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Boundedness criterion for multilinear oscillatory
integrals with rough kernels

by

WENGU CHEN and SHANZHEN LU (Beijing)

Abstract. We study a multilinear oscillatory integral with rough kernel and establish
a boundedness criterion.

1. Introduction. Let {2 be a homogeneous function of degree zero
satisfying some size condition, for example, £2 € L(log L)*(S™~!) for some
o > 1. This size condition is weaker than 2 € |J ., L4(S™1). Under this
assumption, we consider a multilinear oscillatory integral, which is related
to Calderén commutators and defined by
2z —y)

A _ P(ay) 2" J)
(1) TAf(z)=pv. | e PRI

R’I’L

Po(A; z, y) f(y) dy,

where n > 2,m is a positive integer, P(z,y) is a real-valued polynomial
defined on R™ x R™ and P,,(A;z,y) denotes the mth order Taylor series
remainder of A at x expanded about y, more precisely

Paldizy) = Al) = Y~ DAl — )"

lo|<m

Generally, it is impossible to derive L? boundedness of T from the stan-
dard T1 theorem (see [2]) or nonstandard T1 theorem (see [3]), it is therefore
necessary to establish some boundedness criterions. According to these crite-
rions, the LP boundedness properties of these singular integrals are reduced
to those of some truncated operators. The idea is hidden in the paper [5] of
Ricci and Stein and put forward concretely by Lu and Zhang in [4].

Now, we introduce some notation. Let (X, ) be a measure space and
let @ be a Young function. The Orlicz space Lg(X,u) consists of all
p-measurable functions f (modulo the a.e. equivalence relation) such that
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§ 2(elf(@)]) du(z) < oo
X

for some € > 0. The norm
1flle = inf{A >0 | 4@) du(a) < 1}
X

turns Lg into a Banach space. The space Lg can be endowed with another
equivalent norm which is defined by

Il = nt {2 (14 @CelfD) : § 2l do < oo .
X X

When X = S"~!, the unit sphere of R", du = do, the element of Lebesgue
measure on S™"~! so that the measure of S"~!is 1, and &(t) = tlog®(2 +1),
1 < a < o0, we denote Lg by L(log L)*(S™"~!). We define the ¢-average of
a function f over a cube @) by

1flle.0 =inf{k>0 : ﬁﬂdﬁ(@) dy < 1}.
Q

Then the generalized Holder inequality

ﬁ {179l dy < Iflecllglze
Q

holds, where @ is the complementary Young function associated to .

DEFINITION 1. A real-valued polynomial P(z,y) is called non-degenerate
if there exist positive integers k, I such that P(z,y) = 3 <k, |9/<i aapryP

and 34|, 5=t [9as| > 0.
DEFINITION 2. We will say that the non-degenerate polynomial P(x,y)
has property P if
P(x+h,y+h) = P(z,y) + Po(z, h) + P1(y, h),
where Py and P; are real polynomials.

The purpose of this paper is to establish the following boundedness cri-
terion.

THEOREM 1. Let £2 € L(log L)2(S™~ 1) be homogeneous of degree zero.
If A has derivatives of order m — 1 in BMO(R™), then for any 1 < p < oo,
the following two facts are equivalent:

() If P(x,y) is a non-degenerate real-valued polynomial, then T4 is
bounded on L with bound C' 37, _,—1 [D*Allsmo, and the positive
constant C can be taken to be independent of the coefficients of the
polynomial P(x,y).
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(ii) The truncated operator

=yt Dl 9)f () dy

|lz—y|<1
is bounded on LP with bound CZ|a\=m—1 ID*AllBMmoO -

2. Proof of Theorem 1. To prove Theorem 1, we will use some lemmas.

LEMMA 1 (see [1]). Let b(z) be a function on R™ with mth order deriva-
tives in L*(R™) for some s with n < s < co. Then

m 1 [0 S 1/5
Pl 2,9)] < Conlz — ™ 3 (W [ 1D%%(2) dz) ,

la|=m I

where I} is the cube centered at =, with sides parallel to the axes and whose
diameter is 24/n |x — y|.

LEMMA 2. Let §2 be a homogeneous function of degree zero and belong
to Llog L(S™ 1) and A have derivatives of order m—1 in BMO(R"). Define
i (@) = =0T Qe —y) P4 2, ) f ()] dy.
lz—y|<r

Then for any 1 < p < o0,
154, flb < (14§ 126|082 + [2@)]) do(2)) 1],
Snfl
where the constant C' > 0 is independent of r.

Proof. By dilation invariance, it suffices to consider the case r = 1. By
an almost orthogonality argument, we may assume that f has support in a
cube ) with side length 1. Without loss of generality, we may also assume
Z\a|:m—1 ||DO‘AHBMO = 1. Define

O (x) = 2(x)x B, (2)
with
Eu(z)={zesS" 121 <) < 2", kez,
and for any k € Z, define an operator T}, by
Tig(z)= | |2z —y)lg(y)dy.
lz—y|<1

Denote by T} the dual operator of Tj. Then

Tig(x)= | |2y —2)lg(y)dy.
lz—y|<1
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We claim that there exists a positive constant C' = C'(n, m) which is inde-
pendent of k£ such that for any 1 < p < oo,

* _ p
@) 1T o 1m0 <C(27H 4+ § 12(0)] log(2 -+ 2u(e)) dor(@))
Ex

for any g € LP with suppg C 100nQ. In fact, without loss of generality,
we may assume that ||g||, = 1. By the Young inequality, there exists some
Co = C(n) > 1 such that

1T glloo < [12kllocllglls < Coll2k]loo,
ITrglly < 192l1llgllo = 14211

Write
T 4 T* P
T latesno = nf P10 § TEXE g (5 RO g )
Q
2:P P\l 2, 1%
<inf )\>0:mlogf’ 2+M <1
A A
2|42 Qoo p
A A
Note that

QHJEkHl H”kHoo |52k(m)‘ ’”k(fﬁ)‘
Lt A1 I b ARy G W kA A NN LAl .
2\ log ( 2 2\ S A\ log | 2 h\ dU(:U)

k
Therefore,
1172 9P 2og 1y < CH2IE g gsnsy
For k£ > 1, since
| 28102 (2) | 1og(2 + 2¥| 2k (2)]) do () < 27 - 2% - 2k - | E}| < o0,
Ey,
by the equivalence of the two norms, we have
1
12 tog s < € (5 + | I 1082 + 2|20 doa)
Ey,
<C(27h+ | (@) log(2 + 12(2))) do (@) ).
Ey,
For k& < 0, since

| 271024 (2) | log(2 + 27%| 24 () |) do(z) < 27% - 2% - log 3+ | Ej| < oo,
Ex
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similarly, we have

1 _

1926 | L10g L(sn-1) < C<2—k + | 192(2) log(2 + 2 klﬂ(x)l)d0($)>

Ex
< c(2k+ { |_Qk(:v)|da(:r)).
Ey
Therefore,
* _ p
1175 91| Log Ly?,@ SC<2 192 (2)  log(2 + Wk(x)\)dff(w)> 9]l

Ey

Let ¢ € C°(R™), 0 < ¢ < 1, and let ¢ be identically one on 10y/n @ and
vanish outside of 50y/7 Q, ||¢(") s < C, for all multi-indices . Let g be a
point on the boundary of 80+/n Q. Define

Ao) = Prr (A0 = 30 mg(A) ()00 ) 0).
|a|=m—1

where mg(f) = |Q]_1 SQ f and C~2 = 100nQ. Note that for any multi-index G,
’/6’ <m— 17

D7 A4 (y) =6%VOM,VPM1<D“ (460- X Lmg(0* () )iv.)

x D"¢(y).
Since supp ¢ C 504/n Q, by Lemma 1 we have

|ajl=m—1

) 1/t
DA < 5 (g §IpmAe) - mgmaa:) - <c

la|l=m—1 Iz,

where t > n. If || = m — 1, then
DﬁA(i)(y) - Z C,u,u

B=ptv, |p|<m—1

Pt (040 -z 2D A" iy ) D*6(0)

+ ) (DA(y) — mu(D*A))d(y).
|a|=m—1
Thus, it follows that
DAl <C(1+ Y ID°A) - mg(DA)]).

|a|=m—1
Since
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[e.9]

st < 3 (MA@mNE+ ¥ 2 nIDAu)) ).

k=—o00 la|<m—1

by the fact that the operator T} is bounded on LP together with the above
inequalities, we obtain

188211p <€ 32 (12l f I+ > ITR(DAC)~mg(D*A)1£Dy).

k=—oc0 |a|l=m—1

For || = m — 1, by the generalized Hélder inequality and the fact that

1D A= ma(D™) o 1.5 < CID°Allsyo.
we have
ITe(IDA() = mga (D> A)| | £,
= s |[TODAC) — mg(D A [f)(@)g(x) de|
supp 9CQ, llglly=1" 5
= sw | [ID7AG) - mg(DOA)| | (@) T g () dal
supp 9CQ, llglly=1" 5
o a P’ « P’ 1/pl
< sw J 1D A(2) = mg(D )P | Tig (@) dz) ™ | £l
supp 9CQ, [lglly=1 "5
« @ 1 1
<C  swp (DY) ~mgD O ST sl
supp gC@Q, [lgll,=1
* 1
<c sw Tl sl

L(log L)?'
supp gC @, |9l =1

< (27 + | |2()] 1og(2 + |24(2)]) dor () )| ]
Ey
Finally, we obtain
I58aslp < C(1+ | 196@)log(2 + |2(@)]) do() )1
gn—1

LEMMA 3. Let 2 € Llog L(S™™1) be homogeneous of degree zero. Sup-
pose that A has derivatives of order m — 1 in BMO(R™), b € L>*(R" x R™)
and 1 < p < oco. If the operator

(x—y
Tf(x) =p.v. S ]:c—(y|—"+m)—1 Pr(A; 2, y)b(z,y) f(y) dy

is bounded on LP with bound B}, _,_1 [[D*Allmo, then the truncated
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operator

Tif(x)= | 2z —v)

[z —gptmT Po(A; z, y)b(z,y) f(y) dy

|lz—y|<1
is bounded on LP with bound C(B + ([bl[o) 3 |aj=m—1 D" AllBMmoO-
Proof. Without loss of generality, we may assume that
> ID*Algmo = 1.
|a|l=m—1

For each fixed h € R™, we split f = f1 + fo + f3, where
f1y) = FWXxqy-n<1/3®),  f2(y) = FW)xq1/2<y—hl<5/43 (¥)-
It is easy to verify that if |z — h| < 1/4, then

1) = § 2 P (A, )b ) )
J

Thus
V  ITA@)Pde < BP(| Al
|lz—h|<1/4
If |t —h| <1/4and 1/2 < |y — h| < 5/4, then 1/4 < |z — y| < 3/2. So we
see that for |z — h| < 1/4,
2z —y)

TR@I<Me | o= e

1/4<|z—y|<3/2
< ClbllooSgya /0 f2().
Lemma 2 now tells us that
VT fa(@)P da < CPbIS I oD
|lx—h|<1/4

Po(A; 2, y) f2(y)| dy

Obviously, we have T)f3 = 0 for |z — h| < 1/4. Combining the above in-
equalities leads to

| Imf@Pde<oB+blE) | 1P dy.
|lz—h|<1/4 ly—h|<2
Integrating the last inequality with respect to h gives
IT1fllp < C(B + [|blloo) 1 f[lp-
This completes the proof of Lemma 3.
Proof of Theorem 1. We only deal with the case that
> ID*Allgmo = 1.

|a|l=m—1
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First we show that (ii) implies (i). Let k& and [ be two positive integers,
and P(x,y) be a non-degenerate real-valued polynomial with degree k in x
and [ in y. Write

P(z,y) = Z Gapr®y”.
la|<k, |B|<

By dilation invariance, we may assume that Zla\=k, 1Bl=t laqs| = 1. Decom-
pose

. Oz —
TAf@) = | elP“’y)m_(;—nﬂnf_le(A; %, 9)f(y) dy

lx—y|<1

+y | eP@y) T grrmt A5 2 y) () dy
d=12d-1<|z—y|<24

=T f(2) + ) T f(x).
d=1
We first consider Tf, d > 1. Split

T f(z) =) Th af (),
=0

where
A Py Al —y)
THaf (x) = S ey [P Prrw—" P(A; z, y) f(y) dy,
2d-1<|z—y|<2d |IE y|
2(a) = 2(2")xg,(2)
with

Ey={2' € S" 1|00 < 1},
E={z esn .27 <) <2}, leN.

If we can prove that for some § > 0,

(3) 174, 4 llp < €22 2locl|

and

(4 IT4afly < C(27 + | 12(@) 1og(2 + ()]} do(@) ) I,
E;

then, for a suitably chosen integer M > §~!, we have

[t <> 1 ufl
d=1

d=1 [=0

[e.e] [ee] o0
= MThafle+d > 1Taaflle+Y D 170 aflls
d=1

=1 1<d<Ml I=1 d>MI



Multilinear oscillatory integrals 209

< Cllloo I flp+ D MU +2UEDFllp+> ] D 272 Flly
=1 =1 d>MI
<c(1+ | 19602+ |2()]) do(@) ) | /1l
Sn—1
Inequality (4) can be seen from the proof of Lemma 2. To prove (3), define
~ iP(2d-1g 9d-1, 2z —y
Tél,df(x> _ S e P(2 297 y) ‘x_(—n—i-m)—l Pm(A; xz, y)f(y) dy.
1<|z—y|<2 Yy

By dilation invariance, it is enough to prove that

(5) IT5,af Il < C27° oo £ -

By an almost orthogonality argument, we may assume that f has support
in a cube ) with side length 1. Let

1 (6% (0%
Aol) = Pos (A0 = 30 Smg(D )50 ) (o)
|a|=m—1
where ¢ is as in the proof of Lemma 2. For a multi-index «, define
T iP(2¢-1g,2d4-1 Ql(x — y) o
15, af (x) = S P2 ) o= y[rrm T (x —y)*f(y) dy.
1<|z—y|<2 y

It is easy to see that

-~ i d—1, 9d— Q r—1Y
T_éhdf(ﬂj) = S e P(2d-15 24 1y) ’:E_l(|—n+m)1 Pm(A¢,m,y)f(y) dy
1<|z—y|<2 y
T 1 T a
= AT af (@)~ Y ST a0 A (@)
loj<m—1
1 T @
- Z JTQl,d(D Apf) ()
|a|l=m—1 ’
=I+II+1I1.

Before we estimate these terms, we define

T8 @)= | ePew AT apyay,

241 <[o—y|<2¢ [z =y
Recall that P(z,y) = >4 <k, 151< aapr®y? and 2 laj=k,|8/=t |@ap| = 1. By a
similar argument to that in [4], we can prove
LEMMA 4. There exists a § > 0 such that
(6) 18,4 f Nl < C27CH 1D | | £,
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and C > 0 can be taken to be independent of d and the coefficients of
P(z,y).
We return to the estimates of I, I'1 and I11. Note that for a multi-index 8
with [8] < m — 1,
IDP Agllo < C.

Thus, it follows from Lemma 4 that
1l < I Apllooll T, af o < C27°4) Fllp-

Similarly, we have
11l < C27%) £]lp.

It remains to estimate the third term II1. Note that for any 0 < v < n,

Tg af@ <0 | 2@ —y)f@)ldy
1<]z—y|<2
colel. | LWL,

— n—-y
1<|z—y|<2 ==yl

< Gyl 2l 5 (1 1) (),
where I, denotes the usual fractional integral of order . For any o > 0 such
that 1/(p+0) = 1/p—~/n, by the Hardy-Littlewood—Sobolev theorem [6],
we get

(7) 1765, af lp+o < ClCllooll £1p-
Lemma 4, inequality (7), and interpolation give
(8) 178, a1l < €277 2o fllp—o

where ¢’ is another positive constant and 0 < o < 0,,. On the other hand, if
|B] = m — 1, then
DAl <C(1+ > ID"A) — mg(DA)]),
|a|=m—1
and this shows that for any ¢ > 1,
(9) ID% Ayl < Ci.
By inequalities (8) and (9), we obtain
11T, < C27%0 " D Agfllp—o < C277% N ID*Agllel| f 1o
|a|l=m—1 |a|l=m—1
S OQ?iS/dHfHP?
where we choose 0 < 0 < 0p and 1 < t < co such that 1/p+1/t =1/(p—o0).
All the above estimates imply that inequality (3) is true.

We turn our attention to the operator T, 64. The estimate for this operator
comes from the following lemma.
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LEMMA 5. Let 2 € Llog L(S™ ') be homogeneous of degree zero and A
have derivatives of order m —1 in BMO(R™). Suppose that condition (ii) in
Theorem 1 holds. Then for any real-valued polynomial P(x,y), the opera-
tor

— Oz —
U )= | ezp(x,%_(;_ngn}_lpmm; 7, 9) () dy

lz—y|<1
satisfies

(10) 1A F1lp < Cllfllp-

Proof. We shall argue by a double induction on the degree of the poly-
nomial in z and y. If the polynomial P(x,y) depends only on z or y, it is
obvious that condition (ii) implies (10). Let u and v be two positive integers
and suppose the polynomial has degree v in = and v in y. We assume that
(10) holds for all polynomials which are sums of monomials of degree less
than u in z times monomials of any degree in y, together with monomials
which are of degree u in z times monomials which are of degree less than v
in y. Write P(z,y) as

P(z,y) = Z basr®y” + Po(x,y),
lo|=u, |B|=v

where Py(z,y) satisfies the inductive assumption. Without loss of generality,
we may assume that >, _, 5=, [bas| < 1. Rewrite

Pxy)= Y bapla®y’ —y**P) + Po(z,y),

laf=u, |B]=v

where ﬁo(x, y) satisfies the inductive assumption. It follows that

.~ Qe —
UA ) = | ezPO@’y)m_(;—nf;fle(A; 7, 9)f(y) dy

lz—yl<1

iP(x iPo(x 2z —y
+ S (e P( 7y)_ePO( 7y))‘l»_<y—n+?’n)—lpm(A’ ﬂj, y)f(y)dy

lz—yl<1
A
= U f(x) + Us' f(x).
Our inductive assumption now states that

UL fllp < ClI -

Set f(y) = f(y)X{y|<2}- It is easy to see Ut f(x) = U f(x) for |z| < 1.
Thus, when |z| < 1,
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2z —y)
|z —y|rtm?

Us'f@)<C

Pon(A; y>f<y>‘ dy

lz—y[<1
0
<C Y pfprdrtmml b0(e —y) Pu(As @, 9) f(y)| dy
d=—o0 2d-1< |z —y|<2d
<C Z 2154 i f(x
d=—o0

By Lemma 2, we get

/ 0 -
(] witrpar)” <c S 25h 7,
d=—0o0

|z|<1

0
<c Y 21+ | jewose + 1@ doe@) (| 1fwrda)”

d=—o00 gn—1 ly|<2

<01+ | 126)0a2 + 2@ do@) (| 1wray)”

S’nfl Iylﬁ?
from which the same argument as that in [5, p. 189] shows that the inequa-
lity
1/p
[ wstiran) T <o( | Irwrdy)
|z—h|<1 ly—h|<2

holds for all A € R™ and C > 0 is independent of hA. Integrating the last
inequality with respect to h and using Holder’s inequality, we finally ob-
tain

U3 fllp, < Clf -

Now we return to the proof of Theorem 1 and show that (i) implies (ii).
To do this, we need to use Definition 2. We choose Q(z,y) such that Q(z,y)
has property P and decompose

TAf(z) = X eiQ@(z.y)

lz—y|<1

lz—y|>1

=T f(z) + TL f ().

By Lemma 3, Té“ is bounded on LP. The same argument as in the proof of
Lemma 3 tells us that

2z —y)
|z —y|rtmt

2z —y)
|z — y|rtm—t

Po(A; z, y) f(y) dy

Po(A; 2, y) f(y) dy
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| mts@ran) T se(§ rwra)”

lz—h|<1 ly—h|<2
where C' is independent of h. Since Q(x,y) has property P, we have
Q($7y) = Q(l‘ - hv Yy — h) + PO(':Ev h) =+ Pl(y7 h‘)a
where Py, P; are real polynomials. When |z — h| < 1, it follows that

$7() = | E{?gﬁg%éff%LA;%znf@anngy>@/

lz—y|<1
_ o—iPo(h) S Q) 2@ —y) (4; z, y)

_ glntm—1
lz—yl<1 Iz =l

x e 1RE@=hY=I) o =IPUW) £ (y)y o o) (y) dy.

Observe that the Taylor expression of e~ Q—hy—h) jg

e—iQ(w—h,y—h) Z - (Zaaﬁ v y h) >m
_Zm'z:amuvx— “(y —h)’.

m=0

If we set a = (1,1,...,1) e R" and b= (2,2,...,2) € R", then we have

[ It r@prar)

|z—h|<1
|
<3 Y lamal(§ @ —n)
m=0 u,v

|x—h|<1

« |T0A(e_ipl(.’h)f(')XB(h,Q)(')(' - h)v)(x)|p d:l?) 1/p

/

SZWZWMMSrMmewW

m=0 ly—h|<2

1 i 1/p
<D Y lamuela (| @I dy)

m=0  u,w ly—h|<2

o0 m /
=2 %(Zmrxﬁ’a%ﬁ) ( J If(y)\pdy>1 ’

m=0" "o, ly—h|<2

=eXp{Z!aa6\aabﬁ}( | !f(y)\pdy)l/p-

213
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Hence,
A
157 fllp < CllFlp-
This completes the proof of Theorem 1.
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