The topological entropy versus level sets for interval maps (part II)

by

JOZEF BOBOK (Praha)

Abstract. Let $f: [a, b] \to [a, b]$ be a continuous function of the compact real interval such that (i) card $f^{-1}(y) \ge 2$ for every $y \in [a, b]$; (ii) for some $m \in \{\infty, 2, 3, ...\}$ there is a countable set $L \subset [a, b]$ such that card $f^{-1}(y) \ge m$ for every $y \in [a, b] \setminus L$. We show that the topological entropy of f is greater than or equal to $\log m$. This generalizes our previous result for m = 2.

0. Introduction. The aim of this paper is to demonstrate a relationship of two characteristics of an interval map: its topological entropy and cardinalities of level sets. Our main result states that for an interval map—as opposed to circle maps or some maps on higher dimensional manifolds [Ma]—the cardinalities of level sets strongly determine the value of entropy. Elaborating our approach from [B1] we focus on the case of *m*-preimages for fixed $m \in \mathbb{N} \setminus \{1\}$ or *m* equal to infinity. In particular, Theorem 4.3 shows that if we forbid an exceptional case of one-point level sets, the dependence between entropy and the cardinalities of level sets is rather regular. Based on that and several known (always) non-transitive counterexamples we conjecture that this should be the case for a wider variety of *transitive maps on compact topological manifolds*.

Let [a, b] be a compact real interval. We denote by C([a, b]) the set of all continuous functions which map [a, b] into itself. Any element of C([a, b]) is called an *interval map*. For $m \in \{\infty, 2, 3, 4, ...\}$ let L(m, [a, b]) be the subset of C([a, b]) maps satisfying

(1_m) $\forall y \in [a, b]: \text{ card } f^{-1}(y) \ge m.$

From [B1] we know that the topological entropy of any $f \in L(2, [a, b])$ is greater than or equal to log 2. In this paper we extend that result as follows.

²⁰⁰⁰ Mathematics Subject Classification: 37E05, 37B40.

Key words and phrases: interval map, level set, topological entropy.

Research supported by Grant Agency of the Czech Republic, contract n. 201/00/0859.

Let $L^{\sharp}(m, [a, b])$ be the subset of L(2, [a, b]) defined by $(1_m^{\sharp}) \quad \forall f \in L^{\sharp}(m, [a, b]) \; \exists L \subset [a, b], \; L \text{ countable } \forall y \in [a, b] \setminus L:$ $\operatorname{card} f^{-1}(y) \geq m.$

We show the following statement.

THEOREM 4.3. Let $f \in L^{\sharp}(m, [a, b])$. Then the topological entropy of f is greater than or equal to $\log m$. In particular, this is true for any map from $L(m, [a, b]) \subset L^{\sharp}(m, [a, b])$.

Fig. 1. $f \in L^{\sharp}(3, [a, b]), ent(f) \ge \log 3$

Our main result is rather delicate. One can easily find an interval map of entropy zero that does not satisfy (1_{∞}) for exactly one point from [a, b].

In this paper we use several times the following type of "horseshoe".

DEFINITION 0.1. Let (X, ϱ) be a compact metric space, $f: X \to X$ be continuous and $S_0, S_1, \ldots, S_{m-1} \subset X$ be closed. We say that the sets $S_0, S_1, \ldots, S_{m-1}$ form an *m*-horseshoe if they are pairwise disjoint and

$$f(S_0) \cap f(S_1) \cap \dots \cap f(S_{m-1}) \supset S_0 \cup S_1 \cup \dots \cup S_{m-1}.$$

As an easy consequence of the definition of topological entropy we obtain the following [DGS].

PROPOSITION 0.2. Let (X, ϱ) be a compact metric space and $f: X \to X$ be continuous. If the sets $S_0, S_1, \ldots, S_{m-1} \subset X$ form an m-horseshoe then the topological entropy of f is greater than or equal to $\log m$.

Fig 2. The sets $S_0 = [0, b]$, $S_1 = [c, 1]$ form a 2-horseshoe

The paper is organized as follows. In Section 1 we give some basic notation, definitions and known results (Theorems 1.1 and 1.3). Section 2 is devoted to the lemmas used throughout the paper. In Section 3 we analyze the properties of maps from $L^{\sharp}(m, [a, b]), m \in \{\infty, 2, ...\}$. In Section 4 we prove the key Lemma 4.1, Corollary 4.2 and Theorem 4.3.

Finally, Section 5 is devoted to an application of Theorem 4.3. We show that the entropy of a Besicovitch function (preserving the Lebesgue measure) is infinite.

1. Definitions and known results. By \mathbb{N} we denote the set of positive integers. We will work with *topological dynamics* (X,T), where X is a compact metric space and $T: X \to X$ is a continuous map. (X,T) is *minimal* if $\{T^i(x): i \in \mathbb{N}\}$ is dense in X for each $x \in X$. A subset M of X is T-invariant if $T(M) \subset M$, and *minimal* (in X) if M is closed, T-invariant and (M,T|M) is minimal.

Let ρ be a metric on the space X. We will use Bowen's definition of topological entropy [DGS]. A set $E \subset X$ is (n, ε) -separated (with respect to T) if, whenever $x, y \in E$, $x \neq y$ then $\max_{0 \leq i \leq n-1} \rho(T^i(x), T^i(y)) > \varepsilon$. For a compact set $K \subset X$ we denote by $s(n, \varepsilon, K)$ the largest cardinality of any (n, ε) -separated subset of K. Put

$$\operatorname{ent}(T,K) = \lim_{\varepsilon \to 0^+} \limsup_{n \to \infty} \frac{1}{n} \log s(n,\varepsilon,K)$$

and ent(T) = ent(T, X). The quantity ent(T) is called the *topological entropy* of T.

A topological dynamics (Y, S) is a *factor* of (X, T) if there is a continuous surjective factor map $h: X \to Y$ such that $h \circ T = S \circ h$.

THEOREM 1.1 ([Bo]). If (Y, S) is a factor of (X, T) then $\operatorname{ent}(S) \leq \operatorname{ent}(T) \leq \operatorname{ent}(S) + \sup_{y \in Y} \operatorname{ent}(T, h^{-1}(\{y\})).$

As usual, the ω -limit set $\omega_T(x)$ of $x \in X$ consists of all the limit points of $\{T^i(x): i \in \mathbb{N}\}$. A set $P \subset X$ is called a *periodic orbit* (of period n) if $P = \{x, T(x), \ldots, T^{n-1}(x)\}$ for some $x \in X$ and $n \in \mathbb{N}$ with $T^n(x) = x$. A normalized Borel measure μ on X is T-invariant if $\mu(T^{-1}(E)) = \mu(E)$ for each Borel set $E \subset X$.

Now we list several useful properties of minimal sets. As is well known they can be considered in any topological dynamics.

- LEMMA 1.2. (i) For each $x \in X$, the ω -limit set $\omega_T(x)$ contains some minimal set.
- (ii) Any minimal set in X is either finite and then a periodic orbit of T, or infinite and then uncountable.
- (iii) If (X,T) is minimal and a measure μ on X is T-invariant then either X is finite and then μ is atomic, or X is infinite and then μ is nonatomic. In any case supp $\mu = X$.
- (iv) Let $M \subset X$ be minimal in X. If M is infinite then for each countable closed set $C \subset M$ and $x \in M$ we have $\lim_n n^{-1} \operatorname{card} \{ 0 \leq i \leq n-1 \colon T^i(x) \in C \} = 0.$

Proof. See [BC] for (i)–(iii).

Let us prove (iv). Notice that by our assumption and (ii), M is uncountable. Suppose to the contrary there is an increasing sequence $\{k_n\}_{n=1}^{\infty}$ such that $\lim_n k_n^{-1}C(k_n, x) = a \in (0, 1]$, where $C(n, x) = \operatorname{card}\{0 \le i \le n-1: T^i(x) \in C\}$. Then using the standard method [DGS, Prop. 2.7] we can find an atomic *T*-invariant measure μ for which $\mu(C) > 0$ and $\operatorname{supp} \mu \subsetneq M$, a contradiction with (ii) and (iii).

We will use the symbolic dynamics [DGS]. For $m \in \mathbb{N}$ consider the set $N_m = \{0, 1, \ldots, m-1\}$ as a space with the discrete topology, and denote by Ω_m the infinite product space $\prod_{i=0}^{\infty} X_i$, where $X_i = N_m$ for all *i*. The shift map $\sigma_m \colon \Omega_m \to \Omega_m$ (in what follows we write σ instead of σ_m) is defined by $(\sigma(\omega))_i = \omega_{i+1}$ for $i \in \mathbb{N} \cup \{0\}$. Obviously, each (Ω_m, σ) is a topological dynamics.

It is known [DGS, Prop. 16.11] that for $\Omega \subset \Omega_m$ closed,

(2)
$$\operatorname{ent}(\sigma, \Omega) = \lim_{n} \frac{1}{n} \log \operatorname{card} \Omega(n),$$

where $\Omega(n) = \{\omega(n) = (\omega_0, \dots, \omega_{n-1}): \omega \in \Omega\}.$

The following remarkable result concerns the topological entropy of subshifts in (Ω_m, σ) . THEOREM 1.3 ([G]). Let $m \in \mathbb{N}$. For any positive ε there is a minimal set Γ in Ω_m such that $\operatorname{ent}(\sigma, \Gamma) > -\varepsilon + \log m$.

The following easy lemma is needed in the proof of Theorem 4.3. Put $\Omega_{j,k} = \{ \omega \in \Omega_m : \omega_{2i+j} \neq k \text{ for each } i \in \mathbb{N} \cup \{0\} \}$ for $j \in N_2, k \in N_m$, and

(3)
$$\Omega(M(\infty)) = \bigcup_{(j,k) \in N_2 \times N_m} \Omega_{j,k}.$$

LEMMA 1.4. Let $\Omega = \Omega(M(\infty))$ be as in (3).

- (i) The set Ω is closed σ -invariant in Ω_m and $\operatorname{ent}(\sigma, \Omega) = \frac{1}{2} \log[m(m-1)]$.
- (ii) For each $k_0 \geq 2$,

$$\frac{1}{2}\log[m(m-1)] \le \frac{1}{k_0}\log(m-1) + \frac{k_0 - 1}{k_0}\log m.$$

Proof. (i) The closedness of Ω is clear. Since $\sigma(\Omega) \subset \Omega$, we can compute the entropy $\operatorname{ent}(\sigma, \Omega)$ using (2). Obviously, for each $n \in \mathbb{N}$ and $(j, k) \in N_2 \times N_m$ we have card $\Omega_{j,k}(2n) = [m(m-1)]^n$, hence the conclusion follows. Property (ii) is clear.

2. Lemmas. In what follows, by [a, b], resp. (a, b) we always denote a compact, resp. open real interval. As usual, a map $f \in C([a, b])$ has a *strict* local maximum, resp. minimum at a point $x \in [a, b]$ if there is an $\varepsilon > 0$ such that for each $y \in [a, b] \cap ((x - \varepsilon, x + \varepsilon) \setminus \{x\})$ we have f(y) < f(x), resp. f(y) > f(x). In this case we say that f(x) is a locally extremal value. We set $C_{\text{extrem}}(f) = \{y \in [a, b]: y \text{ is a locally extremal value}\}$ and $C_{\text{inter}}(f) = \{y \in [a, b]: f^{-1}(y) \text{ contains an interval}\}.$

The following lemma is well known.

LEMMA 2.1. Let $f \in C([a, b])$. Then the set $C_{inter}(f) \cup C_{extrem}(f)$ is countable.

Proof. Obviously $C_{inter}(f)$ is countable. Moreover, there is a countable set of points in [a, b] where a map f attains its strict local extreme [Br], hence also $C_{extrem}(f)$ is countable.

Let $\mathcal{J} = \{J_{\alpha}\}_{\alpha}$ and $\mathcal{K} = \{K_{\beta}\}_{\beta}$ be two systems of open subintervals of (a, b). Then \mathcal{K} is said to be *finer* than \mathcal{J} if every K_{β} is contained in some J_{α} . In what follows by a countable set we also mean a finite one.

LEMMA 2.2. (i) For any $T \subset \mathbb{R}$ the set $\{x \in T : x \text{ is a one-sided limit point of } T\}$ is countable.

(ii) Let $\mathcal{J} = \{J_{\alpha}\}_{\alpha}$ be a system of open subintervals of (a, b) for which $(a, b) \setminus \bigcup_{\alpha} J_{\alpha}$ is countable. There is a countable system $\mathcal{K} = \{K_n\}_n$ of pairwise disjoint open subintervals of (a, b) that is finer than \mathcal{J} and such that $(a, b) \setminus \bigcup_n K_n$ is countable.

Proof. Conclusion (i) is clear.

Let us prove (ii). Since each J_{α} can be expressed as an increasing union of open intervals with rational endpoints, there is a countable system $\mathcal{L} = \{L_n\}_{n\in\mathbb{N}}$ of open intervals which is finer than \mathcal{J} and such that $(a,b) \setminus \bigcup_{n\in\mathbb{N}} L_n = (a,b) \setminus \bigcup_{\alpha} J_{\alpha}$. To construct \mathcal{K} , in the first step we put $K_1 = L_1$. Suppose we have already defined open intervals K_1, \ldots, K_l in m-1 steps; then the new open intervals from \mathcal{K} given by the mth step are the nonempty connected components of $L_m \setminus \overline{\bigcup_{i=1}^l K_i}$. Now the reader can verify that the resulting countable system \mathcal{K} satisfies (ii).

As usual, for $y \in [a, b]$ by a left neighbourhood of y in the relative topology we mean any set containing an interval $(y - \delta, y] \cap [a, b]$ with some δ positive; right and two-sided neighbourhoods are defined analogously.

DEFINITION. Let $f \in C([a, b])$. We say that $x \in [a, b]$ is *left regular* if for each two-sided neighbourhood U(x) of x the set f(U(x)) is a left neighbourhood of f(x); a *right regular*, resp. *regular point* is defined analogously. We denote the corresponding sets of regular points by $R_{\text{lreg}}(f), R_{\text{rreg}}(f), R_{\text{reg}}(f)$ respectively. Obviously, $R_{\text{reg}}(f) = R_{\text{lreg}}(f) \cap R_{\text{rreg}}(f)$.

For $f \in C([a, b])$ we define the following sets (see Lemma 2.1):

$$C_{\text{reg}}(f) = \{ y \in (a, b) : \operatorname{card}(f^{-1}(y) \cap R_{\text{reg}}(f)) \ge m \},$$

$$C_{\text{rreg}}(f) = \{ y \in (a, b) : y \notin C_{\text{reg}} \cup C_{\text{extrem}} \cup C_{\text{inter}} \\ \& \operatorname{card}(f^{-1}(y) \cap R_{\text{rreg}}(f)) \ge m \},$$

$$C_{\text{lreg}}(f) = \{ y \in (a, b) : y \notin C_{\text{rreg}} \cup C_{\text{reg}} \cup C_{\text{extrem}} \cup C_{\text{inter}} \\ \& \operatorname{card}(f^{-1}(y) \cap R_{\text{lreg}}(f)) \ge m \}.$$

For $y \in [a,b]$ we put $T(y) = \{(t_0,\ldots,t_{m-1}): t_0 < \cdots < t_{m-1} \& t_i \in f^{-1}(y)\} \subset [a,b]^m$ and fix a map $\phi: C_{\text{lreg}}(f) \cup C_{\text{rreg}}(f) \cup C_{\text{reg}}(f) \to [a,b]^m$ satisfying

(*)
$$\phi(y) = (t_0, \dots, t_{m-1}) \in T(y), \quad t_i \in f^{-1}(y) \cap R_j(f) \text{ if } y \in C_j(f),$$

 $j \in \{ \text{lreg}, \text{rreg}, \text{reg} \}.$

The next lemma will be important when proving our main result. We use the notation $C = C_{\text{lreg}}(f) \cup C_{\text{rreg}}(f) \cup C_{\text{reg}}(f)$, $N_m = \{0, 1, \ldots, m-1\}$; for $t \in \mathbb{R}^m$ we put $||t|| = \min_{0 \le i \le m-2} |t_{i+1} - t_i|$, and for a map $f, y \in \mathbb{R}$ and $\varepsilon > 0$,

$$J(\varepsilon, y) = \begin{cases} (y - \varepsilon, y), & y \in C_{\text{lreg}}(f), \\ (y, y + \varepsilon), & y \in C_{\text{rreg}}(f), \\ (y - \varepsilon, y + \varepsilon), & y \in C_{\text{reg}}(f). \end{cases}$$

LEMMA 2.3. Let $f \in C([a, b])$.

- (i) If $y \in [a, b]$ and $y \notin C_{inter}(f)$ then $f^{-1}(y) \subset R_{lreg}(f) \cup R_{rreg}(f)$.
- (ii) For any $y' \in C$ there is an $\varepsilon(y') > 0$ such that $J(\varepsilon(y'), y') \subset (a, b)$ and

$$\forall y \in J(\varepsilon(y'), y') \; \exists t \in T(y) \; \forall i \in N_m: \quad t_i \in (\phi(y')_i - \delta, \phi(y')_i + \delta),$$

where $\delta = \|\phi(y')\|/100 \; (see \; (\star)).$

In statements (iii)–(iv) we assume that the set $(a, b) \setminus C$ is countable.

- (iii) There exists a countable system $\{K_n\}_n$ of pairwise disjoint open subintervals of (a, b) that is finer than $\{J(\varepsilon(y), y)\}_{y \in C}$ (see (ii)) and such that $[a, b] \setminus \bigcup_n K_n$ is countable. Moreover, there exists a map $\Psi \colon \mathbb{N} \to C$ such that $K_n \subset J(\varepsilon(\Psi(n)), \Psi(n))$ for each $n \in \mathbb{N}$.
- (iv) There is a map $\psi: \bigcup_n K_n \to [a,b]^m$ such that if $K_n \subset J(\varepsilon(y'),y')$ where $\Psi(n) = y'$ then for each $y \in K_n$ we have $\psi(y) = t \in T(y)$ and

$$\forall i \in N_m: \quad t_i \in (\phi(y')_i - \delta, \phi(y')_i + \delta).$$

Proof. (i) The reader can easily verify that a point $x \in [a, b]$ is not (left, right) regular if and only if f is constant on some neighbourhood of x.

Let us prove (ii) when $y' \in C_{\text{lreg}}(f)$ (the other cases are similar). Since $y' \in C_{\text{lreg}}(f)$, for $\phi(y') \in T(y')$ and δ defined above the set $f((\phi(y')_i - \delta, \phi(y')_i + \delta))$ is a left neighbourhood of y' for each $i \in N_m$. Now we can choose $\varepsilon(y')$ sufficiently small to satisfy

$$J(\varepsilon(y'), y') \subset \bigcap_{i=0}^{m-1} f((\phi(y')_i - \delta, \phi(y')_i + \delta)),$$

which proves (ii) for $y' \in C_{\text{lreg}}(f)$.

Let us show (iii). Notice that if $(a, b) \setminus C$ is countable then so is $A = (a, b) \setminus \bigcup_{y \in C} J(\varepsilon(y), y)$. Indeed, $A \subset (A \cap C) \cup ([a, b] \setminus C)$ and $A \cap C$ is countable by Lemma 2.2(i). Now (iii) is a consequence of Lemma 2.2(ii). The existence of Ψ comes from the fact that $\{K_n\}_n$ is finer than $\{J(\varepsilon(y), y)\}_{y \in C}$.

Property (iv) is an easy consequence of (ii) and (iii).

3. Properties of maps from $L^{\sharp}(m, [a, b]), m \in \{\infty, 2, 3, ...\}$. In what follows for $f \in C([a, b])$ we use the notation

$$B_1(f) = \{ x \in [a, b]: f(y) \ge f(x), \forall y \in [a, x] \& f(x) \ge f(y), \forall y \in [x, b] \}, \\ B_2(f) = \{ x \in [a, b]: f(y) \le f(x), \forall y \in [a, x] \& f(x) \le f(y), \forall y \in [x, b] \},$$

and $B(f) = B_1(f) \cup B_2(f)$. If there is no ambiguity we often write B_i , resp. *B* instead of $B_i(f)$, resp. B(f).

Fig 3. $f \in L(2, [a, b])$ and $x_1, x_2 \in B_1(f)$

For $f \in L(m, [a, b])$ and $y \in [a, b]$ we put $m_y = m_y(f) = \min f^{-1}(y)$ and $M_y = M_y(f) = \max f^{-1}(y)$. The closed sets $S_0 = S_0(f)$, $S_{m-1} = S_{m-1}(f)$, $S_{(0,m-1)} = S_{(0,m-1)}(f)$ are defined as

$$S_0 = \overline{\{m_y \colon y \in [a,b]\}},$$

(4)

$$S_{m-1} = \overline{\{M_y \colon y \in [a,b]\}}, \quad S_{(0,m-1)} = S_0 \cap S_{m-1}.$$

Since for every $m \in \{\infty, 2, 3, 4, \ldots\}$

$$L(m, [a, b]) \subset L^{\sharp}(m, [a, b]) \subset L(2, [a, b])$$

we can apply the results developed in [B1] for maps from L(2, [a, b]).

LEMMA 3.1 ([B1]). Let $f \in L(2, [a, b])$ and $S_{(0,m-1)} \neq \emptyset$.

- (i) Either B_1 or B_2 is empty, hence $B \in \{B_1, B_2\}$.
- (ii) $S_{(0,m-1)} \subset B \setminus \{a,b\}.$
- (iii) The closed set B can be expressed as a union $(n \ge 1)$

$$\{b_n\}_{n<\mathcal{K}} \cup \bigcup_{n<\mathcal{L}} [b_n^-, b_n^+]$$

where $b_n^- < b_n^+$ for each cardinal $n, 1 \le n < \mathcal{L}$; in the topology of [a,b], the points a, b are not limit points of the set $\{b_n\}_{n < \mathcal{K}} \cup \bigcup_{n < \mathcal{L}} \{b_n^-, b_n^+\}$ and no point $b_m \in \{b_n\}_{n < \mathcal{K}}$ is a two-sided limit point of that set, hence \mathcal{K}, \mathcal{L} are at most countable cardinals.

- (iv) If $\omega_f \subset B_1$ is an ω -limit set then either $\omega_f = \{p\}$ and $p \in Fix(f)$, or ω_f is a periodic orbit of period 2.
- (v) If $\omega_f \subset B_2$ is an ω -limit set then $\omega_f = \{p\}$ and $p \in Fix(f)$.

- (vi) $a \in B_1 \ (a \in B_2)$, resp. $b \in B_1 \ (b \in B_2)$ if and only if f(a) = b(f(a) = a), resp. $f(b) = a \ (f(b) = b)$.
- (vii) $\operatorname{card}(B_1 \cap \operatorname{Fix}(f)) \leq 1.$

LEMMA 3.2. Let $f \in L(2, [a, b])$.

- (i) If $B_1(f) = B_2(f) = \emptyset$ then $S_{(0,m-1)} = \emptyset$.
- (ii) If $B_1(f) \neq \emptyset \neq B_2(f)$ then for some $a \leq a_1 < b_1 \leq b$ either $f([a, a_1]) = \{a\}, f([b_1, b]) = \{a\}, B_2(f) = [a, a_1], B_1(f) = [b_1, b], or f([a, a_1]) = \{b\}, f([b_1, b]) = \{b\}, B_1(f) = [a, a_1], B_2(f) = [b_1, b].$ In any case $S_{(0,m-1)} = \emptyset$.

Proof. Property (i) is a consequence of Lemma 3.1(ii). For (ii) see [B, Cor. L.2.1]. \blacksquare

We have seen that for $f \in L^{\sharp}(m, [a, b])$ if $\omega_f(x) \subset B$ then $\omega_f(x)$ has a simple structure. In fact it is a periodic orbit and $\operatorname{card} \omega_f(x) \leq 2$. However, the number of different ω -limit sets that are subsets of B can be infinite. Fortunately, for each such f one can consider a simplified version g of f(more precisely, a factor ([a, b], g) of ([a, b], f)) which is in $L^{\sharp}(m, [a, b])$ again and has a very poor structure of ω -limit sets in B(g). The precise statement is given in Lemma 3.3.

Now we introduce some useful notation. For intervals $J = [\alpha, \beta] \subset [a, b]$ and $K = [\gamma, \delta] \subset [a, b]$, where $a \leq \alpha < \gamma \leq \delta < \beta \leq b$, the symbol h(J, K)denotes a continuous nondecreasing piecewise affine map from [a, b] onto [a, b] that is constant on $[a, \alpha]$, K and $[\beta, b]$.

LEMMA 3.3. Let $f \in L^{\sharp}(m, [a, b])$ and assume that $\emptyset \neq B(f) \in \{B_1(f), B_2(f)\}$. There is a map $g \in L^{\sharp}(m, [a, b])$ such that ([a, b], g) is a factor of ([a, b], f) and one of the following possibilities holds.

- (i) $B_2(g) = \emptyset$ and if $\omega_g(x) \subset B_1(g)$ then either $\omega_g(x) = \{a, b\}$ or $\omega_g(x) = \{p\}$ for some $p \in \text{Fix}(g) \cap B_1(g)$.
- (ii) $B_1(g) = \emptyset$ and if $\omega_g(x) \subset B_2(g)$ then $\omega_g(x) = \{p\}$ for some $p \in Fix(g) \cap \{a, b\}$.

Proof. Without loss of generality we can assume that $B_1(f) \neq \emptyset$ and $B_2(f) = \emptyset$. We show that (i) holds in this case. Set

$$D = \{(x, f(x)) \in B_1 \times B_1 \colon f^2(x) = x < f(x)\} \cup \{(a, b)\}.$$

By Lemma 3.1(vii),(iv) there is nothing to prove if $D = \{(a, b)\}$. In this case we put g = f.

For $(u, v) \in D$ we can consider a uniquely determined factor $([a, b], f_u)$ of ([a, b], f) with a factor map h(J, K), where $\alpha = u, \beta = v$ and $\gamma = \delta$. Now,

$$y := \max\{u: (u, v) \in D \& f_u \in L^{\sharp}(m, [a, b])\}$$

exists, since otherwise $f \notin L^{\sharp}(m, [a, b])$. Define

$$D_1 = \{x: x > y \& (x, f(x)) \in D\}.$$

If $D_1 = \emptyset$, we can put $g = f_y$. Otherwise $z := \min D_1$ exists, z > y and for $(y, \tilde{y}), (z, f(z)) \in D$ there is a factor ([a, b], g) of ([a, b], f) with a factor map h(J, K), where $\alpha = y < \gamma = z < \delta = f(z) < \beta = \tilde{y}$.

Summarizing, at least one of the following possibilities holds: (i) g = f, (ii) g(a) = b, g(b) = a, (iii) g(c) = c, where $c = h(J, K)(\gamma) \in (a, b)$. This implies that $B_2(g) = \emptyset$.

Obviously, $g \in L^{\sharp}(m, [a, b])$ and from Lemma 3.1(iv) and our choice of y and z satisfying $D_1 \cap (y, z) = \emptyset$ property (i) follows.

If $B_2(f) \neq \emptyset$ and $B_1(f) = \emptyset$ then the existence of g satisfying (ii) can be shown similarly.

For $g \in L^{\sharp}(m[a, b])$ consider the following four properties (A)–(D):

$$(\bigstar) \begin{cases} (A) \ B_1(g) = B_2(g) = \emptyset; \\ (B) \ B_1(g) \neq \emptyset \neq B_2(g); \\ (C) \ g \text{ satisfies the conclusion of Lemma 3.3(i);} \\ (D) \ g \text{ satisfies the conclusion of Lemma 3.3(ii).} \end{cases}$$

We set

 $L^{\star}(m,[a,b]) = \{g \in L^{\sharp}(m,[a,b]) \colon g \text{ has some of properties (A)-(D)}\}.$

LEMMA 3.4. Let $g \in L^*(m, [a, b])$. There is a positive integer $k_0 = k_0(g) \ge 2$ such that for any $x \in B(g)$ we have

 $g^k(x) \in ([a,b] \setminus B(g)) \cup (\operatorname{Fix}(g) \cap B(g)) \cup \{a,b\}$ for some $k < k_0$.

Proof. The statement is true for g satisfying (A). For (B), use Lemma 3.2(ii). Now, suppose (C) holds. By Lemma 3.1(iii) the endpoints a, b are not limit points of $\{b_n\}_{n < \mathcal{K}} \cup \bigcup_{n < \mathcal{L}} \{b_n^-, b_n^+\}$. By the same lemma, if $\operatorname{Fix}(g) \cap B_1(g) \neq \emptyset$ then no point in this set is a two-sided limit point of $B_1(g)$. Since by our assumption $B_1(g)$ contains no other ω -limit set (a 2-cycle), there is a $k_0 \geq 2$ such that $B(g) \setminus ((\operatorname{Fix}(g) \cap B(g)) \cup \{a, b\})$ contains at most k_0 consecutive iterates of any point of B(g). The case when g satisfies (D) can be verified similarly. ■

The next lemma uses the notation introduced in Section 2 before Lemma 2.3.

LEMMA 3.5. Let $g \in L^*(m, [a, b])$. Then $(a, b) \setminus (C_{\text{lreg}}(f) \cup C_{\text{rreg}}(f) \cup C_{\text{rreg}}(f))$ is countable.

Proof. Lemma 2.1 implies that it is sufficient to show

 $(a,b) \setminus (C_{\operatorname{lreg}}(f) \cup C_{\operatorname{rreg}}(f) \cup C_{\operatorname{reg}}(f)) \subset C_{\operatorname{inter}}(f) \cup C_{\operatorname{extrem}}(f) \cup L,$

where L is the countable set given in (1_m^{\sharp}) of the introduction. Take $y \in (a,b) \setminus (C_{\text{lreg}}(f) \cup C_{\text{rreg}}(f) \cup C_{\text{reg}}(f))$ and suppose that $y \notin C_{\text{inter}}(f) \cup L$. Then card $f^{-1}(y) \ge m$ and Lemma 2.3(i) shows that card $f^{-1}(y)$ is finite. Since $y \notin C_{\text{reg}}(f)$ there exists an $x \in f^{-1}(y)$ which is not regular. Since x is an isolated point of $f^{-1}(y)$ we have $f(x) = y \in C_{\text{extrem}}(f)$.

Let $g \in L^*(m, [a, b])$. We define closed sets $S_0 = S_0(g), S_1 = S_1(g), \ldots, S_{m-1} = S_{m-1}(g)$ as follows: S_0, S_{m-1} are as in (4). By Lemma 3.5 we can use the pairwise disjoint countable system $\{K_n\}_n$ and the map $\psi : \bigcup_n K_n \to [a, b]^m$ from Lemma 2.3(iii),(iv). For each $i \in \{1, \ldots, m-2\}$ we put

$$S_i = S_i(g) = \overline{\left\{\psi(y)_i \colon y \in \bigcup_n K_n\right\}}.$$

Also we put

(5)
$$S = S(g) = \bigcap_{i=0}^{\infty} g^{-i} (S_0 \cup S_1 \cup \dots \cup S_{m-1}).$$

The reader can verify that since $g \in L^{\star}(m, [a, b])$, by Lemmas 3.5 and 2.3 the sets $S_i, i \in N_m$, satisfy $[a, b] = \bigcap_{i=0}^{m-1} g(S_i) \supset \bigcup_{i=0}^{m-1} S_i$. There are a finite number of nontrivial intersections of elements of $\mathcal{H} = \{S_0, S_1, \ldots, S_{m-1}\}$, i.e., of sets

$$S_{(i(1),\dots,i(q))} = \bigcap_{j=1}^{q} S_{i(j)}, \quad 0 \le i(1) < \dots < i(q) \le k - 1 \& 2 \le q \le k.$$

We define the *kernel* of \mathcal{H} by Ker $\mathcal{H} = \bigcup_{i(1) \neq i(2)} S_{(i(1),i(2))}$, and the *center* of \mathcal{H} by Cen $\mathcal{H} = \bigcap_{i=0}^{m-1} S_i$. Clearly, both Ker \mathcal{H} and Cen \mathcal{H} are closed.

LEMMA 3.6. Let $g \in L^*(m, [a, b])$, $\mathcal{H} = \{S_0, S_1, \ldots, S_{m-1}\}$, and Ker \mathcal{H} be as above. Then $g(\text{Ker }\mathcal{H})$ is countable.

Proof. By our construction of S_0, \ldots, S_{m-1} , if $x \in S_{(i,j)}$ for $i \neq j$ then $g(x) \in [a,b] \setminus \bigcup_n K_n$, which is a countable set by Lemma 2.3(iii).

4. The proof of the main result. As before, for $g \in L^*(m, [a, b])$ we consider the closed sets $S_0(g), \ldots, S_{m-1}(g)$ and also the set S = S(g)given by (5). If $x \in S$ then by its *itinerary* with respect to $S_0, S_1, \ldots, S_{m-1}$ we mean any $\omega \in \Omega_m$ such that $g^i(x) \in S_{\omega_i}$ for $i \in \mathbb{N} \cup \{0\}$. For $M \subset S$ we denote by $\Omega(M)$ the least closed σ -invariant subset of Ω_m that contains all possible itineraries of points of M with respect to $S_0, S_1, \ldots, S_{m-1}$. In particular, if $M = \operatorname{Fix}(f) \cap \operatorname{Cen} \mathcal{H} \neq \emptyset$ then $\Omega(M) = \Omega_m$, hence $\operatorname{ent}(\sigma, \Omega(M)) = \log m$.

For $g \in L^{\star}(m, [a, b])$ we fix the value $k_0 = k_0(g) \ge 2$ given by Lemma 3.4. Here is the key lemma:

LEMMA 4.1. Let $g \in L^*(m, [a, b])$. If $M \subset S$ is minimal and $M \neq Fix(g) \cap Cen \mathcal{H}$ then

(6)
$$\operatorname{ent}(\sigma, \Omega(M)) \le \max\left(\operatorname{ent}(g, M), \frac{1}{k_0}\log(m-1) + \frac{k_0 - 1}{k_0}\log m\right).$$

Proof. Put $X = \{(x, \omega) : x \in M \& g^i(x) \in S_{\omega_i} \text{ for each } i \in \mathbb{N} \cup \{0\}\}$. The map $G = g \times \sigma$ defined by $G(x, \omega) = (g(x), \sigma(\omega))$ is continuous on the compact metric space X (with respect to the product metric). Moreover, the dynamical system (M, g), resp. $(\Omega(M), \sigma)$ is a factor of (X, G) given by the (factor map) projection $\Pi_1 \colon X \to M$, resp. $\Pi_2 \colon X \to \Omega(M)$. Using Theorem 1.1 we see that

(7)
$$\operatorname{ent}(\sigma, \Omega(M)) \le \operatorname{ent}(G) \le \operatorname{ent}(g, M) + \sup_{x \in M} \operatorname{ent}(G, \Pi_1^{-1}(\{x\})).$$

Moreover, $\Lambda_x = \Pi_2(\Pi_1^{-1}(\{x\}))$ is a closed subset of Ω_m whenever $x \in M$. By (2) we have

(8)
$$\operatorname{ent}(G, \Pi_1^{-1}(\{x\})) = \lim_n \frac{1}{n} \log \operatorname{card} \Lambda_x(n).$$

Concerning the relationship of the sets M, Cen \mathcal{H} , Ker \mathcal{H} we consider several possibilities (see Lemma 1.2).

CASE I: M is a cycle. Then ent(g, M) = 0 and to prove (6) we need to verify that

$$\operatorname{ent}(\sigma, \Omega(M)) \le \frac{1}{k_0} \log(m-1) + \frac{k_0 - 1}{k_0} \log m.$$

CASE I(a): $M \cap \text{Cen } \mathcal{H} = \emptyset$. This is true if g satisfies (A) or (B) of (\bigstar) (see Lemma 3.2). Our assumption implies that for each $x \in M$ and positive integer n we have card $\Lambda_x(n) \leq (m-1)^n$, hence (8) yields $\text{ent}(G, \Pi_1^{-1}(\{x\})) \leq \log(m-1)$. Now the property (6) is a consequence of (7) and of the inequality $\log(m-1) \leq \frac{1}{k_0} \log(m-1) + \frac{k_0-1}{k_0} \log m$.

CASE I(b): $M \cap \text{Cen } \mathcal{H} \neq \emptyset$. Then g satisfies (C) or (D) of (\blacklozenge). Moreover, $\emptyset \neq \text{Cen } \mathcal{H} \subset S_{(0,m-1)} \subset B \setminus \{a,b\}$ by Lemma 3.1(ii). Since $M \neq \text{Fix}(g) \cap$ Cen \mathcal{H} , using Lemma 3.3 we obtain $M \setminus B \neq \emptyset$. By Lemma 3.4, for each $n \in \mathbb{N}$,

 $\operatorname{card} \Omega(M)(n) \leq \operatorname{card} M \cdot (m-1)^{n/k_0} m^{n-n/k_0},$

hence $\operatorname{ent}(\sigma, \Omega(M)) \leq \frac{1}{k_0} \log(m-1) + \frac{k_0-1}{k_0} \log m$ by (2). Thus, (6) is true in this case.

CASE II: *M* is infinite. In this case we show that $\operatorname{ent}(G, \Pi_1^{-1}(\{x\})) = 0$ for each $x \in M$. Then from (7) we will obtain $\operatorname{ent}(\sigma, \Omega(M)) \leq \operatorname{ent}(g, M)$, proving (6).

Fix $x \in M$, put $C = M \cap \operatorname{Ker} \mathcal{H}$ and $\widetilde{C} = M \cap g(\operatorname{Ker} \mathcal{H})$, and set, as in the proof of Lemma 1.2(iv), $C(n, x) = \operatorname{card}\{0 \le i \le n - 1: g^i(x) \in C\}$ and $\widetilde{C}(n, x) = \operatorname{card}\{0 \le i \le n - 1: g^i(x) \in \widetilde{C}\}$. Clearly $C(n, x) \le \widetilde{C}(n + 1, x)$ for each *n*. If $s(n, \varepsilon) = s(n, \varepsilon, \Pi_1^{-1}(\{x\}))$ denotes the maximal cardinality of an (n, ε) -separated subset of $\Pi_1^{-1}(\{x\})$ (with respect to *G*), by the definition of Ker \mathcal{H} we have $s(n, \varepsilon) \le m^{C(n, x)}$ for any sufficiently small ε . It follows from Lemmas 3.6 and 1.2(iv) that

$$\limsup_{n \to \infty} \frac{1}{n} \log s(n,\varepsilon) \le \lim_{n \to \infty} \frac{1}{n} \log m^{C(n,x)} \le \lim_{n \to \infty} \frac{1}{n} \log m^{\widetilde{C}(n+1,x)} = 0,$$

hence $ent(G, \Pi_1^{-1}(\{x\})) = 0.$

COROLLARY 4.2. Under the assumptions of Lemma 4.1,

$$\operatorname{ent}(\sigma, \Omega(M)) \le \max\left(\operatorname{ent}(g), \ \frac{1}{k_0}\log(m-1) + \frac{k_0-1}{k_0}\log m\right).$$

Proof. By the definition, $ent(g, M) \leq ent(g)$. Now apply Lemma 4.1.

As before, we use the notation $N_m = \{0, 1, \dots, m-1\}$.

DEFINITION. Let $\Omega \subset \Omega_m$ and $j, k \in \mathbb{N}, j \leq k$. We say that $\omega(k) \in \Omega(k)$ contains $\omega = (\omega_0, \dots, \omega_{j-1}) \in N_m^j$ if for some $l \in \{0, \dots, k-j\}$ and each $i \in \{0, \dots, j-1\}$,

$$\omega(k)_{l+i} = \omega_i.$$

DEFINITION. Let $g \in L^*(m, [a, b])$. We will say that $\omega = (\omega_0, \ldots, \omega_{j-1}) \in N_m^j$ is a *j*-itinerary of $x \in [a, b]$ if $g^i(x) \in S_{\omega_i}(g)$ for $i \in \{0, \ldots, j-1\}$. We say that a *j*-itinerary of x does not exist if $\{x, \ldots, g^{j-1}(x)\} \nsubseteq S_0(g) \cup S_1(g) \cup \cdots \cup S_{m-1}(g)$.

Combining Lemma 4.1 and Corollary 4.2 with the results of Sections 1 and 2 we now obtain the main result of this paper.

THEOREM 4.3. Let $f \in L^{\sharp}(m, [a, b])$. Then the topological entropy of f is greater than or equal to $\log m$. In particular, this is true for any map from $L(m, [a, b]) \subset L^{\sharp}(m, [a, b])$.

Proof. Let $f \in L^{\sharp}(m, [a, b])$. There is nothing to prove if Ker $\mathcal{H} = \emptyset$. In this case $S_0(f), S_1(f), \ldots, S_{m-1}(f)$ form an *m*-horseshoe and so ent $(f) \ge \log m$ by Proposition 0.2.

Now, suppose Ker $\mathcal{H} \neq \emptyset$. By Lemmas 3.3 and 3.4, instead of f we can consider the map $g \in L^*(m, [a, b])$ such that $\operatorname{ent}(f) \geq \operatorname{ent}(g)$. Obviously it is sufficient to prove $\operatorname{ent}(g) \geq \log m$.

In what follows all sets are taken with respect to g. The inequality $\operatorname{ent}(g) \geq \log m$ is clear if $\operatorname{Ker} \mathcal{H} = \emptyset$ since in this case the sets $S_0, S_1, \ldots, S_{m-1}$ form an *m*-horseshoe.

Suppose to the contrary that $\operatorname{Ker} \mathcal{H} \neq \emptyset$ and $\operatorname{ent}(g) < \log m$. Let $k_0 \geq 2$ be as in Lemma 3.4. Using Theorem 1.3 we can consider a minimal set Γ in Ω_m such that

(9)
$$\operatorname{ent}(\sigma, \Gamma) > \max\left(\operatorname{ent}(g), \frac{1}{k_0}\log(m-1) + \frac{k_0 - 1}{k_0}\log m\right).$$

Lemma 1.2(i) shows that for each $x \in \text{Ker } \mathcal{H}$ there is a minimal set M(x)in [a, b] such that $M(x) \subset \omega_g(x)$.

Put $B_S = \{x \in S \cap \operatorname{Ker} \mathcal{H}: M(x) \neq \operatorname{Fix}(g) \cap \operatorname{Cen} \mathcal{H}\}$ (see (5) for S). We deduce from Lemma 4.1 that (6) is true for M(x) and $\operatorname{ent}(\sigma, \Omega(M(x)))$ when $x \in B_S$. Hence by the minimality of Γ , Lemma 1.4 and (9) (for $x = \infty$ see (3)),

$$\forall x \in B_S \cup \{\infty\}: \quad \Omega(M(x)) \cap \Gamma = \emptyset.$$

Since Γ is σ -invariant we even see that for each $x \in B_S \cup \{\infty\}$ there is $n(x) \in \mathbb{N}$ such that

(10) no
$$\gamma \in \Gamma(m)$$
 contains $\omega(n(x))$

whenever $m \ge n(x)$ and $\omega(n(x)) \in \Omega(M(x)(n(x)))$.

Now we define an open cover $\{U(x)\}_{x \in \operatorname{Ker} \mathcal{H}}$ of $\operatorname{Ker} \mathcal{H}$ in three steps:

(i) If $x \in (\text{Ker }\mathcal{H}) \setminus S$ and $g^{m(x)}(x) \notin S_0 \cup S_1 \cup \cdots \cup S_{m-1}$, choose U(x) in such a way that $g^{m(x)}(U(x)) \cap (S_0 \cup S_1 \cup \cdots \cup S_{m-1}) = \emptyset$.

(ii) If $x \in B_S$ then we can consider $m(x) \in \mathbb{N}$ such that for any itinerary ω of x, $\omega(m(x))$ contains some element of $\Omega(M(x))(n(x))$; now, using the continuity of g, choose a neighbourhood U(x) of x such that for any $y \in U(x)$ either the m(x)-itinerary of y does not exist or for any itinerary ω of y, $\omega(m(x))$ contains some element of $\Omega(M(x))(n(x))$.

(iii) Let $x \in S \cap \text{Ker } \mathcal{H}$ be such that $M(x) = \text{Fix}(g) \cap \text{Cen } \mathcal{H} = \{p\}$. Since Cen $\mathcal{H} \subset S_{(0,m-1)}$, from Lemmas 3.1(ii) and 3.3(i) we get $p \in B_1 \cap (a, b)$. We know that card $g^{-1}(p) \geq 2$. Let $z \in g^{-1}(p) \setminus \{p\}$. Using the definition (4) of S_0, S_{m-1} the reader can verify that if z < p, resp. z > p then for some small positive η we have $S_0 \cap (p - \eta, p) = \emptyset$, resp. $S_{m-1} \cap (p, p + \eta) = \emptyset$. Therefore we can consider $m(x) \in \mathbb{N}$ and U(x) such that for any $y \in U(x)$ either $g^i(y) = p$ for some $i \leq m(x)$, or the m(x)-itinerary of y does not exist, or for any itinerary ω of $y, \omega(m(x))$ contains some element of $\Omega(M(\infty))(n(\infty))$.

Obviously we have found the pairs U(x), m(x), where $\{U(x)\}_{x \in \text{Ker } \mathcal{H}}$ is an open cover of the compact set Ker \mathcal{H} ; let $\{U(x_1), \ldots, U(x_k)\}$ be its finite subcover, and put

 $k^{\star} = \max\{m(x_1), \dots, m(x_k)\}.$

To finish the proof we define

$$R_i = S_i \setminus (\operatorname{Fix}(g) \cap \operatorname{Cen} \mathcal{H}), \quad i \in N_m.$$

Since $\bigcap_{i=0}^{m-1} g(R_i) \supset \bigcup_{i=0}^{m-1} R_i$, for each $l \in \mathbb{N}$ and $\gamma \in \Gamma(l)$ there is $x = x(\gamma) \in \bigcup_{i=0}^{m-1} R_i$ such that for each $i \in N_l$ we have (11) $g^i(x) \in R_{\gamma_i}, \quad g^i(x) \notin \operatorname{Fix}(g) \cap \operatorname{Cen} \mathcal{H}.$

It is clear that the sets $T_i = R_i \setminus \bigcup_{j=1}^k U(x_j), i \in N_m$, are closed. Moreover, $\delta = \min\{\operatorname{dist}(T_i, T_j): i \neq j\} > 0.$

Suppose that for some $l > k^*$, $\gamma \in \Gamma(l)$, $x(\gamma)$ and $i \in \{0, \ldots, l-1-k^*\}$ we have $g^i(x(\gamma)) \in U(x_j)$. Then by definition of $\{U(x)\}_{x \in \text{Ker } \mathcal{H}}$ either the k^* -itinerary of $g^i(x(\gamma))$ does not exist, or γ contains some element of $\Omega(M(x_j))(n(x_j))$, which is impossible by (11) and (10). This implies that for any $l > k^*$, $\gamma \in \Gamma(l)$ and $x(\gamma)$ we have

$$\{g^{i}(x(\gamma))\}_{i=0}^{l-1-k^{\star}} \subset T_{0} \cup T_{1} \cup \cdots \cup T_{m-1}.$$

Now, estimating the topological entropy of g we have, for some $\varepsilon < \delta$ and each $l > k^*$,

$$s(l-1-k^{\star},\varepsilon,[a,b]) \ge \operatorname{card}\Gamma(l)/m^{k^{\star}},$$

hence by (9) and (2), $\operatorname{ent}(g) \ge \operatorname{ent}(\sigma, \Gamma) > \operatorname{ent}(g)$ —a contradiction. The proof of our theorem is finished.

5. The topological entropy of a Besicovitch function. For the Lebesgue measure λ we define

$$C(\lambda) = \{ f \in C([0,1]) \colon \forall \text{ Borel } A \subset [0,1] \colon \lambda(A) = \lambda(f^{-1}(A)) \}$$

By a *Besicovitch function* we mean a function which has a unilateral derivative (finite or infinite) at no point. In [B2], [B3] we have constructed Besicovitch functions in $C(\lambda)$. Now we show that such maps have an infinite topological entropy. First, let us repeat the construction from [B2]. Also we correct an inaccuracy there (compare the definition of ϕ).

Construction. Let k > 4. Set

$$D = [0, 1/2] \setminus L$$
, where $L = \bigcup_{m=1}^{\infty} \bigcup_{p=1}^{2^{m-1}} r_{m,p}$,

and the open intervals $r_{m,p} = (a_{m,p}, b_{m,p})$ are constructed as follows:

- (α) $d_{1,1} = [0, 1/2], r_{1,1} \subset d_{1,1}, \lambda(r_{1,1}) = 1/2k, b_{1,1}$ is the centre of $d_{1,1}$;
- (β) if $d_{n,1}, \ldots, d_{n,2^{n-1}}$ are the intervals of $[0, 1/2] \setminus \bigcup_{q=1}^{n-1} \bigcup_{p=1}^{2^{q-1}} r_{q,p}$ for n > 1 (from left to right), then $r_{n,p} \subset d_{n,p}, b_{n,p}$ is the centre of $d_{n,p}$ and $\lambda(r_{n,p}) = 1/2k^n$.

Obviously, $\lambda(L) = 1/2(k-2)$ and $\lambda(D) = (k-3)/2(k-2)$.

Let $\phi: [0, 1/2] \to [0, 1]$ be a nondecreasing continuous function such that $\phi(0) = 0, \ \phi(1/2) = 1, \ \phi$ is constant on every interval $r_{m,p}$, and $\phi(r_{m,p}) = \{(2p-1)/2^m\}$. Define a function $p: [0,1] \to [0,1]$ by

$$p(x) = \begin{cases} \phi(x), & x \in [0, 1/2], \\ \phi(1-x), & x \in [1/2, 1]. \end{cases}$$

The function p and the interval [0, 1] form the well-known step triangle [P].

The above procedure will be called the construction of a step triangle with base [0, 1], height 1 and parameter k.

We have seen that the base [0,1] lies below the vertex (1/2,1)—in such a case we say that the step triangle is *positively oriented*. The set $\{(x, p(x)): x \in [0, 1/2]\}$, resp. $\{(x, p(x)): x \in [1/2, 1]\}$ is the left, resp. right side of triangle. Further, put $u_y = \{(x, y): x \in [0, 1]\}$ and let g(f) be the graph of the function f.

Now, we can construct a function f as follows:

- (c_0) construct a positively oriented step triangle with base [0, 1], height 1 and parameter k; the sides of the step triangle define a function f_0 ;
- (c_n) for n > 0, construct step triangles (positively or negatively oriented) whose bases are intervals of the set $\bigcup_{p=1}^{2^{n-1}} u_{2p-1/2^n} \cap g(f_{n-1})$, height $1/2^n$ and parameter k; the constructed triangles are placed inside the bigger triangle, with bases on its sides; the union of sides of all triangles constructed so far defines a function f_n .

Finally, put $f = \lim_{n \to \infty} f_n$ (obviously $\rho(f_{n-1}, f_n) = 1/2^n$).

THEOREM 5.1 ([B2], [B3]). $f \in C(\lambda)$ and f is a Besicovitch function.

In order to illustrate how our Theorem 4.3 can be used we will prove that $\operatorname{ent}(f) = \infty$. Since $\operatorname{ent}(f^n) = n \operatorname{ent}(f)$ for each $n \in \mathbb{N}$, by Theorem 4.3 it is sufficient to show that

THEOREM 5.2. $f^2 \in L^{\sharp}(\infty, [0, 1]).$

Proof. Since f(0) = f(1) = 0 and f(1/2) = 1 we have $f^2 \in L(2, [0, 1])$. Put $M = \{p/2^n : n \in \mathbb{N} \cup \{0\}, p \in \{0, 1, \dots, 2^n\}\}$ and suppose that $y \in [0, 1] \setminus M$. We will show that $\operatorname{card} f^{-1}(y) = \infty$. Otherwise there would be the smallest step triangle T such that u_y has a nonempty intersection with its sides. Without loss of generality we can assume that this step triangle T has a positive orientation, it is of height $1/2^n$ and has its base in $u_{(2p-1)/2^n}$. Since $y \notin M$ there is a unique positive integer m such that for $L = \sum_{i=1}^m 1/2^{n+i}$ we have

$$y \in \left(\frac{2p-1}{2^n} + L - \frac{1}{2^{n+m}}, \frac{2p-1}{2^n} + L\right).$$

Then from our construction it follows that u_y has a nonempty intersection with sides of a negatively oriented step triangle (placed inside T and with base on a side of T) of height $1/2^{n+m}$ and with base in $u_{(2p-1)/2^n+L}$. This is a contradiction.

Now, from $(f^2)^{-1} = f^{-1}(f^{-1})$ we obtain

$$\operatorname{card}(f^2)^{-1}(y) \begin{cases} \ge 2, & y \in M, \\ = \infty, & y \notin M. \end{cases}$$

Since M is countable the conclusion $f^2 \in L^{\sharp}(\infty, [0, 1])$ follows.

References

- [BC] L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Math. 1513, Springer, Berlin, 1992.
- [B1] J. Bobok, The topological entropy versus level sets for interval maps, Studia Math. 153 (2002), 249–261.
- [B2] —, On non-differentiable measure-preserving functions, Real Anal. Exchange 16 (1990/91),119–129.
- [B3] —, On a space of Besicovitch functions, ibid., to appear in 2005.
- [Bo] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.
- [Br] A. M. Bruckner, Differentiation of Real Functions, CRM Monogr. Ser. 5, Amer. Math. Soc., Providence, RI, 1994.
- [DGS] M. Denker, Ch. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
- [G] Ch. Grillenberger, Constructions of strictly ergodic systems, Z. Wahrsch. Verw. Gebiete 25 (1973), 323–334.
- [Ly] M. Yu. Lyubich, Entropy of analytic endomorphisms of the Riemannian sphere, Funct. Anal. Appl. 15 (1981), 300–302.
- [Ma] P. Maličký, *Topological entropy and cardinalities of level sets*, preprint 2003, 10 pp.
- [MP] M. Misiurewicz and F. Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 573–574.
- [P] E. D. Pepper, On continuous functions without a derivative, Fund. Math. 12 (1928), 244–253.

KM FSv ČVUT Thákurova 7 166 29 Praha 6, Czech Republic E-mail: erastus@mbox.cesnet.cz

> Received January 13, 2003 Revised version June 29, 2004 (5127)

27