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A Künneth formula in topological homology and
its applications to the simplicial cohomology of `1(Zk+)

by

F. Gourdeau (Québec), Z. A. Lykova (Newcastle upon Tyne)
and M. C. White (Newcastle upon Tyne)

Abstract. We establish a Künneth formula for some chain complexes in the cat-
egories of Fréchet and Banach spaces. We consider a complex X of Banach spaces and
continuous boundary maps dn with closed ranges and prove that Hn(X ′) ∼= Hn(X )′, where
Hn(X )′ is the dual space of the homology group of X and Hn(X ′) is the cohomology group
of the dual complex X ′. A Künneth formula for chain complexes of nuclear Fréchet spaces
and continuous boundary maps with closed ranges is also obtained. This enables us to
describe explicitly the simplicial cohomology groups Hn(`1(Zk+), `1(Zk+)′) and homology

groups Hn(`1(Zk+), `1(Zk+)) of the semigroup algebra `1(Zk+).

1. Introduction. One of the most difficult problems in the homology
of topological algebras is the calculation of the Hochschild homology and
cohomology of algebras; see [7, 5]. In this paper we consider Banach and
Fréchet algebras which can be represented as complete projective tensor
products A ⊗̂ B of algebras A and B, and obtain the descriptions of the
Hochschild homology Hn(A ⊗̂ B,X ⊗̂ Y ) of the algebra A ⊗̂ B with the aid
of a Künneth formula (Corollary 6.4). For the explicit descriptions of the
cohomology groups of A⊗̂B of Banach algebras A and B with coefficients in
dual bimodules we use the following result. If either the homology of a chain
complex X of Banach spaces, or the cohomology of the dual complex X ′
is formed of Banach spaces, then both are Banach spaces and further, the
cohomology group Hn(X ′) is topologically isomorphic to the dual of the
homology group Hn(X ) (Corollary 4.9).

The main tool in this paper is a Künneth formula for bounded chain
complexes X and Y of Fréchet spaces and continuous boundary maps with
closed ranges. In Theorem 5.2 we prove that, under certain topological con-
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ditions, there is a topological isomorphism
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] ∼= Hn(X ⊗̂ Y).

It is important to mention that we obtain the Künneth formula in the cate-
gory of Fréchet spaces and continuous operators, and so we need the notion
of strict flatness (Def. 4.2) to deal with this topological case. Recall that the
Hochschild homology and cohomology groups of a Fréchet algebra can also
be calculated by using the C-relative homological theory which can be found
in [7]. One of the main topological conditions in Theorem 5.2 is the topolog-
ical purity of some short exact sequences of Fréchet spaces. This condition
allows us to deal with the known problem in the category of Fréchet spaces
that the projective tensor product of injective continuous linear operators
is not necessarily injective. We study properties of topologically pure short
exact sequences of Fréchet and Banach spaces in Section 3, and properties
of strictly flat and strictly injective Banach spaces in Section 4.

The most interesting result of Section 4 is Theorem 4.8. For a chain
complex X of Banach spaces and continuous boundary maps with closed
ranges and for a non-zero strictly injective Banach space I, there is an
isomorphism of Banach spaces

L(Hn(X ), I) ∼= Hn(L(X , I)),

where L(F,E) is the Banach space of continuous operators from the Banach
space F to the Banach space E.

In Section 6 we show that the Hochschild homology group Hn(A ⊗̂ B,
X ⊗̂ Y ) of the projective tensor product of unital Fréchet algebras A and B
is the homology group of the tensor product of the appropriate Hochschild
chain complexes. Under certain topological conditions on Hochschild chain
complexes, we show that, up to topological isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) =
⊕

m+q=n

[Hm(A,X) ⊗̂ Hq(B, Y )],

where X is a Fréchet A-bimodule and Y is a Fréchet B-bimodule.
In Section 7 we apply the above results to the calculation of the simplicial

homology Hn(`1(Zk+), `1(Zk+)) and cohomology Hn(`1(Zk+), `1(Zk+)′) of the

unital semigroup algebra `1(Zk+) = `1(Z+)⊗̂`1(Zk−1
+ ), k > 1. In Theorem 7.5

explicit descriptions of the simplicial homology and cohomology of `1(Zk+)
are given. For example, we prove that

(1) Hn(`1(Zk+), `1(Zk+)′) = 0 if n > k,

(2) Hn(`1(Zk+), `1(Zk+)′) =
⊕(kn)[(I⊗̂

n

⊗̂ A⊗̂
k−n

)′] if n ≤ k,

where A= `1(Z+) = {(an)∞n=0 :
∑∞

n=0 |an|<∞} is the unital semigroup alge-
bra with convolution multiplication on Z+ and norm ‖(an)∞n=0‖ =

∑∞
n=0 |an|,
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and I = `1(N) is the closed ideal of `1(Z+) consisting of those elements with
a0 = 0.

2. Definitions and notation. We recall some notation and terminol-
ogy used in homology theory. These can be found in any textbook on ho-
mological algebra, for instance, see MacLane [13] for the pure algebraic case
and Helemskĭı [7] for the continuous case.

The categories of Fréchet and Banach spaces and continuous linear oper-
ators are denoted by Fr and Ban respectively. For a Fréchet algebra A, the
category of left Fréchet A-modules is denoted by A-mod and the category
of Fréchet A-bimodules is denoted by A-mod-A.

A chain complex X in Fr (resp. in Ban) is a family of Fréchet (resp.
Banach) spaces Xn and continuous linear maps dn (called boundary maps)

· · · dn−2←−−− Xn−1
dn−1←−−− Xn

dn←− Xn+1
dn+1←−−− Xn+2 ← · · ·

such that Im dn ⊂ Ker dn−1. The subspace Im dn of Xn is denoted by Bn(X )
and its elements are called boundaries. The Fréchet (resp. Banach) subspace
Ker dn−1 of Xn is denoted by Zn(X ) and its elements are cycles. The homol-
ogy groups of X are defined by Hn(X ) = Zn(X )/Bn(X ). As usual, we will
often drop the subscript n of dn. If there is a need to distinguish between
various boundary maps on various chain complexes, we will use subscripts,
that is, we will denote the boundary maps on X by dX . A chain complex X
is called bounded if Xn = {0} whenever n is less than a certain fixed integer
N ∈ Z.

Throughout, given a chain complex X in Fr (or in Ban), we will consider
the following short exact sequences:

0→ Zn(X )
in−→ Xn

d̃n−1−−−→ Bn−1(X )→ 0,

0→ Bn(X )
jn−→ Zn(X )

σn−→ Hn(X )→ 0,

where in is the natural inclusion map from Zn(X ) into Xn, jn is the natural

inclusion map from Bn(X ) into Zn(X ), d̃n−1 is the boundary map seen as

mapping into its image, and σn is the quotient map. Here the notation d̃ is
an instance of one we shall use repeatedly: given a continuous linear map

θ : E → F , the map θ̃ is the surjective map θ̃ : E → Im θ defined by

θ̃(t) = θ(t).
The short exact sequence of Fréchet spaces and continuous linear oper-

ators 0 → Y
i→ Z

j→ W → 0 is called admissible if there exist continuous
operators β : Z → Y and α : W → Z such that β ◦ i = 1Y , j ◦ α = 1W and
i◦β+α◦ j = 1Z . Recall that admissibility is equivalent to the existence of a
continuous operator β : Z → Y such that β ◦ i = 1Y . A short exact sequence
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of Fréchet spaces and continuous linear operators 0→ Y
i→ Z

j→W → 0 is
weakly admissible if the strong dual short exact sequence is admissible.

Let K be one of the above categories of Fréchet (or Banach) A-modules
and their morphisms. A complex of Fréchet A-modules and their morphisms
is called admissible if it splits as a complex of Fréchet spaces [7, III.3.11].
For Y ∈ A-mod-A a complex

0← Y
ε← P0

φ0←− P1
φ1←− P2 ← · · · (0← Y ← P)

over Y is called a projective resolution in A-mod-A if it is admissible and
all the modules in P are projective in A-mod-A [7, Definition III.2.1].

For a unital Fréchet algebra A, the algebra Ae = A ⊗̂ Aop is called the
enveloping algebra of A, where Aop is the opposite algebra of A with mul-
tiplication a · b = ba. For Y,X ∈ A-mod-A, we shall denote by TorA

e

n (X,Y )
the nth homology of the complex X ⊗̂Ae P, where 0← Y ← P is a projec-
tive resolution in A-mod-A [7, Definition III.4.23]. Here ⊗̂ is the projective
tensor product of Fréchet (resp. Banach) spaces [3], [7, II.4.1], and ⊗̂A is the
projective tensor product of left and right Fréchet (resp. Banach) A-modules

(see [15]). Note that by X⊗̂0 ⊗̂ Y we mean Y , by X⊗̂1 we mean X and by

X⊗̂n we mean the n-fold projective tensor power X ⊗̂ · · · ⊗̂X of X.
Given a Fréchet (resp. Banach) space E and a chain complex (X , d)

in Fr (resp. in Ban), we can form the chain complex E ⊗̂ X of the Fréchet
(resp. Banach) spaces E ⊗̂ Xn and boundary maps 1E ⊗ d. Definitions of
the totalization Tot(M) of a bounded bicomplexM and the tensor product
X ⊗̂ Y of bounded complexes X and Y in Fr can be found in [7, Defini-

tions II.5.23–25]. Recall that X ⊗̂Y := Tot(X ⊗̂ Y) for a bounded bicomplex

X ⊗̂ Y.
Finally, throughout the paper 1X : X → X denotes the identity operator

and ∼= denotes an isomorphism of Fréchet (or Banach) spaces, as appropri-
ate. Many of our proofs depend on the Open Mapping Theorem for Fréchet
spaces; one can find it in [4, Theorem 6.4.5].

3. Topologically pure extensions of Fréchet spaces and
homology groups

Definition 3.1. A short exact sequence of Fréchet (resp. Banach) spaces
and continuous linear operators

0→ Y
i→ Z

j→W → 0

is called topologically pure in Fr (resp. in Ban) if for every X ∈ Fr (resp.
X ∈ Ban) the sequence

0→ X⊗̂Y 1X⊗i−−−→ X⊗̂Z 1X⊗j−−−→ X⊗̂W → 0
is exact.
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An extension of Fréchet algebras is called topologically pure if the un-
derlying short exact sequence is topologically pure in Fr. One can find the
definition and properties of topologically pure extensions in [2] and [12] for
the Fréchet case, while the Banach case is treated in [11]. Recall that ex-
tensions of Fréchet spaces which satisfy one of the following conditions are
topologically pure:

(i) admissible or weakly admissible extensions;
(ii) extensions of nuclear Fréchet spaces ([5, Theorems A.1.6 and A.1.5]);

(iii) extensions of Fréchet algebras such that Y has a left or right bounded
approximate identity.

The reason for the introduction of topologically pure extensions of
Fréchet algebras is that they allow one to circumvent the known problem
that the projective tensor product of injective continuous linear operators
is not necessarily injective, as well as ensure that (1X ⊗ i)(X ⊗̂ Y ) is closed
in X ⊗̂ Z.

Lemma 3.2. A short exact sequence of Banach spaces and continuous
linear operators

(1) 0→ Y
i→ Z

j→W → 0

is weakly admissible in Ban if and only if it is topologically pure in Ban.

Proof. This follows from [3, II.1.8f and Remark after II.1.9]. See also
[11, Lemma 3.3] for a proof that a weakly admissible short exact sequence
is necessarily topologically pure.

The following result for the pure algebraic case can be found in
[13, Lemma V.10.3].

Proposition 3.3. Let G be a Fréchet (resp. Banach) space, let X be
a chain complex in Fr (resp. in Ban) such that all boundary maps d have
closed range, let G⊗̂X be the chain complex with boundary maps 1G⊗d, and
let n ∈ Z. Suppose that , for k = n − 1 and for k = n, the exact sequences
of Fréchet (resp. Banach) spaces

0→ Zk(X )
ik−→ Xk

d̃k−1−−−→ Bk−1(X )→ 0,(2)

0→ Bk(X )
jk−→ Zk(X )

σk−→ Hk(X )→ 0(3)

are topologically pure in Fr (resp. in Ban). Then the natural inclusions
induce topological isomorphisms:

(i) G ⊗̂ Zn(X ) ∼= Zn(G ⊗̂ X ),
(ii) G ⊗̂Bn(X ) ∼= Bn(G ⊗̂ X ),

(iii) G ⊗̂Hn(X ) ∼= G ⊗̂ Zn(X )/(1G ⊗ jn)(G ⊗̂Bn(X ))
∼= Zn(G ⊗̂ X )/Bn(G ⊗̂ X ) = Hn(G ⊗̂ X ).

In particular , the boundary map 1G ⊗ dn also has closed range.
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Proof. For k = n − 1 or k = n, since the sequence (3) is topologically
pure, the sequence

0→ G ⊗̂Bk(X )
1G⊗jk−−−→ G ⊗̂ Zk(X )

1G⊗σk−−−−→ G ⊗̂Hk(X )→ 0

is exact. Therefore 1G ⊗ jk is injective, Im(1G ⊗ jk) is closed and

(4) G ⊗̂Hk(X ) ∼= G ⊗̂ Zk(X )/(1G ⊗ jk)(G ⊗̂Bk(X )).

By the Open Mapping Theorem, (1G ⊗ jk)(G ⊗̂ Bk(X )) ∼= G ⊗̂ Bk(X ), so
that 1G ⊗ jk : G ⊗̂ Bk(X ) → G ⊗̂ Zk(X ) identifies G ⊗̂ Bk(X ) as a closed
subspace of G ⊗̂ Zk(X ).

For k = n− 1 or k = n, since the sequence (2) is topologically pure, the
sequence

0→ G ⊗̂ Zk(X )
1G⊗ik−−−→ G ⊗̂Xk

1G⊗d̃k−1−−−−−→ G ⊗̂Bk−1(X )→ 0

is exact. Therefore 1G ⊗ ik is injective and

Im(1G ⊗ ik) = Ker(1G ⊗ d̃k−1).

Hence, by the Open Mapping Theorem,

(5) G ⊗̂ Zk(X ) ∼= Ker(1G ⊗ d̃k−1).

For k = n− 1 or k = n, consider the commutative diagram

G ⊗̂Xk+1
1G⊗dk //

1G⊗d̃k &&MMMMMMMMM
G ⊗̂Xk

G ⊗̂Bk(X )

1G⊗(ik◦jk)

99rrrrrrrrr

&&MMMMMMMMMM

0

77ooooooooooo
0

Since a projective tensor product of surjective continuous linear operators

is surjective, 1G ⊗ d̃k is surjective and

(1G ⊗ d̃k)(G ⊗̂Xk+1) = G ⊗̂Bk(X ).

Therefore, since the diagram is commutative, 1G⊗dk has the same image as
1G⊗(ik◦jk). We have proved that 1G⊗(ik◦jk) is injective. As Im(1G⊗(ik◦jk))
is closed, by the Open Mapping Theorem,

Im(1G ⊗ dk) = Im(1G ⊗ (ik ◦ jk)) ∼= G ⊗̂Bk(X ).

Hence

(6) Bk(G ⊗̂ X ) ∼= G ⊗̂Bk(X ),

and this proves (ii). Note also that Im(1G ⊗ dk) ∼= Im(1G ⊗ d̃k).
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We have proved that 1G ⊗ (ik ◦ jk) is injective, so that

Ker(1G ⊗ dk) = Ker(1G ⊗ d̃k).
Therefore, by (5),

(7) Zn(G ⊗̂ X ) = Ker(1G ⊗ dn−1) = Ker(1G ⊗ d̃n−1) ∼= G ⊗̂ Zn(X ).

This proves (i).
Finally, by (7), (6) and (4), we have the following topological isomor-

phisms:

Hn(G ⊗̂ X ) = Zn(G ⊗̂ X )/Bn(G ⊗̂ X )

∼= G ⊗̂ Zn(X )/(1G ⊗ jn)(G ⊗̂Bn(X )) ∼= G ⊗̂Hn(X ).

4. Strictly flat Fréchet spaces and homology groups. The follow-
ing two definitions are equivalent to those given in [7, Chapter VII].

Definition 4.1. A Fréchet (resp. Banach) space I is strictly injective
if for every pair of Fréchet (resp. Banach) spaces E and F , for every injec-
tive continuous linear operator i : E → F with closed range and for every
continuous linear operator θ : E → I, there is a continuous linear operator
ϑ : F → I such that ϑ ◦ i = θ.

Definition 4.2. A Fréchet (resp. Banach) space G is strictly flat if for
every short exact sequence of Fréchet (resp. Banach) spaces and continuous
linear operators 0→ X → Y → Z → 0, the short exact sequence

0→ G ⊗̂X → G ⊗̂ Y → G ⊗̂ Z → 0

is also exact.

Lemma 4.3. Let

(8) 0→ Y
i→ Z

j→W → 0

be a short exact sequence of Banach spaces and continuous linear operators.
Suppose W is strictly flat in Ban. Then the sequence (8) is weakly admissible
and therefore is topologically pure in Ban.

Proof. Since j is surjective, the dual map j∗ : W ∗ → Z∗ is injective
and has a closed range. By [7, Theorem VII.1.14], W ∗ is strictly injective.
Therefore, for j∗ : W ∗ → Z∗ and the identity operator 1W ∗ : W ∗ → W ∗,
there is a continuous linear operator θ : Z∗ → W ∗ such that θ ◦ j∗ = 1W ∗ .
Thus the sequence (8) is weakly admissible and, by [11, Lemma 3.3], is
topologically pure.

Lemma 4.4. Let θ : E → F be a continuous linear map with closed range
between Fréchet (resp. Banach) spaces and let G be a strictly flat Fréchet
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(resp. Banach) space. Let the maps κ and q be defined by the exact sequence

0→ Ker θ
κ→ E

θ→ F
q→ F/Im θ → 0.

Then

(i) the sequence

(9) 0→ G ⊗̂Ker θ
1G⊗κ−−−→ G ⊗̂ E 1G⊗θ−−−→ G ⊗̂ F 1G⊗q−−−→ G ⊗̂ (F/Im θ)→ 0

is exact ,
(ii) G ⊗̂ Im θ ∼= Im(1G ⊗ i) = Ker(1G ⊗ q) = Im(1G ⊗ θ),

(iii) Ker(1G ⊗ θ) = Ker(1G ⊗ θ̃) = Im(1G ⊗ κ) ∼= G ⊗̂ Imκ = G ⊗̂Ker θ,
where i : Im θ → F is the natural inclusion.

Proof. Consider the commutative diagram

0 // Ker θ
κ // E

θ //

θ̃ !!DDDDDDD F
q // F/Im θ // 0

Im θ
i

==zzzzzzz

""EEEEEEEE

0

<<yyyyyyyy
0

The extra term Im θ produces two short exact sequences. Tensoring this
diagram with G maintains exactness of the short exact sequences as G is
strictly flat:

0 // G ⊗̂Ker θ
1G⊗κ // G ⊗̂ E

1G⊗θ //

1G⊗θ̃ %%KKKKKKKKK G ⊗̂ F
1G⊗q // G ⊗̂ F/Im θ // 0

G ⊗̂ Im θ

1G⊗i

99sssssssss

%%LLLLLLLLLL

0

99rrrrrrrrrr
0

It can be argued directly that the long sequence is exact, but this also follows
from [7, Definition VII.I.3 and Proposition VII.1.4]. Either way, the sequence
(9) is exact.

We now observe that 1G ⊗ θ̃ is surjective and since the diagram is com-
mutative, 1G ⊗ θ has the same image as 1G ⊗ i. By the Open Mapping
Theorem, G ⊗̂ Im θ ∼= Im(1G ⊗ i). By the exactness of

0→ G ⊗̂ Im θ
1G⊗i−−−→ G ⊗̂ F 1G⊗q−−−→ G ⊗̂ (F/Im θ)→ 0,

Im(1G ⊗ i) = Ker(1G ⊗ q). Hence we have

G ⊗̂ Im θ ∼= Im(1G ⊗ i) = Im(1G ⊗ θ) = Ker(1G ⊗ q).
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Next observe that 1G ⊗ i is injective, so that

Ker(1G ⊗ θ) = Ker(1G ⊗ θ̃) = Im(1G ⊗ κ) ∼= G ⊗̂ Imκ = G ⊗̂Ker θ.

Proposition 4.5. Let G be a strictly flat Fréchet (resp. Banach) space,
let X be a chain complex in Fr (resp. in Ban) such that all boundary maps
dn have closed range, and let G ⊗̂ X be the chain complex with boundary
maps 1G ⊗ dn. Then, for all n, the natural inclusions induce topological
isomorphisms:

(i) G ⊗̂ Zn(X ) ∼= Zn(G ⊗̂ X ),
(ii) G ⊗̂Bn(X ) ∼= Bn(G ⊗̂ X ),

(iii) G ⊗̂Hn(X ) ∼= G ⊗̂ Zn(X )/(1G ⊗ jn)(G ⊗̂Bn(X ))
∼= Zn(G ⊗̂ X )/Bn(G ⊗̂ X ) = Hn(G ⊗̂ X ).

In particular , all boundary maps 1G ⊗ dn also have closed range.

Proof. The first statement follows directly from Lemma 4.4 applied to
the map dn−1, since

Zn(G ⊗̂ X ) = Ker(1G ⊗ dn−1) ∼= G ⊗̂Ker dn−1 = G ⊗̂ Zn(X ).

The second statement follows from the same Lemma 4.4 applied to the
map dn, since

Bn(G ⊗̂ X ) = Im(1G ⊗ dn) ∼= G ⊗̂ Im dn = G ⊗̂Bn(X ).

Lemma 4.4 also shows that 1G ⊗ dn has closed range.
Since G is strictly flat, for the short exact sequence of Fréchet (resp.

Banach) spaces

0→ Bn(X )
jn−→ Zn(X )

σn−→ Hn(X )→ 0,

the sequence

0→ G ⊗̂Bn(X )
1G⊗jn−−−−→ G ⊗̂ Zn(X )

1G⊗σn−−−−→ G ⊗̂Hn(X )→ 0

is also exact, and therefore 1G⊗ jn is injective, Im(1G⊗ jn) = Ker(1G⊗σn)
and

G ⊗̂ Hn(X ) ∼= (G ⊗̂ Zn(X ))/(1G ⊗ jn)(G ⊗̂Bn(X )).

By the Open Mapping Theorem, 1G⊗jn : G⊗̂Bn(X )→ G⊗̂Zn(X ) identifies

G ⊗̂Bn(X ) as a closed subspace of G ⊗̂ Zn(X ). Hence, by (i) and (ii),

G ⊗̂Hn(X ) ∼= G ⊗̂ Zn(X )/(1G ⊗ jn)(G ⊗̂Bn(X ))

∼= Zn(G ⊗̂ X )/Bn(G ⊗̂ X ) = Hn(G ⊗̂ X ).

Let us denote the Banach space of continuous linear operators between
Banach spaces X and Y by L(X,Y ) and, for φ : X → W , let h(φ) :
L(W,Y )→ L(X,Y ) : γ 7→ γ◦φ. The next lemma is analogous to Lemma 4.4.
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Lemma 4.6. Let θ : E → F be a continuous linear map with closed
range between Banach spaces and let I be a strictly injective Banach space.
Let the maps κ and q be defined by the exact sequence

0→ Ker θ
κ−→ E

θ−→ F
q−→ F/Im θ → 0.

Then

(i) the sequence

0← L(Ker θ, I)
h(κ)←− L(E, I)

h(θ)←− L(F, I)
h(q)←− L(F/Im θ, I)←0

is exact ,

(ii) L(Im θ, I) ∼= Kerh(κ) = Imh(θ̃) = Imh(θ),
(iii) L(F/Im θ, I) ∼= Imh(q) = Kerh(i) = Kerh(θ), where i : Im θ → F

is the natural inclusion.

Proof. We consider the commutative diagram

0 // Ker θ
κ // E

θ //

θ̃ ##HHHHHHH F
q // F/Im θ // 0

Im θ
i

;;vvvvvvv

$$IIIIIII

0

::uuuuuuu
0

Since I is strictly injective, by [7, Proposition VII.1.12] the extra term
L(Im θ, I) produces two short exact sequences:

0 L(Ker θ, I)oo L(E, I)
h(κ)oo L(F, I)

h(i)xxpppppppp

h(θ)oo L(F/Im θ, I)
h(q)oo 0oo

L(Im θ, I)
h(θ̃)

ffNNNNNNNN

wwooooooooo

0 0

ggNNNNNNNNN

We now observe that h(i) is surjective and so h(θ) has the same image

as h(θ̃), which by exactness is the kernel of h(κ). Hence we have

L(Im θ, I) ∼= Kerh(κ) = Imh(θ̃) = Imh(θ).

Next observe that h(θ̃) is injective, so that Kerh(i) = Kerh(θ). By the Open
Mapping Theorem,

L(F/Im θ, I) ∼= Imh(q) = Kerh(i) = Kerh(θ).

It follows from Lemma 4.6(ii) that if a morphism of Banach spaces θ :
E → F has closed range, then so does h(θ) : L(F, I)→ L(E, I) for a strictly
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injective module I. The converse of this result also holds when I 6= {0} and
will be used in Theorem 4.8. In fact, we have the following lemma.

Lemma 4.7. Let θ : E → F be a continuous linear map between Banach
spaces, let W be a non-trivial Banach space and let h(θ) : L(F,W ) →
L(E,W ) be the induced map. If h(θ) has closed range, then so does θ.

Proof. Fix a non-zero w0 ∈ W and λ ∈ W ′ such that λ(w0) = 1. Let
λF : L(F,W )→ F ′ be defined by λF (T )(f) = λ(T (f)), where T ∈ L(F,W ),
f ∈ F , with a similar definition for λE : L(E,W ) → E′. Consider the
following commutative diagram, where θ∗ : F ′ → E′ is the dual map:

L(F,W )
h(θ) //

λF
��

L(E,W )

λE
��

F ′
θ∗ // E′

We shall prove that θ∗ has closed range, which is equivalent to θ having
closed range (see, for instance, [8, Lemma 1.1]).

The continuous linear map βF : F ′ → L(F,W ) defined by βF (f)(y)
= f(y)w0, for y ∈ F and f ∈ F ′, is a right inverse to λF . Similarly, βE :
E′ → L(E,W ) is a right inverse to λE . Now consider a sequence
gn = θ∗(fn), n ∈ N, with gn tending to g0 in norm in E′. Then
h(θ)[βF (fn)] = βE(gn). Therefore βE(gn) is a sequence in Imh(θ) which
tends to βE(g0). As h(θ) has closed range, there exists T0 ∈ L(F,W ) such
that h(θ)(T0) = βE(g0). As the diagram commutes, we get θ∗(λF (T0)) =
λE ◦ βE(g0) = g0 and θ∗ has closed range.

A corollary of the following theorem will allow us to determine the co-
homology groups knowing the homology groups, provided they are Banach
spaces.

Theorem 4.8. Let X be a chain complex in Ban and let I be a non-
trivial strictly injective Banach space. Let the cochain complex L(X , I) con-
sist of the Banach spaces L(Xn, I) with induced boundary maps h(dn). If
either h(dn) has closed range for all n, or dn has closed range for all n,
then

L(Hn(X ), I) ∼= Hn(L(X , I)),

where Hn(L(X , I)) = Kerh(dn)/Imh(dn−1) and the isomorphism is of Ba-
nach spaces.

Proof. If either h(dn) has closed range for all n or dn has closed range
for all n, then Lemma 4.6 (ii) or Lemma 4.7 implies that dn and h(dn) have
closed range for all n. We consider the following commutative diagram as in
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[13, Lemma V.10.3]:

0 0

��
0 // Bn(X )

OO

� � in // Zn(X )
σn //

jn
��

Hn(X ) // 0

Xn+1
dn //

d̃n

OO

Xn

dn−1

��
Xn−1

Here again all the maps have closed range.
We form a new diagram by taking continuous linear operators into I,

adding the kernel Zn(L(X , I)) = Kerh(dn) of h(dn) and the image
Bn(L(X , I)) = Imh(dn−1) of h(dn−1):

0

��

0

0 L(Bn(X ), I)oo

h(d̃n)
��

L(Zn(X ), I)
h(in)oo

OO

L(Hn(X ), I)
h(σn)oo 0oo

L(Xn+1, I) L(Xn, I)
h(dn)oo

h(jn)

OO

Zn(L(X , I))
iZoo 0oo

L(Xn−1, I)
˜h(dn−1)//

h(dn−1)

OO

Bn(L(X , I)) //

iB

OO

0

where ˜h(dn−1) : L(Xn−1, I) → Imh(dn−1) : γ 7→ [h(dn−1)](γ) = γ ◦ dn−1.
This diagram commutes and has exact rows and columns. Exactness follows
from Lemma 4.6 for the first line; from the definition of Zn(L(X , I)) for the
second line; and from Lemma 4.6 for the first and second column. Commu-
tativity only needs to be checked for the square involving the two added
terms, namely Zn(L(X , I)) and Bn(L(X , I)), and this is obvious. The fact
that Bn(L(X , I)) is closed follows from the exactness of

L(Xn−1, I)
h(dn−1)−−−−−→ L(Xn, I)

h(jn)−−−→ L(Zn(X ), I)→ 0.

Therefore this diagram is one of Banach spaces and maps with closed range.
Let us define a map ϕ : Zn(L(X , I))→ L(Hn(X ), I) by the formula

ϕ = h̃(σn)
−1
◦ h(jn) ◦ iZ ,

where h̃(σn)
−1

is the inverse of the topological isomorphism h̃(σn) :
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L(Hn(X ), I)→ Imh(σn) : γ 7→ h(σn)(γ). It is now a standard diagram chas-
ing argument to show that ϕ is well defined and surjective. Let us give this ar-
gument. An element z ∈ Zn(L(X , I)) is sent by h(dn)◦ iZ to 0 in L(Xn+1, I)

and therefore, since h(d̃n) is injective, [h(in) ◦ h(jn) ◦ iZ ](z) = 0. Hence the
element [h(jn) ◦ iZ ](z) of L(Zn(X ), I) belongs to Kerh(in) = Imh(σn), by
exactness of the first line of the diagram. Thus ϕ is a well defined con-
tinuous linear operator. To show that this map is surjective, starting with
v ∈ L(Hn(X ), I), we get u = h(σn)(v) ∈ L(Zn(X ), I), and, since h(jn) is
surjective, there is t ∈ L(Xn, I) such that h(jn)(t) = u. It is easy to see
that t ∈ Kerh(dn) and therefore it lifts uniquely to z ∈ Zn(L(X , I)) and
ϕ(z) = v.

One can see that iB(Bn(L(X , I))) ⊆ Kerϕ, since ˜h(dn−1) is surjective
and [h(jn) ◦ h(dn−1)](y) = 0 for any y ∈ L(Xn−1, I). Suppose z ∈ Kerϕ,
hence [h(jn) ◦ iZ ](z) = 0. This implies that iZ(z) ∈ Kerh(jn) = Imh(dn−1),
so that there is y ∈ L(Xn−1, I) such that h(dn−1)(y) = iZ(z). Since iZ is

injective, z = iB( ˜h(dn−1)(y)). Thus Kerϕ = iB[Bn(L(X , I))]. The proof is
complete.

Note that this is a strengthening of [8, Lemma 1.1 and Corollary 1.3]
where I = C. Let us state precisely the general result for I = C.

Corollary 4.9. Let X be a chain complex of Fréchet (resp. Banach)
spaces and X ′ the strong dual cochain complex. Then the following are equiv-
alent :

(1) Hn(X ) = Ker dn−1/Im dn is a Fréchet (resp. Banach) space;
(2) Bn(X ) = Im dn is closed in Xn;
(3) dn has closed range;
(4) the dual map dn = d∗n has closed range;
(5) Bn+1(X ′) = Im d∗n is strongly closed in (Xn+1)′.

In the category of Banach spaces, they are equivalent to:

(6) Bn+1(X ′) is a Banach space;
(7) Hn+1(X ′) = Ker d∗n+1/Im d∗n is a Banach space.

Moreover , whenever Hn(X ) and Hn(X ′) are Banach spaces, then

Hn(X ′) ∼= Hn(X )′.

Proof. We can consider the chain complex

· · · ← 0←−Xn−1
dn−1←−−− Xn

dn←− Xn+1 ← 0← · · ·
where all but the three X terms are replaced by zero. The equivalence of
(1)–(4) is a part of [4, Theorem 8.6.13], and (5) is clearly equivalent to (4).
Statements (6) and (7) are also clear.
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For the last statement, note that dn−1 has closed range becauseHn(X ′) =
Ker d∗n/Im d∗n−1 being a Banach space implies d∗n−1 has closed range, while
dn having closed range follows from Hn(X ) = Ker dn−1/Im dn being a Ba-
nach space. Therefore we can apply Theorem 4.8 to this complex with I = C
to get Hn(X ′) ∼= Hn(X )′.

Note that the previous result implies in particular that for a chain com-
plex X of Banach spaces, the Hn(X ) are Banach spaces for all n if and only
if the Hn(X ′) are Banach spaces for all n.

5. The Künneth formula. The proof of the Künneth formula we will
give is an adaptation of the proof given in [13] to the topological case. A part
of the topological requirements will be verified using the following result,
which is very close to [1, Lemma 7.1.32] or [7, Lemma 0.5.9]. We recall that
a map T between topological spaces is relatively open if it is open when seen
as mapping into its image.

Lemma 5.1. Let X and Y be chain complexes in Fr (resp. in Ban) and
let ϕ : X → Y be a continuous morphism of complexes of Fréchet (resp.
Banach) spaces. Suppose that for some n,

ϕ∗ = Hn(ϕ) : Hn(X )→ Hn(Y)

has closed range. Then ϕ∗ is relatively open. In particular , if ϕ∗ is surjective,
then it is open.

Proof. Let W = ϕ∗(Hn(X )) and let σY : Zn(Y) → Hn(Y) be the quo-
tient map. As W is a closed subspace of Hn(Y), (σY)−1(W ) = V is a closed
subspace of Zn(Y) which contains Bn(Y) = (σY)−1(0). Denote by d the
boundary maps on X and by dY the boundary maps on Y, and consider the
map

ψ : Ker dn−1 ⊕ Yn+1 → V, (x, y) 7→ ϕn(x) + (dY)n(y).

By assumption ϕ∗ maps Hn(X ) onto W , which implies that ψ is a surjective
morphism of Fréchet spaces. Therefore, by the Open Mapping Theorem,
ψ is open.

Let ϕ̃∗ : Hn(X )→W be ϕ seen as mapping into its range. Consider the
diagram

Ker dn−1 ⊕ Yn+1
j //

ψ

��

Ker dn−1
σ // Hn(X )

ϕ̃∗
��

V
q // W

in which j is a projection onto a direct summand, σ is the natural projection
and q : V →W is defined by q(v) = σY(v) in W . Obviously this diagram is
commutative. Note that q is itself a projection as Bn(X ) ⊂ V , and therefore
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q is an open map. As ψ is also an open map, so is q◦ψ = ϕ̃∗◦σ◦j. Since σ◦j
is continuous, ϕ̃∗ is open, which is the same as ϕ∗ being relatively open.

Theorem 5.2. Let X and Y be bounded chain complexes in Fr (resp.
in Ban) such that all boundary maps have closed range. Suppose that the
following exact sequences of Fréchet (resp. Banach) spaces are topologically
pure for all n:

0→ Zn(X )
i→ Xn

d̃X−→ Bn−1(X )→ 0,(10)

0→ Bn(X )
j→ Zn(X )

σ→ Hn(X )→ 0.(11)

Suppose also that one of the following two cases is satisfied.

Case 1. The following exact sequences of Fréchet (resp. Banach) spaces
are topologically pure for all n:

0→ Zn(Y)
i→ Yn

d̃Y−→ Bn−1(Y)→ 0,(12)

0→ Bn(Y)
j→ Zn(Y)

σ→ Hn(Y)→ 0.(13)

Case 2. Zn(X ) and Bn(X ) are strictly flat for all n.

Then, up to topological isomorphism,
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] = Hn(X ⊗̂ Y).

Proof. We regard the families Zn(X ) and Dn = Bn−1(X ) as bounded
chain complexes of Fréchet (resp. Banach) spaces with zero boundary. Since,
for all n, (10) is topologically pure, the sequence of chain complexes

0→ Z(X )
i→ X d̃X−→ D → 0

is also topologically pure, and, for all m and q,

0→ (Zm(X ) ⊗̂ Yq)
i⊗1Yq−−−→ (Xm ⊗̂ Yq)

d̃X⊗1Yq−−−−−→ (Dm ⊗̂ Yq)→ 0

is exact. Note that
(X ⊗̂ Y)n =

⊕

m+q=n

Xm ⊗̂ Yq.

Therefore the sequence

(14) 0→ Z(X ) ⊗̂ Y i⊗1Y−−−→ X ⊗̂ Y d̃X⊗1Y−−−−→ D ⊗̂ Y → 0

is also an exact sequence of chain complexes of Fréchet (resp. Banach) spaces.
This leads to a long exact homology sequence

(15) · · · → Hn+1(D ⊗̂ Y)
En+1−−−→ Hn(Z(X ) ⊗̂ Y)

Hn(i⊗1Y)−−−−−−−→ Hn(X ⊗̂ Y)

Hn(d̃X⊗1Y)−−−−−−−→ Hn(D ⊗̂ Y)
En−→ Hn−1(Z(X ) ⊗̂ Y)→ · · ·
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It follows from [7, Theorem 0.5.7] that the induced maps En, Hn(i ⊗ 1Y)

and Hn(d̃X ⊗ 1Y) in this long exact sequence are continuous.
By assumption (11), for all m, the sequence

0→ Dm+1
j→ Zm(X )

σ→ Hm(X )→ 0

is topologically pure. Therefore, since Hq(Y) is a Fréchet (resp. Banach)
space, the sequence

0→Dm+1⊗̂Hq(Y)
j⊗1Hq(Y)−−−−−−−→Zm(X )⊗̂Hq(Y)

σ⊗1Hq(Y)−−−−−−−→Hm(X )⊗̂Hq(Y)→ 0

is exact. Now take the direct sum over m+ q = n to obtain

0→
⊕

m+q=n

[Dm+1 ⊗̂Hq(Y)]

j⊗1H−−−→
⊕

m+q=n

[Zm(X ) ⊗̂Hq(Y)]
σ⊗1H−−−−→

⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]→ 0

The vertical maps p1 and p2 of the following diagram are the topological
isomorphisms arising from Proposition 3.3 or Proposition 4.5:

0→
⊕

m+q=n

[Dm+1 ⊗̂Hq(Y)]

p1

��

j⊗1H //
⊕

m+q=n

[Zm(X ) ⊗̂Hq(Y)]
σ⊗1H//

p2

��

⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)]→ 0

Hn+1(D ⊗̂ Y)
En+1 // Hn(Z(K) ⊗̂ Y)

Note that all spaces of the diagram are Fréchet (resp. Banach) spaces.
Now we have to prove that the square is commutative. Since all linear

operators are continuous, it is enough to show that for a tensor
∑
xi⊗qY(yi)

∈ Dm+1 ⊗̂Hq(Y), where qY(yi) is the homology class of yi,

En+1 ◦ p1

(∑
xi ⊗ qY(yi)

)
= p2 ◦ (j ⊗ 1H)

(∑
xi ⊗ qY(yi)

)
.

On the right hand side, we have

p2 ◦ (j ⊗ 1H)
(∑

xi ⊗ qY(yi)
)

= qZ(K)⊗̂Y
(∑

xi ⊗ yi
)

(using Proposition 3.3 or 4.5 for the definition of p2).
Similarly, on the left hand side, we have

p1

(∑
xi ⊗ qY(yi)

)
= qD⊗̂Y

(∑
xi ⊗ yi

)
.

The connecting homomorphism En+1 from the short exact sequence (14) is
defined as follows on the homology class qD⊗̂Y(

∑
xi ⊗ yi): pull the cycle

∑
xi ⊗ yi ∈ Dm+1 ⊗̂ Yq

back to a chain ∑
ui ⊗ yi ∈ Xm+1 ⊗̂ Yq,
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where dX (ui) = xi; take its boundary
∑

dX⊗̂Y(ui ⊗ yi) =
∑

dX (ui)⊗ yi =
∑

xi ⊗ yi ∈ Xm ⊗̂ Yq;

pull this boundary to Zm(X ) ⊗̂Yq and take the homology class of the result.

This gives the homology class of
∑
xi⊗ yi in Hn(Z(X ) ⊗̂ Y). Therefore the

square commutes.
Hence KerEn = 0 and, up to topological isomorphism,

CokerEn+1 =
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)].

Thus the following two facts: KerEn = 0 for all n and the exactness of the
sequence (15), imply the exactness of short exact sequences

0→ Hn+1(D ⊗̂ Y)
En+1−−−→ Hn(Z(X ) ⊗̂ Y)

Hn(i⊗1Y)−−−−−→ Hn(X ⊗̂ Y)→ 0

for all n. Hence, by Lemma 5.1, for the continuous morphism of complexes
of Fréchet (resp. Banach) spaces

ϕ = i⊗ 1Y : Z(X ) ⊗̂ Y → X ⊗̂ Y,
the surjective maps Hn(i ⊗ 1Y) are open for all n. Therefore the induced
map

Hn(i⊗ 1Y) : Hn(Z(X ) ⊗̂ Y)/KerHn(i⊗ 1Y)→ Hn(X ⊗̂ Y)

is a topological isomorphism. Hence, up to topological isomorphism,
⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] = CokerEn+1 = Hn(Z(X ) ⊗̂ Y)/ImEn+1

= Hn(Z(X ) ⊗̂Y)/KerHn(i⊗1Y) =Hn(X ⊗̂Y).

Corollary 5.3. Let X and Y be bounded chain complexes of nuclear
Fréchet spaces and continuous operators such that all boundary maps have
closed range. Then, up to topological isomorphism,

⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] = Hn(X ⊗̂ Y).

Proof. By Theorems A.1.6 and A.1.5 of [5], for all n, the short exact
sequences of nuclear Fréchet spaces (10)–(13) are topologically pure in Fr.
The result follows from Theorem 5.2 (Case 1).

Corollary 5.4. Let X and Y be bounded chain complexes in Ban such
that all boundary maps have closed range. Suppose that , for all n, Bn(X )
and Hn(X ) are strictly flat. Then, up to topological isomorphism,

⊕

m+q=n

[Hm(X ) ⊗̂Hq(Y)] = Hn(X ⊗̂ Y).
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Proof. By [7, Proposition VII.1.17], Bn(X ) and Hn(X ) strictly flat im-
plies that Zn(X ) is strictly flat as well. By Lemma 4.3, strict flatness of
Bn−1(X ) andHn(X ) implies that the short exact sequences of Banach spaces
(10), (11) are topologically pure in Ban. The result follows from Theorem 5.2
(Case 2).

6. External products of Hochschild homology. Let A be a Fréchet
(resp. Banach) algebra and X be a Fréchet (resp. Banach) A-bimodule. Let
us recall the definition of the standard homological chain complex C∼(A,X).

For n ≥ 0, let Cn(A,X) denote the projective tensor product X ⊗̂A⊗̂
n

. The
elements of Cn(A,X) are called n-chains. Let the differential dn : Cn+1 →
Cn be given by

dn(x⊗ a1 ⊗ · · · ⊗ an+1)= x · a1 ⊗ · · · ⊗ an+1

+
n∑

k=1

(−1)k(x⊗ a1 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1(an+1 · x⊗ a1 ⊗ · · · ⊗ an)

with d−1 the null map. The space of boundaries Bn(C∼(A,X)) = Im dn is
denoted byBn(A,X) and the space of cycles Zn(C∼(A,X)) = Ker dn−1 is de-
noted by Zn(A,X). The homology groups of this complex Hn(C∼(A,X)) =
Zn(A,X)/Bn(A,X) are called the Hochschild homology groups of A with
coefficients in X and denoted by Hn(A,X) [7, Definition II.5.28].

The Hochschild cohomology groups Hn(A,X ′) of the Banach algebra A
with coefficients in the dual A-bimodule X ′ are topologically isomorphic to
the cohomology groups Hn((C∼(A,X))′) of the dual complex (C∼(A,X))′

[7, Definition I.3.2 and Proposition II.5.27].

Let A be a unital Fréchet algebra. We put βn(A) = A⊗̂
n+2

, n ≥ 0, and
let dn : βn+1(A)→ βn(A) be given by

dn(a0 ⊗ · · · ⊗ an+2) =
n+1∑

k=0

(−1)k(a0 ⊗ · · · ⊗ akak+1 ⊗ · · · ⊗ an+2).

By [7, Proposition III.2.9], the complex over A, π : β(A)→ A : a⊗ b 7→ ab,
where β(A) denotes

0← β0(A)
d0←− β1(A)

d1←− · · · ← βn(A)
dn←− βn+1(A)← . . . ,

is a projective resolution of the A-bimodule A. β(A) is called the bar resolu-
tion of A. The complex has a contracting homotopy sn : βn(A)→ βn+1(A)
(n ≥ 1), given by

sn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1,

which is to say that dnsn + sn−1dn−1 = 1βn(A).
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Proposition 6.1. Let A1 and A2 be unital Fréchet algebras, let 0 ←
X

ε1←− X be a projective resolution of X ∈ A1-mod and 0 ← Y
ε2←− Y be a

projective resolution of Y ∈ A2-mod. Then 0 ← X ⊗̂ Y ε1⊗ε2←−−− X⊗̂Y is a
projective resolution of X ⊗̂ Y ∈ A1 ⊗̂ A2-mod.

Proof. The proof requires only minor modifications of that of [13, Propo-
sition X.7.1].

Note that the statement of Proposition 6.1 is also true in the category
of bimodules.

Theorem 6.2. Let A and B be unital Fréchet algebras, let X be a
Fréchet A-bimodule and let Y be a Fréchet B-bimodule. Then, up to topo-
logical isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) = Hn(C∼(A,X) ⊗̂ C∼(B, Y )).

Proof. Let β(A) and β(B) be the bar resolutions of A and B. Since
the bar resolution β(A) is an A-biprojective resolution of A and β(B) is
a B-biprojective resolution of B, by Proposition 6.1 their projective tensor
product β(A) ⊗̂ β(B) is an A ⊗̂ B-biprojective resolution of A ⊗̂ B.

For a unital Fréchet algebra U and for a Fréchet U-bimodule Z, recall
[7, Theorem III.4.25] that the Hochschild chain complex C∼(U , Z) is isomor-
phic to Z ⊗̂Ue β(U) and

Hn(U , Z) = TorU
e

n (Z,U) = H n(Z ⊗̂Ue β(U)).

Therefore, since the nth derived functor TorU
e

n (·,U) does not depend on the
choice of a U-biprojective resolution of U , up to topological isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) = Tor(A⊗̂B)e

n (X ⊗̂ Y,A ⊗̂ B)

= Hn((X ⊗̂ Y ) ⊗̂(A⊗̂B)e β(A ⊗̂ B))

= Hn((X ⊗̂ Y ) ⊗̂(A⊗̂B)e (β(A) ⊗̂ β(B))).

By [7, Proposition II.3.13], one can see that the following chain complexes
are isomorphic:

(X ⊗̂ Y ) ⊗̂(A⊗̂B)e (β(A) ⊗̂ β(B)) ∼= (X ⊗̂Ae β(A)) ⊗̂ (Y ⊗̂Be β(B))

∼= C∼(A,X) ⊗̂ C∼(B, Y ).

Thus, up to topological isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) = Hn((X ⊗̂ Y ) ⊗̂(A⊗̂B)e (β(A) ⊗̂ β(B)))

= Hn(C∼(A,X) ⊗̂ C∼(B, Y )).

Corollary 6.3. Let A and B be unital nuclear Fréchet algebras,
let X be a nuclear Fréchet A-bimodule and let Y be a nuclear Fréchet
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B-bimodule. Suppose that all boundary maps of the standard homology com-
plexes C∼(A,X) and C∼(B, Y ) have closed range. Then, up to topological
isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) =
⊕

m+q=n

[Hm(A,X) ⊗̂ Hq(B, Y )].

Proof. By [16, Proposition III.50.1], the projective tensor product of
nuclear Fréchet spaces is a nuclear Fréchet space. The result follows from
Theorem 6.2 and Corollary 5.3.

Corollary 6.4. Let A and B be unital Banach algebras, let X be a
Banach A-bimodule and let Y be a Banach B-bimodule. Suppose that all
boundary maps of the standard homology complexes C∼(A,X) and C∼(B, Y )
have closed range and , for all n, Bn(A,X) and Hn(A,X) are strictly flat.
Then, up to topological isomorphism,

Hn(A ⊗̂ B,X ⊗̂ Y ) =
⊕

m+q=n

[Hm(A,X) ⊗̂ Hq(B, Y )],

Hn(A ⊗̂ B, (X ⊗̂ Y )′) =
⊕

m+q=n

[Hm(A,X) ⊗̂ Hq(B, Y )]′.

Proof. The first isomorphism follows from Theorem 6.2 and Corolla-
ry 5.4. By [7, Proposition II.5.27],

Hn(A ⊗̂ B, (X ⊗̂ Y )′) ∼= Hn((C∼(A ⊗̂ B,X ⊗̂ Y ))′).

By Corollary 4.9, since the Hn(A ⊗̂ B,X ⊗̂ Y ) are Banach spaces,

Hn((C∼(A⊗̂B,X ⊗̂Y ))′) ∼= (Hn(C∼(A⊗̂B,X ⊗̂Y )))′ ∼= (Hn(A⊗̂B,X ⊗̂Y ))′.

Therefore

Hn(A ⊗̂ B, (X ⊗̂ Y )′) ∼= (Hn(A ⊗̂ B,X ⊗̂ Y ))′.

7. Some strictly projective Banach spaces and split short exact
sequences. From now on, let A = `1(Z+), where

`1(Z+) =
{

(an)∞n=0 :

∞∑

n=0

|an| <∞
}

is the unital semigroup Banach algebra of Z+ with convolution multiplica-
tion and norm ‖(an)∞n=0‖ =

∑∞
n=0 |an|. Recall that `1(Z+) is isometrically

isomorphic to the unital commutative Banach algebra

A+(D) =
{
f =

∞∑

n=0

anz
n :

∞∑

n=0

|an| <∞
}

of absolutely convergent Taylor series on D with pointwise multiplication
and norm ‖f‖ =

∑∞
n=0 |an|, where D = {z ∈ C : |z| ≤ 1} is the closed disc.
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Let I = `1(N) be the closed ideal of `1(Z+) consisting of those elements
with a0 = 0.

We recall the definition of a strictly projective Banach space. Note that
this is a special case of the notion of a strictly projective Banach module,
where the Banach algebra is taken to be the complex numbers C.

Definition 7.1. A Banach space P is strictly projective if, for every pair
of Banach spaces E and F , for every surjective continuous linear operator
q : E → F and for every continuous linear operator θ : P → F , there is a
continuous linear operator ϑ : P → E such that q ◦ ϑ = θ.

In particular, recall that any short exact sequence of Banach spaces
0→ X → Y → P → 0 with P strictly projective splits.

Lemma 7.2. A Banach space is strictly projective if and only if it is a
direct summand (i.e. a complemented subspace) of `1(S) for some set S.

Proof. This follows from [10, Proposition 2.f.7] and [9], as indicated in
the remarks after [10, Proposition 2.f.7]. Alternatively, see [14, Proposi-
tion 3.2.3].

Proposition 7.3. Let A = `1(Z+). Then the simplicial homology groups
Hn(A,A) are given by

H0(A,A) ∼= A = `1(Z+), H1(A,A) ∼= I = `1(N),

Hn(A,A) ∼= 0 for n ≥ 2,

where ∼= denotes isomorphism of Banach spaces.

Proof. SinceA is commutative,B0(A,A) = Im d0 = {0}. ThusH0(A,A)
= Z0(A,A) = A = `1(Z+). It is proved in [6] that the cohomology groups
Hn(A,A) are trivial for n ≥ 2, hence, by [8, Corollary 1.3], Hn(A,A) = 0
for n ≥ 2 and B1(A,A) is closed. Thus H1(A,A) is a Banach space.

To determine H1(A,A) = C1(A,A)/B1(A,A), firstly, note that since A
is commutative, Z1(A,A) = Ker d0 = C1(A,A) = A ⊗̂ A. Thus, to prove
that H1(A,A) ∼= I = `1(N), it is enough to show the exactness of the short
sequence

(16) 0→ B1(A,A)
j→ C1(A,A)

q→ I → 0,

where j is the usual inclusion and the continuous linear operator

q : `1(Z+) ⊗̂ `1(Z+)→ `1(N)

is induced by

q(zk ⊗ zl) =
l

k + l
zk+l

when at least one of k, l is not zero, and q(z0 ⊗ z0) = 0.
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To prove our claim, first note that the boundary d1 : `1(Z3
+) → `1(Z2

+),
given by

d1(zk ⊗ zl ⊗ zm) = (zm+k ⊗ zl)− (zk ⊗ zl+m) + (zk+l ⊗ zm),

maps into the kernel of q as

q[d1(zk⊗ zl⊗ zm)] = [lzk+l+m− (l+m)zk+l+m+mzk+l+m]/(k+ l+m) = 0.

Here we have identified Cn(`1(Z+), `1(Z+)) with `1(Zn+1
+ ).

If we now take any f in the kernel of q, then the following argument
shows that f is in the image of d1. Clearly, f is in Ker q if and only if its real
and imaginary parts are. Therefore it is sufficient to prove that a real-valued
f in Ker q is in the image of d1. Clearly f =

∑∞
k=0

∑∞
j=0 ak,j(z

k⊗zj) ∈ Ker q
if and only if for each m ∈ Z+, we have

(17)
m∑

j=0

jam−j,j = 0.

Let pm(f) =
∑m

j=0 |am−j,j | so that ‖f‖ =
∑∞

m=0 pm(f).

For each m ∈ Z+, we construct bm = (bmi,j,k) ∈ `1(Z3
+), where bmi,j,k = 0 if

i+j+k 6= m, (f−d1(bm))m−j,j = 0 for 0 ≤ j ≤ m and ‖bm‖ ≤ pm(f). Then

g =
∑∞

m=0 b
m is a well defined element of `1(Z3

+) as
∑∞

m=0 pm(f) = ‖f‖ and
d1(g) = f , proving that f ∈ Im d1, which completes the proof.

The construction proceeds as follows. Let m be fixed.

Step 1. If {j : am−j,j 6= 0} is empty, let c ∈ `1(Z3
+) be c = 0 and go to

the final step. If not, let j0 = max{j : am−j,j 6= 0} and proceed to Step 2 if
j0 = 0 and to Step 3 if j0 6= 0.

Step 2. Let c ∈ `1(Z3
+) be such that cm,0,0 = am,0, ci,j,k = 0 elsewhere.

Then (d1(c))m,0 = am,0 and clearly ‖c‖ = pm(f). Proceed to the final step.

Step 3. It follows from (17) that there exists k with j0 > k > 0
such that am−j0+k,j0−k is non-zero and of sign opposite to am−j0,j0 . Let
k0 be the smallest such integer (so that j0 − k0 is the largest possible) and
let α = sgn(am−j0,j0) · min{|am−j0,j0 |, |am−j0+k0,j0−k0 |}. Let c1 ∈ `1(Z3

+)
be such that c1

m−j0,k0,j0−k0
= −α, c1

i,j,k = 0 for all other coordinates.

Then (d1(c1))m−j0,j0 = α, (d1(c1))m−j0+k0,j0−k0 = (d1(c1))m−k0,k0 = −α and
(d1(c1))j,k = 0 otherwise. Clearly ‖c1‖ = |α| and it is readily checked that
pm(f − d1(c1)) ≤ pm(f) − ‖c1‖. Note that this is the key part of the con-
struction: f has been modified by a coboundary d1(c1) in such a way that
‖f − d1(c1)‖ is less than ‖f‖ by at least ‖c1‖.

If (f−d1(c1))m−j0,j0 = am−j0,j0−α = 0, proceed to Step 4 letting c = c1.

If (f − d1(c1))m−j0,j0 = am−j0,j0 − α 6= 0, reapply the first part of this
step to f1 = f − d1(c1), noting that (17) holds for f1. This yields a strictly
larger value of k0 and gives c2, say, such that 0 ≤ |(f−d1(c1 +c2))m−j0,j0 | <
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|(f − d1(c1))m−j0,j0 | and pm(f − d1(c1 + c2)) ≤ pm(f)− ‖c1‖ − ‖c2‖. Iterate

this until c = c1+c2+· · ·+cn (for some n) is such that (f−d1(c))m−j0,j0 = 0.
Note that the process must terminate as the k0 are strictly increasing. It
follows from the construction that (f − d1(c))m−j,j = 0 for j0 ≤ j ≤ m and
pm(f − d1(c)) ≤ pm(f)− ‖c‖. Note also that ‖c‖ = |am−j,j |.

Step 4. The iteration can now proceed to Step 1 with f ′ = f − d1(c),
and we get c′, say, from Step 1, 2 or 3. If c′ has come from Step 3, then
c′ ∈ `1(Z3

+) is such that (f ′− d1(c′))m−j,j = 0 for j′0 ≤ j ≤ m where j′0 < j0,
with pm(f−d1(c+c′)) ≤ pm(f)−‖c+c′‖. This is iterated for f ′′ = f ′−d1(c′)
to obtain c′′, and so on, until the final step is reached, which is to say until
the condition required in Step 1 or 2 is satisfied.

Final step. Let bm be the sum of c, c′, etc., obtained in Step 1 or 2, as
well as in Step 3. Note that we get at most one of those c, c′, etc., from the
application of Step 1 or 2, namely the last one obtained, and that all the
previous ones arise from the (possibly repeated) application of Step 3. Then
(f−d1(bm))m−j,j = 0 for 0 ≤ j ≤ m and 0 = pm(f−d1(bm)) ≤ pm(f)−‖bm‖,
so that ‖bm‖ ≤ pm(f), which completes the construction.

It follows from this proposition that, for each n, Hn(A,A) is a Banach
space and Bn(A,A) is closed. We can now state the following theorem.

Theorem 7.4. Let A = `1(Z+). Then, for all n, the short exact se-
quences

0→ Bn(A,A)
j→ Zn(A,A)

σ→ Hn(A,A)→ 0,(18)

0→ Zn+1(A,A)
i→ Cn+1(A,A)

d̃→ Bn(A,A)→ 0(19)

are split (as Banach spaces) and the Hn(A,A), Cn(A,A), Zn(A,A) and
Bn(A,A) are strictly projective Banach spaces.

Proof. It is always true that Z0(A,A) = C0(A,A) as the boundary map
d−1 is the zero map on C0(A,A). Also, since A is commutative, B0(A,A)
is trivial and hence H0(A,A) = Z0(A,A) = C0(A,A) = A. By Proposi-
tion 7.3, for n ≥ 2, Hn(A,A) = {0} and therefore Zn(A,A) = Bn(A,A).
Thus the sequences (18) and (19) are trivially split for n = 0, and (18) splits
for n ≥ 2, as in these cases one term of the short exact sequence is 0.

It is shown in Proposition 7.3 that, for n = 1, the sequence (18) has the
form

0→ B1(A,A)
j→ `1(Z+) ⊗̂ `1(Z+)

q→ I → 0.

Since this sequence is exact and so Im j = Ker q, it is easy to check that it
splits in Ban with the following splitting continuous linear operators:

p : `1(Z+) ⊗̂ `1(Z+)→ B1(A,A),
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given by

p(zk ⊗ zl) = j̃−1

[
(zk ⊗ zl)− l

k + l
(1⊗ zk+l)

]
,

where j̃−1 is the inverse of the topological isomorphism j̃ : B1(A,A)→ Im j,
and t : I → `1(Z+) ⊗̂ `1(Z+) is given by t(zk) = 1⊗ zk. Therefore B1(A,A)
is complemented in `1(Z2

+) and hence is strictly projective.
This completes the basis for an induction showing that (19) splits for all

values of n. To carry out this induction, we consider the following diagram:

0

��

// 0 0

��

// 0

H1 Z1
oo

∼=
��

B1
_?oo
d

OO

Z3

��

B3

∼=oo
d

OO

C0 C1
doo

0
��

C2
doo

OO

C3

d
��

doo C4
doo

OO

· · ·doo

H0 Z0

∼=oo

∼=
OO

B0
_?oo

��

Z2

OO

B2

��

∼=oo Z4

OO

· · ·∼=oo

0

OO

0 0

OO

0 0

OO

Note that as all of the Bn(A,A) and Hn(A,A) are Banach spaces, this is
a diagram of Banach spaces and continuous linear operators, where all the
maps are boundaries, inclusions or quotients. The horizontal chain complex
defines the homology Hn(A,A), and the vertical parts of this diagram are
short exact sequences of Banach spaces. It is clear that the diagram com-
mutes.

Let us now proceed with the induction, assuming that (19) is split for n
and that Bn+1(A,A) is strictly projective. We have proved this for n = 0,
and we recall that Cn(A,A) = `1(Zn+1

+ ) is a strictly projective Banach space.
As Bn+1(A,A) is strictly projective, (19) is split for n+ 1 and we have

Cn+2(A,A) ∼= Bn+1(A,A)⊕Zn+2(A,A). Therefore Zn+2(A,A), being a di-
rect summand of the strictly projective module Cn+2(A,A), is also strictly
projective. As Hn+2(A,A) = 0, we have Zn+2(A,A) = Bn+2(A,A) and
Bn+2(A,A) is strictly projective. This completes the induction, and se-
quences (19) are split for all n. We note that we have also shown all the
spaces to be strictly projective, which completes the proof of the theorem.

Theorem 7.5. Let A = `1(Z+). Then, up to topological isomorphism,

(1) Hn(`1(Zk+), `1(Zk+)) = 0 if n > k,

(2) Hn(`1(Zk+), `1(Zk+)) =
⊕(kn)(I⊗̂

n

⊗̂ A⊗̂
k−n

) if n ≤ k,

(3) Hn(`1(Zk+), `1(Zk+)′) = 0 if n > k,
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(4) Hn(`1(Zk+), `1(Zk+)′) =
⊕(kn)[(I⊗̂

n

⊗̂ A⊗̂
k−n

)′] if n ≤ k,

where ( )′ denotes the dual space.

Proof. For homology, Proposition 7.3 gives the result for k = 1. Let
k > 1 and suppose that the result for homology holds for k − 1. As
`1(Zk+) = `1(Z+) ⊗̂ `1(Zk−1

+ ), we have

Hn(`1(Zk+), `1(Zk+)) = Hn(A ⊗̂ B,A ⊗̂ B),

where B = `1(Zk−1
+ ).

Let us now consider the complex Cn(A,A). By Proposition 7.3, for all n,
the Bn(A,A) are closed. By Theorem 7.4, for all n, the boundaries Bn(A,A)
and the homology groups Hn(A,A) of this complex are strictly projective
and hence strictly flat. Also, it follows from the inductive hypothesis that,
for all n, the Hn(B,B) are Banach spaces and hence the Bn(B,B) are closed.
We can therefore apply Corollary 6.4 to get

Hn(A ⊗̂ B,A ⊗̂ B) ∼=
⊕

m+q=n

[Hm(A,A) ⊗̂ Hq(B,B)].

The terms in this direct sum vanish for m ≥ 2, and thus we only need to
consider

(H0(A,A) ⊗̂ Hn(B,B))⊕ (H1(A,A) ⊗̂ Hn−1(B,B)).

If n < k then from the induction hypothesis we get

Hn(`1(Zk+), `1(Zk+)) ∼= (H0(A,A) ⊗̂ Hn(B,B))⊕ (H1(A,A) ⊗̂ Hn−1(B,B))

∼=
(
A ⊗̂

(⊕(k−1
n ) I⊗̂

n

⊗̂ A⊗̂
k−1−n))

⊕
(
I ⊗̂

(⊕(k−1
n−1) I⊗̂

n−1

⊗̂ A⊗̂
k−n))

∼=
⊕(kn)(I⊗̂

n

⊗̂ A⊗̂
k−n

).

The other cases easily follow from the induction hypothesis: if n > k,
then Hn(B,B) and Hn−1(B,B) both vanish, while if n = k, Hn(B,B) = 0

and Hn−1(B,B) = I⊗̂
n−1

, and the result follows immediately, proving (1)
and (2). Statements (3) and (4) now follow directly from Corollary 6.4.

Acknowledgments. The first author thanks the University of New-
castle upon Tyne for its kind hospitality while this paper was being written.

References
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