
space X, PY is inner regular, thus it suffices to prove the statement under
the assumption that B is compact. By the definition of P9, the condition



Properties of packing measure 131

PI(X) < oo implies that there is a family {F;} of subsets with B = (2, F;
such that

(17) ipg(m) < o0
=1

Since ¢ is doubling we have g.(1 — 0) > 0. By Lemma 2, we may assume
that all F; are compact. Let € > 0 and choose a positive integer m such that

(18) > PYFE)<e

i=m+1
Take F' = (J;*, Fi. In view of (17) and (18), we see that F' is a compact

subset of B such that
< Z Py (F;) < o0
i=1

and

PI(B) — PI(F <7>9(UF)<ZP9 ZPO )<e m
i=m+1 1=m+1 i=m+1

THEOREM 2. Let X be a complete separable metric space. Then for any
Borel set B C X we have

(19) (9-(1 = 0))* sup P§ (F) < P(B) < sup Py (F),
where the supremum is taken over all compact subsets of B with P§(F) < oo.

Proof. The first inequality in (19) follows directly from Lemma 3, and
the second can be obtained immediately from Lemma 4 if P9(X) < oo.
To complete the proof, it suffices to prove the second inequality in the
case PI(X) = oo. Without loss of generality, assume PY9(B) > 0. Let
B € (0,P9(B)). From the existence theorem of H. Joyce and D. Preiss [5],
there is a compact subset F C B such that § < PYI(FE) < oo. Applying
Lemma 4 to the set E, we get sup P§(F) > f3. Since 3 € (0,P9(B)) can be
picked arbitrarily, we obtain sup P§(F) > P9(B) as required. m

Theorem 2 immediately gives the following corollary.

COROLLARY 2. Let B be a Borel subset of a complete separable space.
Then:

(a) P9(B) > 0 if and only if B contains a compact subset F' such that
0 < PY(F) < oc;

(b) PY(B) < oo if and only if there is A € [0,00) such that for any
compact subset F' C B, either PJ(F) < X or P§(F) = oo;

(€) g«(1 —0) = 1= PI(B) =sup P (F).
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Using the above results, we are going to prove that for every doubling
gauge, there is a compact metric space which has finite positive packing
measure with respect to the gauge. This result is analogous to the existence
theorem proved by A. Dvoretzky for Hausdorff measures [2].

LEMMA 5. Suppose that X is a separable metric space. Then for any

subset K of X,
HI(K) < PI(K),

where HY(K') denotes the Hausdorff measure of K with respect to the gauge g.

Proof. The proof is completely analogous to the proof of the case g(t) =
t* and X = R™ which can be found in P. Mattila [6]. =

THEOREM 3. Let g be any doubling gauge. Then there is a compact met-
ric space X such that
(20) 0<PIX) < oo.

Proof. There is a compact metric space {2 such that H9(£2) > 0 (see
Theorem 36 in [7]), so P9(£2) > 0 by Lemma 5. By Corollary 2(a), there is a
compact subset X C {2 such that 0 < P§(X) < oo. Then by Corollary 1(a),
we finally get 0 < P9(X) < 00. =

4. An example. Theorem 2 states that for any Borel set G in a com-
plete separable metric space,

9:(1-0) =1 = PIY(G) =sup Py (F),

where the supremum is taken over all compact subsets contained in G with
PY(F) < co. We will show by giving a counterexample that the implication
cannot be inverted, even if both P9(G) and sup P§(F) are finite positive.

Let G =1[0,1] and ¢ : [0,00) — [0, 00) be defined by

(1) = {2—" if2 " <t<(1-2""2""fl neN,

T = Vontp g9t 1 i (1—27m)2 ntl <¢ <27nfl pneN,

It is easy to verify that

1 t t
(21) — = liminf 9t) < lim sup 9t) =1,
2 t—0 t t—0 t

and thus g is a doubling gauge. We are going to prove that
(22) PIG)=PIG) =1, but g.(l—0)=1/2.

Let 2, =1—2"%and t, = 27", k,n € N. Fix k € N. By the construction
of g we have

_ 9—n—1\9—n

i inf 207 e 900T8) e 90— 270)271)
2*’(171 1
= lim =_,
n—oo 2N 2
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which yields g«(xg) < 1/2. Letting k — oo, we get g«(1 —0) < 1/2 since g.
is non-decreasing. On the other hand, by the inequality (21), we have
lim inf g(tz) > z
t—0 g(t) 2
for all z > 0, and thus g.(1—0) > 1/2. We have thus proved the last equality
of (22).
Notice that (21) implies that 3P} (F) < P§(F) < P3(F) for any Borel
set F' on the real line, thus

pl<p9 <p!
for any Borel sets. Note that P! is equal to the 1-dimensional Lebesgue
measure and PY is translation invariant and locally finite, so there is a
number ¢ > 0 such that P9 = ¢P!. In addition, analogously to the lower
density theorem for the s-dimensional packing measure (see Theorem 6.10
of [6]), we have
PI(GN B(z,r))

lim inf =1
r—0 g(2r)
for P9-almost all z € G. Invoking the Lebesgue density theorem we get
t
¢ = limsup & =1,
r—0 13

and so P9 = P, Since P} (G) = P1(G) = 1 we then get
1=PYG) =P G) <PJ(G) <Py(G) =1,
which yields the first two equalities in (22).
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