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Boundedness criterion for multilinear oscillatory
integrals with rough kernels

by

Wengu Chen and Shanzhen Lu (Beijing)

Abstract. We study a multilinear oscillatory integral with rough kernel and establish
a boundedness criterion.

1. Introduction. Let Ω be a homogeneous function of degree zero
satisfying some size condition, for example, Ω ∈ L(logL)α(Sn−1) for some
α ≥ 1. This size condition is weaker than Ω ∈ ⋃q>1 L

q(Sn−1). Under this
assumption, we consider a multilinear oscillatory integral, which is related
to Calderón commutators and defined by

TAf(x) = p.v.
�

Rn
eiP (x,y) Ω(x− y)

|x− y|n+m−1 Pm(A; x, y)f(y) dy,(1)

where n ≥ 2,m is a positive integer, P (x, y) is a real-valued polynomial
defined on Rn × Rn and Pm(A;x, y) denotes the mth order Taylor series
remainder of A at x expanded about y, more precisely

Pm(A;x, y) = A(x)−
∑

|α|<m

1
α!
DαA(y)(x− y)α.

Generally, it is impossible to derive L2 boundedness of TA from the stan-
dard T1 theorem (see [2]) or nonstandard T1 theorem (see [3]), it is therefore
necessary to establish some boundedness criterions. According to these crite-
rions, the Lp boundedness properties of these singular integrals are reduced
to those of some truncated operators. The idea is hidden in the paper [5] of
Ricci and Stein and put forward concretely by Lu and Zhang in [4].

Now, we introduce some notation. Let (X,µ) be a measure space and
let Φ be a Young function. The Orlicz space LΦ(X,µ) consists of all
µ-measurable functions f (modulo the a.e. equivalence relation) such that
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�

X

Φ(ε|f(x)|) dµ(x) <∞

for some ε > 0. The norm

‖f‖Φ = inf
{
λ > 0 :

�

X

Φ

( |f(x)|
λ

)
dµ(x) ≤ 1

}

turns LΦ into a Banach space. The space LΦ can be endowed with another
equivalent norm which is defined by

‖f‖LΦ = inf
{

1
ε

(
1 +

�

X

Φ(ε|f |)
)

:
�

X

Φ(ε|f |) dµ <∞
}
.

When X = Sn−1, the unit sphere of Rn, dµ = dσ, the element of Lebesgue
measure on Sn−1 so that the measure of Sn−1 is 1, and Φ(t) = t logα(2 + t),
1 ≤ α < ∞, we denote LΦ by L(logL)α(Sn−1). We define the Φ-average of
a function f over a cube Q by

‖f‖Φ,Q = inf
{
λ > 0 :

1
|Q|

�

Q

Φ

( |f(y)|
λ

)
dy ≤ 1

}
.

Then the generalized Hölder inequality
1
|Q|

�

Q

|f(y)g(y)| dy ≤ ‖f‖Φ,Q‖g‖Φ,Q

holds, where Φ̄ is the complementary Young function associated to Φ.

Definition 1. A real-valued polynomial P (x, y) is called non-degenerate
if there exist positive integers k, l such that P (x, y) =

∑
|α|≤k, |β|≤l aαβx

αyβ

and
∑
|α|=k, |β|=l |aαβ| > 0.

Definition 2. We will say that the non-degenerate polynomial P (x, y)
has property P if

P (x+ h, y + h) = P (x, y) + P0(x, h) + P1(y, h),

where P0 and P1 are real polynomials.

The purpose of this paper is to establish the following boundedness cri-
terion.

Theorem 1. Let Ω ∈ L(logL)2(Sn−1) be homogeneous of degree zero.
If A has derivatives of order m− 1 in BMO(Rn), then for any 1 < p <∞,
the following two facts are equivalent :

(i) If P (x, y) is a non-degenerate real-valued polynomial , then TA is
bounded on Lp with bound C

∑
|α|=m−1 ‖DαA‖BMO, and the positive

constant C can be taken to be independent of the coefficients of the
polynomial P (x, y).
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(ii) The truncated operator

SAf(x) =
�

|x−y|<1

Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

is bounded on Lp with bound C
∑
|α|=m−1 ‖DαA‖BMO.

2. Proof of Theorem 1. To prove Theorem 1, we will use some lemmas.

Lemma 1 (see [1]). Let b(x) be a function on Rn with mth order deriva-
tives in Ls(Rn) for some s with n < s ≤ ∞. Then

|Pm(b;x, y)| ≤ Cm,n|x− y|m
∑

|α|=m

(
1
|Iyx |

�

Iyx

|Dαb(z)|s dz
)1/s

,

where Iyx is the cube centered at x, with sides parallel to the axes and whose
diameter is 2

√
n |x− y|.

Lemma 2. Let Ω be a homogeneous function of degree zero and belong
to L logL(Sn−1) and A have derivatives of order m−1 in BMO(Rn). Define

SAΩ;rf(x) = r−(n+m−1)
�

|x−y|<r
|Ω(x− y)Pm(A; x, y)f(y)| dy.

Then for any 1 < p <∞,

‖SAΩ;rf‖p ≤ C
(

1 +
�

Sn−1

|Ω(x)| log(2 + |Ω(x)|) dσ(x)
)
‖f‖p,

where the constant C > 0 is independent of r.

Proof. By dilation invariance, it suffices to consider the case r = 1. By
an almost orthogonality argument, we may assume that f has support in a
cube Q with side length 1. Without loss of generality, we may also assume∑
|α|=m−1 ‖DαA‖BMO = 1. Define

Ωk(x) = Ω(x)χEk(x)

with
Ek(x) = {x ∈ Sn−1 : 2k−1 ≤ |Ω(x)| < 2k}, k ∈ Z,

and for any k ∈ Z, define an operator Tk by

Tkg(x) =
�

|x−y|≤1

|Ωk(x− y)|g(y) dy.

Denote by T ∗k the dual operator of Tk. Then

T ∗k g(x) =
�

|x−y|≤1

|Ωk(y − x)|g(y) dy.
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We claim that there exists a positive constant C = C(n,m) which is inde-
pendent of k such that for any 1 ≤ p <∞,

‖ |T ∗k g|p‖L(logL)p,Q≤C
(

2−|k|+
�

Ek

|Ωk(x)| log(2+ |Ωk(x)|) dσ(x)
)p
‖g‖pp(2)

for any g ∈ Lp with supp g ⊂ 100nQ. In fact, without loss of generality,
we may assume that ‖g‖p = 1. By the Young inequality, there exists some
C0 = C(n) > 1 such that

‖T ∗k g‖∞ ≤ ‖Ωk‖∞‖g‖1 ≤ C0‖Ωk‖∞,
‖T ∗k g‖p ≤ ‖Ωk‖1‖g‖p = ‖Ωk‖1.

Write

‖ |T ∗k g|p‖L(logL)p,Q = inf
{
λ> 0 :

�

Q

|T ∗k g(x)|p
λ

logp
(

2+
|T ∗k g(x)|p

λ

)
dx≤ 1

}

≤ inf
{
λ > 0 :

‖Ωk‖p1
λ

logp
(

2 +
Cp0‖Ωk‖

p
∞

λ

)
≤ 1
}

≤ Cp0
(

inf
{
λ > 0 :

2‖Ωk‖1
λ

log
(

2 +
‖Ωk‖∞
λ

)
≤ 1
})p

.

Note that

2‖Ωk‖1
2λ

log
(

2 +
‖Ωk‖∞

2λ

)
≤

�

Ek

|Ωk(x)|
λ

log
(

2 +
|Ωk(x)|
λ

)
dσ(x).

Therefore,

‖ |T ∗k g|p‖L(logL)p,Q ≤ C‖Ωk‖pL logL(Sn−1).

For k ≥ 1, since
�

Ek

2k|Ωk(x)| log(2 + 2k|Ωk(x)|) dσ(x) ≤ 2k · 2k · 2k · |Ek| <∞,

by the equivalence of the two norms, we have

‖Ωk‖L logL(Sn−1) ≤ C
(

1
2k

+
�

Ek

|Ωk(x)| log(2 + 2k|Ω(x)|) dσ(x)
)

≤ C
(

2−k +
�

Ek

|Ωk(x)| log(2 + |Ω(x)|) dσ(x)
)
.

For k ≤ 0, since
�

Ek

2−k|Ωk(x)| log(2 + 2−k|Ωk(x)|) dσ(x) ≤ 2−k · 2k · log 3 · |Ek| <∞,
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similarly, we have

‖Ωk‖L logL(Sn−1) ≤ C
(

1
2−k

+
�

Ek

|Ωk(x)| log(2 + 2−k|Ω(x)|) dσ(x)
)

≤ C
(

2k +
�

Ek

|Ωk(x)| dσ(x)
)
.

Therefore,

‖ |T ∗k g|p‖L(logL)p,Q ≤ C
(

2−|k| +
�

Ek

|Ωk(x)| log(2 + |Ωk(x)|) dσ(x)
)p
‖g‖pp.

Let φ ∈ C∞0 (Rn), 0 ≤ φ ≤ 1, and let φ be identically one on 10
√
nQ and

vanish outside of 50
√
nQ, ‖φ(γ)‖∞ ≤ Cγ for all multi-indices γ. Let x0 be a

point on the boundary of 80
√
nQ. Define

Aφ(y) = Pm−1

(
A(·)−

∑

|α|=m−1

1
α!
mQ̃(A(α))(·)α; y, x0

)
φ(y),

where mQ(f) = |Q|−1 �
Q f and Q̃ = 100nQ. Note that for any multi-index β,

|β| < m− 1,

DβAφ(y) =
∑

β=µ+ν

Cµ,νPm−|µ|−1

(
Dµ

(
A(·)−

∑

|α|=m−1

1
α!
mQ̃(DαA)(·)α

)
; y, x0

)

×Dνφ(y).

Since supp φ ⊂ 50
√
nQ, by Lemma 1 we have

|DβAφ(y)| ≤ C
∑

|α|=m−1

(
1
|Iyx0 |

�

Iyx0

|DαA(z)−mQ̃(DαA)|t dz
)1/t

≤ C,

where t > n. If |β| = m− 1, then

DβAφ(y) =
∑

β=µ+ν, |µ|<m−1

Cµ,ν

× Pm−1−|µ|

(
Dµ

(
A(·)−

∑

|α|=m−1

1
α!
mQ̃(DαA)(·)α

)
; y, x0

)
Dνφ(y)

+
∑

|α|=m−1

(DαA(y)−mQ̃(DαA))φ(y).

Thus, it follows that

|DβAφ(y)| ≤ C
(

1 +
∑

|α|=m−1

|DαA(y)−mQ̃(DαA)|
)
.

Since
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SAΩ;1f(x) ≤
∞∑

k=−∞

(
|Aφ(x)|Tk(|f |)(x) +

∑

|α|≤m−1

1
α!
Tk(|DαAφf |)(x)

)
,

by the fact that the operator Tk is bounded on Lp together with the above
inequalities, we obtain

‖SAΩ;1f‖p ≤ C
∞∑

k=−∞

(
‖Ωk‖1‖f‖p+

∑

|α|=m−1

‖Tk(|DαA(·)−mQ̃(DαA)| |f |)‖p
)
.

For |α| = m− 1, by the generalized Hölder inequality and the fact that

‖DαA−mQ̃(Dα)‖expL, Q̃ ≤ C‖D
αA‖BMO,

we have

‖Tk(|DαA(·)−mQ̃(DαA)| |f |)‖p
= sup

supp g⊂Q̃, ‖g‖p′=1

∣∣∣
�

Q̃

Tk(|DαA(·)−mQ̃(DαA)| |f |)(x)g(x) dx
∣∣∣

= sup
supp g⊂Q̃, ‖g‖p′=1

∣∣∣
�

Q̃

|DαA(x)−mQ̃(DαA)| |f(x)|T ∗k g(x) dx
∣∣∣

≤ sup
supp g⊂Q̃, ‖g‖p′=1

( �

Q̃

|DαA(x)−mQ̃(DαA)|p′ |T ∗k g(x)|p′ dx
)1/p′

‖f‖p

≤ C sup
supp g⊂Q̃, ‖g‖p′=1

‖[DαA(·)−mQ̃(DαA)]p
′‖1/p

′

(expL)1/p′,Q̃
‖ |T ∗k g|p

′‖1/p
′

L(logL)p′,Q̃
‖f‖p

≤ C sup
supp g⊂Q̃, ‖g‖p′=1

‖ |T ∗k g|p
′‖1/p

′

L(logL)p′ ,Q̃
‖f‖p

≤ C
(

2−|k| +
�

Ek

|Ωk(x)| log(2 + |Ωk(x)|) dσ(x)
)
‖f‖p.

Finally, we obtain

‖SAΩ;1f‖p ≤ C
(

1 +
�

Sn−1

|Ω(x)| log(2 + |Ω(x)|) dσ(x)
)
‖f‖p.

Lemma 3. Let Ω ∈ L logL(Sn−1) be homogeneous of degree zero. Sup-
pose that A has derivatives of order m− 1 in BMO(Rn), b ∈ L∞(Rn × Rn)
and 1 < p <∞. If the operator

Tf(x) = p.v.
�

Rn

Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)b(x, y)f(y) dy

is bounded on Lp with bound B
∑
|α|=m−1 ‖DαA‖BMO, then the truncated
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operator

T1f(x) =
�

|x−y|<1

Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)b(x, y)f(y) dy

is bounded on Lp with bound C(B + ‖b‖∞)
∑
|α|=m−1 ‖DαA‖BMO.

Proof. Without loss of generality, we may assume that
∑

|α|=m−1

‖DαA‖BMO = 1.

For each fixed h ∈ Rn, we split f = f1 + f2 + f3, where

f1(y) = f(y)χ{|y−h|<1/2}(y), f2(y) = f(y)χ{1/2≤|y−h|<5/4}(y).

It is easy to verify that if |x− h| < 1/4, then

T1f1(x) =
�

Rn

Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)b(x, y)f1(y) dy.

Thus �

|x−h|<1/4

|T1f1(x)|p dx ≤ Bp‖f1‖pp.

If |x − h| < 1/4 and 1/2 ≤ |y − h| < 5/4, then 1/4 < |x − y| < 3/2. So we
see that for |x− h| < 1/4,

|T1f2(x)| ≤ ‖b‖∞
�

1/4<|x−y|<3/2

∣∣∣∣
Ω(x− y)
|x− y|n+m−1Pm(A; x, y)f2(y)

∣∣∣∣ dy

≤ C‖b‖∞SAΩ;3/2f2(x).

Lemma 2 now tells us that�

|x−h|<1/4

|T1f2(x)|p dx ≤ C‖b‖p∞‖f2‖pp.

Obviously, we have T1f3 = 0 for |x − h| < 1/4. Combining the above in-
equalities leads to

�

|x−h|<1/4

|T1f(x)|p dx ≤ C(Bp + ‖b‖p∞)
�

|y−h|<2

|f(y)|p dy.

Integrating the last inequality with respect to h gives

‖T1f‖p ≤ C(B + ‖b‖∞)‖f‖p.
This completes the proof of Lemma 3.

Proof of Theorem 1. We only deal with the case that
∑

|α|=m−1

‖DαA‖BMO = 1.
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First we show that (ii) implies (i). Let k and l be two positive integers,
and P (x, y) be a non-degenerate real-valued polynomial with degree k in x
and l in y. Write

P (x, y) =
∑

|α|≤k, |β|≤l
aαβx

αyβ.

By dilation invariance, we may assume that
∑
|α|=k, |β|=l |aαβ| = 1. Decom-

pose

TAf(x) =
�

|x−y|<1

eiP (x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

+
∞∑

d=1

�

2d−1≤|x−y|<2d

eiP (x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

= TA0 f(x) +
∞∑

d=1

TAd f(x).

We first consider TAd , d ≥ 1. Split

TAd f(x) =
∞∑

l=0

TAΩl, df(x),

where

TAΩl,df(x) =
�

2d−1≤|x−y|<2d

eiP (x,y) Ωl(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy,

Ωl(x′) = Ω(x′)χEl(x
′)

with
E0 = {x′ ∈ Sn−1 : |Ω(x′)| < 1},
El = {x′ ∈ Sn−1 : 2l−1 ≤ |Ω(x′)| < 2l}, l ∈ N.

If we can prove that for some δ > 0,

‖TAΩl,df‖p ≤ C2−δd‖Ωl‖∞‖f‖p,(3)

and

‖TAΩl,df‖p ≤ C
(

2−l +
�

El

|Ωl(x)| log(2 + |Ωl(x)|) dσ(x)
)
‖f‖p,(4)

then, for a suitably chosen integer M > δ−1, we have
∥∥∥
∞∑

d=1

TAd f
∥∥∥
p
≤
∞∑

d=1

∞∑

l=0

‖TAΩl, df‖p

=
∞∑

d=1

‖TAΩ0,df‖p +
∞∑

l=1

∑

1≤d<Ml

‖TAΩl,df‖p +
∞∑

l=1

∑

d≥Ml

‖TAΩl,df‖p
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≤ C‖Ω0‖∞‖f‖p+
∞∑

l=1

Ml(2−l + 2ll|El|)‖f‖p+
∞∑

l=1

∑

d≥Ml

2−δd2l‖f‖p

≤ C
(

1 +
�

Sn−1

|Ω(x)| log2(2 + |Ω(x)|) dσ(x)
)
‖f‖p.

Inequality (4) can be seen from the proof of Lemma 2. To prove (3), define

T̃AΩl,df(x) =
�

1<|x−y|≤2

eiP (2d−1x, 2d−1y) Ωl(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy.

By dilation invariance, it is enough to prove that

‖T̃AΩl,df‖p ≤ C2−δd‖Ωl‖∞‖f‖p.(5)

By an almost orthogonality argument, we may assume that f has support
in a cube Q with side length 1. Let

Aφ(y) = Pm−1

(
A(·)−

∑

|α|=m−1

1
α!
mQ̃(DαA)(·)α; y, x0

)
φ(y),

where φ is as in the proof of Lemma 2. For a multi-index α, define

T̃αΩl,df(x) =
�

1<|x−y|≤2

eiP (2d−1x,2d−1y) Ωl(x− y)
|x− y|n+m−1 (x− y)αf(y) dy.

It is easy to see that

T̃AΩl,df(x) =
�

1<|x−y|≤2

eiP (2d−1x,2d−1y) Ωl(x− y)
|x− y|n+m−1 Pm(Aφ;x, y)f(y) dy

= Aφ(x)T̃ 0
Ωl,d

f(x)−
∑

|α|<m−1

1
α!
T̃αΩl,d(D

αAφf)(x)

−
∑

|α|=m−1

1
α!
T̃αΩl,d(D

αAφf)(x)

= I + II + III.

Before we estimate these terms, we define

TαΩl,df(x) =
�

2d−1≤|x−y|<2d

eiP (x,y) Ωl(x− y)
|x− y|n+m−1 (x− y)αf(y) dy.

Recall that P (x, y) =
∑
|α|≤k, |β|≤l aαβx

αyβ and
∑
|α|=k, |β|=l |aαβ| = 1. By a

similar argument to that in [4], we can prove

Lemma 4. There exists a δ > 0 such that

‖TαΩl,df‖p ≤ C2−d(δ+m−1−|α|)‖Ωl‖∞‖f‖p,(6)
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and C > 0 can be taken to be independent of d and the coefficients of
P (x, y).

We return to the estimates of I, II and III. Note that for a multi-index β
with |β| < m− 1,

‖DβAφ‖∞ ≤ C.
Thus, it follows from Lemma 4 that

‖I‖p ≤ ‖Aφ‖∞‖T̃ 0
Ωl,d

f‖p ≤ C2−δd‖f‖p.
Similarly, we have

‖II‖p ≤ C2−δd‖f‖p.
It remains to estimate the third term III. Note that for any 0 < γ < n,

|T̃αΩl,df(x)| ≤ C
�

1<|x−y|≤2

|Ωl(x− y)f(y)| dy

≤ Cγ‖Ωl‖∞
�

1<|x−y|≤2

|f(y)|
|x− y|n−γ dy

≤ Cγ‖Ωl‖∞Iγ(|f |)(x),

where Iγ denotes the usual fractional integral of order γ. For any σ > 0 such
that 1/(p+ σ) = 1/p− γ/n, by the Hardy–Littlewood–Sobolev theorem [6],
we get

‖T̃αΩl,df‖p+σ ≤ C‖Ωl‖∞‖f‖p.(7)

Lemma 4, inequality (7), and interpolation give

‖T̃αΩl,df‖p ≤ C2−δ
′d‖Ωl‖∞‖f‖p−σ,(8)

where δ′ is another positive constant and 0 < σ < σp. On the other hand, if
|β| = m− 1, then

|DβAφ(y)| ≤ C
(

1 +
∑

|α|=m−1

|DαA(y)−mQ̃(DαA)|
)
,

and this shows that for any t > 1,

‖DβAφ‖t ≤ Ct.(9)

By inequalities (8) and (9), we obtain

‖III‖p ≤ C2−δ
′d

∑

|α|=m−1

‖DαAφf‖p−σ ≤ C2−δ
′d

∑

|α|=m−1

‖DαAφ‖t‖f‖p

≤ C2−δ
′d‖f‖p,

where we choose 0 < σ < σp and 1 < t <∞ such that 1/p+1/t = 1/(p−σ).
All the above estimates imply that inequality (3) is true.

We turn our attention to the operator TA0 . The estimate for this operator
comes from the following lemma.
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Lemma 5. Let Ω ∈ L logL(Sn−1) be homogeneous of degree zero and A
have derivatives of order m− 1 in BMO(Rn). Suppose that condition (ii) in
Theorem 1 holds. Then for any real-valued polynomial P̃ (x, y), the opera-
tor

UAf(x) =
�

|x−y|<1

eiP̃ (x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

satisfies

‖UAf‖p ≤ C‖f‖p.(10)

Proof. We shall argue by a double induction on the degree of the poly-
nomial in x and y. If the polynomial P̃ (x, y) depends only on x or y, it is
obvious that condition (ii) implies (10). Let u and v be two positive integers
and suppose the polynomial has degree u in x and v in y. We assume that
(10) holds for all polynomials which are sums of monomials of degree less
than u in x times monomials of any degree in y, together with monomials
which are of degree u in x times monomials which are of degree less than v
in y. Write P̃ (x, y) as

P̃ (x, y) =
∑

|α|=u, |β|=v
bαβx

αyβ + P0(x, y),

where P0(x, y) satisfies the inductive assumption. Without loss of generality,
we may assume that

∑
|α|=u, |β|=v |bαβ| ≤ 1. Rewrite

P̃ (x, y) =
∑

|α|=u, |β|=v
bαβ(xαyβ − yα+β) + P̃0(x, y),

where P̃0(x, y) satisfies the inductive assumption. It follows that

UAf(x) =
�

|x−y|<1

eiP̃0(x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

+
�

|x−y|<1

(eiP̃ (x,y) − eiP̃0(x,y))
Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

= UA1 f(x) + UA2 f(x).

Our inductive assumption now states that

‖UA1 f‖p ≤ C‖f‖p.

Set f̃(y) = f(y)χ{|y|≤2}. It is easy to see UA2 f(x) = UA2 f̃(x) for |x| ≤ 1.
Thus, when |x| ≤ 1,
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|UA2 f(x)| ≤ C
�

|x−y|<1

∣∣∣∣
Ω(x− y)
|x− y|n+m−2 Pm(A; x, y)f̃(y)

∣∣∣∣ dy

≤ C
0∑

d=−∞
2d2−d(n+m−1)

�

2d−1≤|x−y|<2d

|Ω(x−y)Pm(A; x, y)f̃(y)| dy

≤ C
0∑

d=−∞
2dSAΩ;2d f̃(x).

By Lemma 2, we get

( �

|x|≤1

|UA2 f |p dx
)1/p

≤ C
0∑

d=−∞
2d‖SAΩ;2d f̃‖p

≤ C
0∑

d=−∞
2d
(

1 +
�

Sn−1

|Ω(x)| log(2 + |Ω(x)|) dσ(x)
)( �

|y|≤2

|f(y)|p dy
)1/p

≤ C
(

1 +
�

Sn−1

|Ω(x)| log(2 + |Ω(x)|) dσ(x)
)( �

|y|≤2

|f(y)|p dy
)1/p

,

from which the same argument as that in [5, p. 189] shows that the inequa-
lity

( �

|x−h|≤1

|UA2 f |p dx
)1/p

≤ C
( �

|y−h|≤2

|f(y)|p dy
)1/p

holds for all h ∈ Rn and C > 0 is independent of h. Integrating the last
inequality with respect to h and using Hölder’s inequality, we finally ob-
tain

‖UA2 f‖p ≤ C‖f‖p.
Now we return to the proof of Theorem 1 and show that (i) implies (ii).

To do this, we need to use Definition 2. We choose Q(x, y) such that Q(x, y)
has property P and decompose

TAf(x) =
�

|x−y|<1

eiQ(x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

+
�

|x−y|≥1

eiQ(x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y) dy

= TA0 f(x) + TA∞f(x).

By Lemma 3, TA0 is bounded on Lp. The same argument as in the proof of
Lemma 3 tells us that
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( �

|x−h|<1

|TA0 f(x)|p dx
)1/p

≤ C
( �

|y−h|<2

|f(y)|p dy
)1/p

,

where C is independent of h. Since Q(x, y) has property P, we have

Q(x, y) = Q(x− h, y − h) + P0(x, h) + P1(y, h),

where P0, P1 are real polynomials. When |x− h| < 1, it follows that

SAf(x) =
�

|x−y|<1

Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)f(y)χB(h,2)(y) dy

= e−iP0(x,h)
�

|x−y|<1

eiQ(x,y) Ω(x− y)
|x− y|n+m−1 Pm(A; x, y)

× e−iQ(x−h,y−h)e−iP1(y,h)f(y)χB(h,2)(y) dy.

Observe that the Taylor expression of e−iQ(x−h,y−h) is

e−iQ(x−h,y−h) =
∞∑

m=0

im

m!

(∑

α,β

aαβ(x− h)α(y − h)β
)m

=
∞∑

m=0

im

m!

∑

u,v

am,u,v(x− h)u(y − h)v.

If we set a = (1, 1, . . . , 1) ∈ Rn and b = (2, 2, . . . , 2) ∈ Rn, then we have
( �

|x−h|<1

|SAf(x)|p dx
)1/p

≤
∞∑

m=0

1
m!

∑

u,v

|am,u,v|
( �

|x−h|<1

|(x− h)u|p

× |TA0 (e−iP1(·,h)f(·)χB(h,2)(·)(· − h)v)(x)|p dx
)1/p

≤
∞∑

m=0

1
m!

∑

u,v

|am,u,v|au
( �

|y−h|<2

|f(y)|p|(y − h)v|p dy
)1/p

≤
∞∑

m=0

1
m!

∑

u,v

|am,u,v|aubv
( �

|y−h|<2

|f(y)|p dy
)1/p

=
∞∑

m=0

1
m!

(∑

α,β

|aαβ|aαbβ
)m( �

|y−h|<2

|f(y)|p dy
)1/p

= exp
{∑

α,β

|aαβ|aαbβ
}( �

|y−h|<2

|f(y)|p dy
)1/p

.



214 W. G. Chen and S. Z. Lu

Hence,
‖SAf‖p ≤ C‖f‖p.

This completes the proof of Theorem 1.
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