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Linear Kierst–Szpilrajn theorems

by

L. Bernal-González (Sevilla)

Abstract. We prove the following result which extends in a somewhat “linear” sense
a theorem by Kierst and Szpilrajn and which holds on many “natural” spaces of holo-
morphic functions in the open unit disk D: There exist a dense linear manifold and a
closed infinite-dimensional linear manifold of holomorphic functions in D whose domain
of holomorphy is D except for the null function. The existence of a dense linear manifold
of noncontinuable functions is also shown in any domain for its full space of holomorphic
functions.

1. Introduction and notation. The following notation will be used
along this paper: N = the set of positive integers, N0 = N ∪ {0}, R = the
real line, C = the complex plane, D(a, r) = the open disk with center a
and radius r (a ∈ C, r > 0), D(a, r) = the corresponding closed disk, D =
the open unit disk {z ∈ C : |z| < 1}. If A ⊂ C and z0 ∈ C then A =
the closure of A, A0 = the interior of A, ∂A = the boundary of A, and
dist(z0, A) := inf{|z0 − a| : a ∈ A} = the distance from z0 to A. A domain
is a nonempty open subset of G of C, and G is said to be simply connected
whenever C∞ \G is connected, where C∞ is the one-point compactification
of C. As usual, we denote by H(G) the space of all holomorphic functions
on G. It is well known that H(G) becomes a Fréchet space (= completely
metrizable locally convex space) when endowed with the topology of uniform
convergence on compacta; in particular, it is a Baire space. By a Jordan
curve we understand as usual a topological image of ∂D = {z : |z| = 1}, and
a Jordan domain is the bounded component of the complement of a Jordan
curve. If f is a function which is holomorphic in a neighbourhood of a point
a ∈ C, then %(f, a) denotes the radius of convergence of the Taylor series of
f with center at a.
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In 1884 Mittag-Leffler proved that, given any domain G, there exists a
function f having G as its domain of holomorphy (see [10, Chapter 10]).
Recall that G is said to be a domain of holomorphy for f if f is holomorphic
exactly on G, that is, f is holomorphic in G and f has no analytic contin-
uation across any boundary point, in the sense that %(f, a) = dist(a, ∂G)
for every point a ∈ G. Of course, if G is a domain of holomorphy then f
has no holomorphic extension to any domain containing G strictly, but the
converse is not true (consider, for instance, G := C \ (−∞, 0] and f := the
principal branch of log z). But both properties are equivalent if G is a Jor-
dan domain, in particular if G = D. For any domain G, the symbol He(G)
will stand for the subclass of functions which are holomorphic exactly on G.
In 1933 Kierst and Szpilrajn [13] showed that, at least for D, the former
property is “generic”; specifically, the subset He(D) is not only nonempty
but even residual (hence dense) in H(D), that is, its complement in H(D)
is of first category.

Recently, Kahane [12, Theorem 3.1 and following remarks] has observed
that Kierst–Szpilrajn’s result can be generalized—in our terminology—as
follows.

Theorem 1.1. Let G ⊂ C be a domain and X be a Baire topological
vector space with X ⊂ H(G) such that the following conditions hold :

(a) For every a ∈ G and every r > dist(a, ∂G) there exists f ∈ X such
that %(f, a) < r.

(b) Differentiation maps X into itself and all evaluations f ∈ X 7→
f(a) ∈ C (a ∈ G) are continuous.

Then X ∩He(G) is residual in X.

We point out that the result for the special case X = H(G) of Theo-
rem 1.1 can be extracted from the fact that the subset of functions f ∈ H(G)
with maximal cluster set at every boundary point is residual [1]. See also
Remarks 5.2 of the present paper. Note that if G is a Jordan domain then
condition (a) of the last theorem is equivalent to

(P) For every domain Ω strictly greater than G there exists f ∈ X which
is not continuable holomorphically in Ω.

Roughly speaking, we can summarize Theorem 1.1 by saying that in
a topological sense, the set of holomorphically noncontinuable functions is
large. Our aim in this paper is to show that, under mild conditions (see Sec-
tion 3) on a space X consisting of holomorphic functions in D (in Section 2
a number of such spaces are recalled), the set of noncontinuable functions
is large not only topologically but also algebraically . This becomes more in-
teresting on noting that He(D) is not a linear manifold. A positive answer
will be accomplished by showing the existence of large linear manifolds of
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noncontinuable holomorphic functions (see Section 4). Finally, in Section 5
we deal with arbitrary domains, and the problem of functions having “very
regular” behavior on the boundary is considered.

2. Spaces of holomorphic functions. From now on X will denote a
topological vector space consisting of holomorphic functions in a domain G.
We devote this section to describing a collection of spaces of holomorphic
functions which we are going to work with. Of course, H(G) is one of them,
but there will be many more.

By H(D) we denote the linear space of the restrictions to D of all holo-
morphic functions f on some domain Ω = Ω(f) containing the closed unit
disk D; equivalently, H(D) is the space of all complex power series centered
at the origin with radius of convergence > 1, which in turn is the same as
the space of holomorphic functions in D having no singular boundary point.
The space H(D) has only auxiliary interest for us. Nevertheless, it is worth
mentioning that it can be endowed with a natural topology such that it be-
comes a complete nonmetrizable locally convex space (see [2, Chapter 21]).
We will not make use of this fact in what follows.

For 0 < p < ∞ the Hardy space Hp and the Bergman space Bp are
defined as the set {f ∈ H(D) : ‖f‖p <∞} with

‖f‖p :=





sup
0<r<1

( 2π�

0

|f(reiθ)|p dθ
2π

)1/p

for f ∈ Hp,

sup
0<r<1

( ���

D
|f(z)|p dA(z)

π

)1/p

for f ∈ Bp

(dA(z) is the normalized area measure on D). They become F-spaces
(= completely metrizable topological vector spaces) with the distance
d(f, g) = ‖f − g‖α(p)

p , where α(p) = 1 if p ≥ 1 (and a(p) = p if p < 1).
If p ≥ 1 then ‖ · ‖p is a norm on Hp or Bp, so they are even Banach spaces
in this case. The set of (holomorphic) polynomials is a dense subset of every
Hp and every Bp. The following inequalities can be found in [7, Chapter 3],
[18, p. 48] and [6, p. 13] respectively:

|f(z)| ≤ 21/p‖f‖p(1− |z|)−1/p (z ∈ D, 0 < p <∞, f ∈ Hp),

|f(z)| ≤ ‖f‖p(1− |z|2)−2 (z ∈ D, 1 ≤ p <∞, f ∈ Bp),

|f(z)| ≤ C‖f‖p(1− |z|)−2/p (z ∈ D, 0 < p <∞, f ∈ Bp).

Here C is a constant depending only on p. Thus the topology on Hp and
onBp is stronger than that inherited fromH(D); in other words, convergence
in Hardy or Bergman spaces implies convergence on compacta in D.
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If β := {β(n)}∞n=0 ⊂ (0,∞) is a sequence with lim infn→∞ β(n)1/n ≥ 1
then its associated weighted Hardy space is the Hilbert space of all functions
f(z) =

∑∞
n=0 anz

n for which the norm ‖f‖ = (
∑∞

n=0 |an|2β(n))1/2 is finite
(see [16] and [5, Chapter 2]). The corresponding inner product is

〈
f(z) ≡

∞∑

n=0

anz
n, g(z) ≡

∞∑

n=0

bnz
n
〉

=
∞∑

n=0

anbnβ(n).

The condition lim infn→∞ β(n)1/n ≥ 1 guarantees that H2(β) ⊂ H(D). It
is an easy exercise involving the Closed Graph Theorem together with the
continuity of the coefficient functionals f ∈ H2(β) 7→ an ∈ C (n ∈ N) (re-
call that {zn/β(n)1/2}∞n=0 is an orthonormal basis) that the last inclusion is
continuous or, what is the same, convergence in H2(β) implies convergence
in H(D). Note that for β(n) ≡ 1/(n+ 1), 1, n + 1 the space H2(β) is, re-
spectively, the classical Bergman space B2, the unweighted Hardy space H2,
or the Dirichlet space D. By considering Taylor expansions it is easy to see
that the polynomials are also dense in H2(β). For reasons that will become
clear later we impose on β the more restrictive condition

lim inf
n→∞

β(n)1/n = 1.

Let G ⊂ C be a given bounded domain. Let us agree that A0(G) =
A(G) := {f ∈ H(G) : f has a continuous extension to G}. If N ∈ N
then AN (G) := {f ∈ H(G) : f (j) has a continuous extension to G for all
j ∈ {0, 1, . . . , N}}. It is easy to see that if N ∈ N0 then AN (G) becomes
a Banach space when endowed with the norm ‖f‖ =

∑N
j=0 supz∈G |f (j)(z)|.

The space A∞(G) is defined as A∞(G) :=
⋂
N∈N0

AN (G) = {f ∈ H(G) : f (j)

has a continuous extension to G for all j ∈ N0}. The topology on A∞(G)
is that of the projective limit of the spaces AN (G) (N ∈ N0). Then A∞(G)
becomes a Fréchet space. In particular, each AN (G) (N ∈ N0 ∪ {∞}) is a
Baire space. It is evident that convergence on each of them implies uniform
convergence on compacta in G. If G = D the Cauchy estimates together
with some elementary manipulation of Taylor coefficients entail that

A∞(D) =
{
f(z) =

∞∑

n=0

anz
n : {nNan}∞n=0 is bounded for all N ∈ N

}
.

In this section all spaces will be nonseparable. The space H∞ consists of
all bounded holomorphic functions in D. It is a Banach space when endowed
with the supremum norm, so H∞ is a Baire space. Its topology is clearly
finer than that of uniform convergence on compacta. The Korenblum space
A−∞ is defined as the inductive limit of the weighted Banach spaces A−q :=
{f ∈ H(D) : ‖f‖q < ∞} (q > 0), where ‖f‖q := supz∈D(1 − |z|)q|f(z)|.
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Again after using Cauchy’s estimates and some manipulation with Taylor
coefficients we obtain

A−∞ =
⋃

q>0

A−q =
{
f(z) =

∞∑

n=0

anz
n : there is N = N(f) ∈ N

such that {n−Nan}∞n=1 is bounded
}
.

The topology of each A−q (hence that of A−∞) is finer than that of uniform
convergence on compacta. But A−∞ is neither Baire nor metrizable (see
[9, Section 4.3]).

Let us consider a final, very small space. Fix α ∈ (0, 1) and define

Xα =
{
f(z) =

∞∑

n=0

anz
n : {annn

α}∞n=1 is bounded
}
.

With no difficulty one can see that Xα is a Banach space when endowed
with the norm ‖f‖ := |a0|+ supn∈N |nn

α
an|, that Xα ⊂ A∞(D) (use α > 0),

that
⋃

0<α<1Xα 6= A∞(D) (take f(z) =
∑∞

n=1 n
−nlogn

zn), and that the
polynomials are dense in Xα. The inequality |f(z)| ≤ ‖f‖[1+

∑∞
n=1 r

n/nn
α
]

(|z| = r < 1) shows that the topology in Xα is finer than that of uniform
convergence on compacta in D.

3. Conditions on our spaces. It appears to be convenient to list the
properties of our spaces X which will be used repeatedly along this paper
(see (A)–(E) below). But let us first recall that if f(z) :=

∑∞
n=0 anz

n ∈ H(D)
then the support of f (or of the sequence {an}∞n=0) is the set supp(f) =
{n ∈ N0 : an 6= 0}. If Q ⊂ N0 then we denote by HQ(D) the space of
all f ∈ H(D) with gaps outside Q, that is, such that supp(f) ⊂ Q. The
symbol PQ stands for the natural projection PQ :

∑∞
n=0 anz

n ∈ H(D) 7→∑
n∈Q anz

n ∈ HQ(D).
In the following list, it is assumed that G = D in (A), (B) and (E).

(A) X is stable under projections, that is, PQ(X) ⊂ X for every Q ⊂ N0.
(B) Some denumerable subset of H(D) is a dense subset of X.
(C) All evaluation functionals f ∈ X 7→ f (k)(a) ∈ C (a ∈ G, k ∈ N0) are

continuous.
(D) For every a ∈ G and every r > dist(a, ∂G) there exists f ∈ X such

that %(f, a) < r.
(E) X 6⊂ H(D).

Observe that properties (A), (D) and (E) do not require any topological or
algebraic structure on X. Note that (D) is condition (a) in Theorem 1.1, so
(again) it is equivalent to (P) if G is a Jordan domain, in particular if G = D.
We also point out that condition (b) in Theorem 1.1 can be considerably
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weakened. Indeed, the proof of [12, Theorem 3.1] works if we replace (b)
by (C). Thus, within our conventions, Theorem 1.1 can be reinforced as
follows.

Theorem 3.1. Let G ⊂ C be a domain and X be a Baire topological
vector space with X ⊂ H(G) satisfying (C) and (D). Then X ∩ He(G) is
residual in X.

This reformulation allows, for instance, each Hardy space Hp and each
Bergman space Bp (0 < p < ∞)—which are not stable under differentia-
tion—to be one of the “lucky” spaces X. Theorem 3.1 will be employed
several times in the subsequent sections.

Remarks 3.2. 1. There are plenty of natural spaces enjoying proper-
ty (A), apart from H(D) itself. They include many spaces given by inequal-
ities or by convergence of series involving the Taylor coefficients. For in-
stance, the spaces H2(β), A∞(D), A−∞ and Xα (0 < α < 1) are stable
under projections. On the negative side, there exist rather natural spaces
X ⊂ H(D) which do not have this kind of stability. In fact, no Hardy
space Hp with p 6= 2 satisfies (A). To see this, fix p < 2 and select a
function f(z) =

∑∞
n=0 anz

n ∈ Hp \ H2. Then f cannot be bounded, so
lim supn→∞ |an|1/n = 1. In addition, due to a celebrated theorem of Lit-
tlewood (see [7, Appendix A]) there is a sequence of signs {εn : n ∈ N0}
⊂ {−1, 1} such that g(z) :=

∑∞
n=0 εnanz

n has radial limit almost nowhere
eiθ ∈ ∂D. Hence g 6∈ Hp by Fatou’s Theorem. Define Q := {n ∈ N0 : εn = 1}.
Then it is clear that g = PQ(f)− PN0\Q(f), so at least one of the functions
PQ(f), PN0\Q(f) must be outside Hp, which shows the nonstability of this
space. Let us now fix a real number p > 2 and select this time a func-
tion f(z) =

∑∞
n=0 anz

n ∈ H2 \ Hp. As before, lim supn→∞ |an|1/n = 1.
By the aforementioned theorem of Littlewood there is a sequence of signs
{εn : n ∈ N0} ⊂ {−1, 1} such that g(z) :=

∑∞
n=0 εnanz

n is in Hq for all
q ∈ (0,∞); in particular g ∈ Hp. Define again Q := {n ∈ N0 : εn = 1}.
Then it is clear that f = PQ(f) + PN0\Q(f), so at least one of the func-
tions PQ(f), PN0\Q(f) is outside Hp. But PQ(f) = PQ(g) and PN0\Q(f) =
−PN0\Q(g). Therefore at least one of the functions PQ(g), PN0\Q(g) is not
in Hp, hence Hp is not projection-stable either.

2. Property (B) holds if, for instance, the set of polynomials is a dense
subset of X (the continuity of the sum and of the multiplication by scalars
on a topological vector space makes the denumerable set of polynomials
with rational real and imaginary parts another dense subset of X). Hence
the spaces H(D), H2(β), AN (D) (N ∈ N0 ∪ {∞}), Hp, Bp (0 < p < ∞),
Xα (0 < α < 1) enjoy property (B). But the spaces H∞, A−q (0 < q <∞),
A−∞ do not share it since they are not separable.
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3. The Weierstrass theorem about convergence of sequences of holomor-
phic functions shows that if convergence in X implies uniform convergence
on compacta in G then (C) holds. Therefore all the spaces H(D), H2(β),
AN (D), Hp, Bp, Xα, H∞, A−q, A−∞ have property (C).

4. It is clear that property (D) holds if He(G) ∩X 6= ∅. Thus H(G) en-
joys (D) due to the Mittag-Leffler theorem mentioned in the Introduction. If
G = D then both properties (D) and (E) are valid whenever He(D)∩X 6= ∅.
Therefore the space X = H(D) satisfies (D)–(E). This is so by the special
case G = D of Mittag-Leffler’s result, but we have another, more direct
approach: Take the function f(z) =

∑∞
j=0 z

2j , which has radius of conver-
gence 1 and Hadamard gaps, so it is in He(D) by the Hadamard lacunary
theorem (see [15, Section 16]). A similar fact happens with the much smaller
space A∞(D): Consider this time the function f(z) =

∑∞
j=0 ajηjz

j, where
aj = 1 if j is a power of 2, aj = 0 otherwise, and ηj = exp(−√j) (see again
[15, Section 16]). This together with the fact that A∞(D) is included in each
of the spaces Hp, Bp, AN (D), H∞, A−q, A−∞ (0 < p <∞, N ∈ N0 ∪ {∞},
q > 0) shows that all these spaces satisfy (D)–(E) as well. Also each weighted
Hardy space H2(β) enjoys (D)–(E) by the former reason: The function

f(z) :=
∞∑

j=1

zmj

mjβ(mj)1/2

is in H2(β), where {mj}∞j=1 is a sequence of positive integers satisfy-
ing mj+1 > 2mj (j ∈ N) and limj→∞ β(mj)1/mj = 1 (recall that
lim infn→∞ β(n)1/n = 1), so the radius of convergence of the power se-
ries of f is 1 and the above-mentioned Hadamard theorem can again be
applied; hence f ∈ He(D) ∩ H2(β). For the small space Xα, the function
f(z) :=

∑∞
n=1 n

−nαzn belongs to Xα but not to H(D) (use the fact that
α < 1), so (E) holds for this space. In fact, (D) also holds: make sufficiently
many gaps in the last series. On the other hand, the spaceH(D) trivially does
not satisfy (E), but it satisfies (D). Indeed, fix a domainΩ strictly containing
D and choose any z0 ∈ Ω \D. Then the function f(z) =

∑∞
j=0(z/|z0|)2j has

radius of convergence |z0| and Hadamard gaps, so D(0, |z0|) is its domain of
holomorphy; therefore it belongs to H(D) but it cannot be holomorphically
continued to Ω. Finally, if we fix any domain Ω as before with ∂Ω∩∂D 6= ∅
and choose any function in He(Ω) then it is immediately seen thatX := {the
restrictions to D of the functions of H(Ω)} satisfies (E) but not (D).

4. Large linear manifolds of noncontinuable holomorphic func-
tions. We are going to see how large linear manifolds of holomorphic func-
tions having D as its domain of holomorphy can be constructed. This will be
done in a twofold way, namely, with dense linear manifolds (Theorem 4.2)
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and with closed infinite-dimensional linear manifolds (Theorem 4.3). For
this, the natural mild assumptions (A)–(E) given in Section 2 are to be ap-
plied judiciously. In the statements of Theorems 4.2–4.3, it is understood
that conditions (C) and (D) refer to the domain G = D.

We now present the following auxiliary result, which might be interesting
in itself. It will reveal useful in the proof of our main results in this section.

Lemma 4.1. Suppose that X is a topological vector space with X ⊂
H(D) satisfying (A) and that F ∈ X \H(D). Then there exists an infinite-
dimensional linear manifold L(F ) ⊂ Hsupp(F )(D) ∩X such that L(F ) \ {0}
⊂ He(D).

Proof. Since F ∈ X \H(D), we can write F (z) :=
∑∞

n=0 anz
n, where the

radius of convergence of the power series is 1. By the Cauchy–Hadamard
formula, we have

lim sup
n→∞

|an|1/n = 1.

Therefore there exists a strictly increasing sequence {n(k) : k ∈ N} ⊂ N
such that

(1) lim
k→∞

|an(k)|1/n(k) = 1.

We can extract a sequence {m(1) < m(2) < · · ·} ⊂ {n(k) : k ∈ N} with

(2) m(k + 1) > 2m(k) (k ∈ N).

Now we divide the sequence {m(k) : k ∈ N} into infinitely many strictly
increasing sequences Aj = {p(j, k) : k ∈ N} (j ∈ N) so that they are pairwise
disjoint. Due to property (A), each series

Fj(z) =
∞∑

k=1

ap(j,k)z
p(j,k)

defines a function belonging to X. But from (1) we clearly have

(3) lim
k→∞

|ap(j,k)|1/p(j,k) = 1 (j ∈ N)

whereas by (2) every Fj has Hadamard gaps. Consider the linear span

L(F ) := span{Fj : j ∈ N}.
Then, obviously, L(F ) is a linear manifold contained in X. Moreover, L(F )
is infinite-dimensional because the functions Fj (j ∈ N) are linearly inde-
pendent due to the fact that supp(Fj) ∩ supp(Fl) ⊂ Aj ∩ Al = ∅ whenever
j 6= l. Furthermore, it is evident that if

(4) h :=
N∑

j=1

cjFj ∈ L(F ) (cj ∈ C, j = 1, . . . , N)

then supp(h) ⊂ ⋃N
j=1 supp(Fj) ⊂ supp(F ), hence h ∈ Hsupp(F )(D).
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Finally, assume that h ∈ L(F ) \ {0}. Without loss of generality, we can
suppose that h is as in (4) with cN 6= 0. By (3), the radius of convergence
of the power series defining cNFN is 1. But the same is true for h because
the corresponding radii for cjFj (j = 1, . . . , N − 1) are ≤ 1 and the sup-
ports of the cjFj (j = 1, . . . , N) are pairwise disjoint. On the other hand, if
supp(h) = {p(1) < p(2) < · · ·} (⊂ {m(k) : k ∈ N}) then from (2) we have
p(k+1) > 2p(k) for all k ∈ N. Thus the Hadamard lacunary theorem asserts
that h ∈ He(D).

It should be noted that Lemma 4.1 yields the following result for the
special case X = H(D): Given an infinite subset Q ⊂ N0, there exists
an infinite-dimensional linear manifold M(Q) ⊂ HQ(D) such that M(Q) ⊂
He(D). Indeed, one can choose a sequence {n(j) : j ∈ N} ⊂ Q with n(j+1) >
2n(j) for all j ∈ N. Therefore the function F (z) :=

∑∞
j=1 z

n(j) is holomorphic
in D, has radius of convergence 1 and has Hadamard gaps, so the Hadamard
lacunary theorem tells us that F ∈ He(D). Hence we can takeM(Q) = L(F ).

Theorem 4.2. Assume that X is a metrizable topological vector space
with X ⊂ H(D). Suppose that at least one of the following conditions holds:

(a) X is Baire and has properties (A)–(D).
(b) X has property (B) and there is a subset of X for which (A) and

(E) hold.

Then there is an dense linear manifold M in X such that M \{0} ⊂ He(D).

Proof. Denote by d a distance on X which is translation-invariant and
compatible with the topology of X. If we start from (a) then we can apply
Theorem 3.1 on G = D to deduce that X ∩ He(D) is residual in X. In
particular, such a subset is nonempty and we can pick a function F ∈
X ∩He(D), hence F ∈ X \H(D). If (b) is assumed then, by property (E),
we obtain the existence of a function F ∈ Y \H(D) for some subset Y ⊂ X
that is, in addition, stable under projections. Thus, we may start in both
cases with a function F ∈ X \H(D) whose projections PQ(F ) (Q ⊂ N0) are
all in X. Moreover, due to (B), there is a sequence {gn : n ∈ N} ⊂ H(D)∩X
that is dense in X.

Consider the linear manifold L(F ) = span{Fn : n ∈ N} provided in the
proof of Lemma 4.1. Recall that by construction we have in fact

Fn = PAn(F ) (n ∈ N)

for certain sets An ⊂ N. Then Fn ∈ X for all n ∈ N.
Fix an n ∈ N. The continuity of the multiplication by scalars in the

topological vector space X gives the existence of a constant εn > 0 for
which d(εnFn, 0) < 1/n. Now we define

fn := gn + εnFn, M := span{fn : n ∈ N}.
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Then fn ∈ X for all n because gn, Fn ∈ X, whence M is a linear mani-
fold contained in X. Furthermore, the translation invariance of d implies
d(fn, gn) = d(εnFn, 0) < 1/n, so d(fn, gn) → 0 as n → ∞. This and the
density of {gn : n ∈ N} imply the density of {fn : n ∈ N}, which in turn
implies, trivially, that M is dense in X.

Finally, take a function f ∈M\{0}. Then there existN ∈ N and complex
constants c1, . . . , cN with cN 6= 0 such that f = c1g1 + · · ·+cNgN +h, where

h :=
N∑

j=1

cjεjFj ∈ L(F ) \ {0}.

By Lemma 4.1, h ∈ He(D). But the function g := c1g1 + · · · + cNgN is
holomorphically continuable on D(0, R) for some R > 1 (in fact, for R =
min1≤n≤N Rn, where Rn is the radius of convergence of the Taylor series
of gn). Consequently, the sum f = g + h can be holomorphically continued
beyond no point of ∂D, that is, f ∈ He(D), as required.

Remarks 3.2 contain examples of spaces X on which Theorem 4.2 can
be applied, namely, H(D), H2(β), AN (D) (N ∈ N0∪{∞}), Xα (0 < α < 1),
Hp, Bp (0 < p <∞). Suffice it to say that A∞(D) is a subset of each space
AN (D), Hp, Bp and that A∞(D) does satisfy (A) and (E).

Next, we focus our attention on the search for large closed linear man-
ifolds of noncontinuable holomorphic functions. As the following theorem
shows, all the spaces H(D), H2(β), AN (D), Xα, Hp, Bp, H∞, A−q, A−∞

enjoy the existence of such linear manifolds.

Theorem 4.3. Assume that X is a topological vector space with X ⊂
H(D). Suppose that at least one of the following conditions holds:

(a) X is Baire and has properties (A), (C) and (D).
(b) X has property (C) and there is a subset of X for which (A) and (E)

hold.

Then there is an infinite-dimensional closed linear manifold M ⊂ X such
that M \ {0} ⊂ He(D).

Proof. Due to (a) or (b), we get as in the first part of the proof of
Theorem 4.2 the existence of a function F ∈ X \H(D). From now on we will
follow the same notation as in the proof of Lemma 4.1. It is clear that the
sequence {n(k) : k ∈ N} selected there may be chosen to satisfy an(k) 6= 0
for all k ∈ N. Also, we write Q :=

⋃
j∈NAj .

Consider again the linear manifold L(F ) = span{Fn : n ∈ N} con-
structed in that lemma. Recall that it is infinite-dimensional. Then its clo-
sure

M := L(F )
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in X is an infinite-dimensional closed linear manifold. All that should be
proved is M \ {0} ⊂ He(D).

To this end, we observe that the conclusion will follow as soon as we
demonstrate the following three properties:

(i) The set Λ contains L(F ), where Λ := {f(z) =
∑

n∈Q cnz
n ∈ X :

there exists {λj}∞j=1 ⊂ C such that cp(j,k) = λjap(j,k) for all j, k ∈ N}.
(ii) Λ is closed in X.

(iii) Λ \ {0} ⊂ He(D).

Indeed, (i) together with (ii) implies thatM ⊂ Λ, whenceM\{0} ⊂ Λ\{0} ⊂
He(D) by (iii), and we are done.

Property (i) is trivial: It suffices to choose λj = 0 (j > N) for each given
f =

∑N
j=1 λjFj ∈ L(F ). For (ii), assume that

{
fα(z) :=

∑

n∈Q
c(α)
n zn

}
α∈I
⊂ Λ

is a net with fα → f in X. It must be shown that f ∈ Λ. Suppose that
f has a Taylor expansion f(z) =

∑∞
n=0 cnz

n (z ∈ D). Due to (C), we have

f
(n)
α (0) → f (n)(0) for each n ∈ N0, so c(α)

n → cn. Then cn = 0 for all n 6∈ Q
and f(z) =

∑
n∈Q cnz

n. Moreover, for every α ∈ I there exists a sequence

{λ(α)
j }∞j=1 ⊂ C such that c(α)

p(j,k) = λ
(α)
j ap(j,k) for all j, k ∈ N. Again by (C),

we get c(α)
p(j,k) → cp(j,k), hence λ(α)

j → cp(j,k)/ap(j,k) for all j, k. But by the
uniqueness of the limit, there must be constants λj ∈ C (j ∈ N) satisfying
λj = cp(j,k)/ap(j,k), or equivalently, cp(j,k) = λjap(j,k) for all j, k ∈ N. Thus
f ∈ Λ.

Finally, assume that f ∈ Λ\{0} and that f has a Taylor expansion about
the origin as in the definition of Λ (see (i)). Then there exists J ∈ N with
λJ 6= 0. Of course, lim supn→∞ |cn|1/n ≤ 1. But by (1),

lim
k→∞

|cp(J,k)|1/p(J,k) = lim
k→∞

|λJ |1/p(J,k) · lim
k→∞

|ap(J,k)|1/p(J,k) = 1.

Therefore lim supn→∞ |cn|1/n = 1, that is, the radius of convergence of the
Taylor expansion of f is 1. On the other hand, the set Q consists of the in-
tegers of the sequence {m(1) < m(2) < · · ·}, which have Hadamard gaps by
virtue of (2). Hence (again) Hadamard’s lacunary theorem yields f ∈ He(D).
This shows (iii) and finishes the proof.

Remarks 4.4. 1. A close inspection of the last proof shows that in con-
dition (b) property (C) can be replaced by a weaker one, namely: All eval-
uation functionals f ∈ X 7→ f (k)(0) ∈ C (k ∈ N0) are continuous.

2. If X is a Baire topological vector space with X ⊂ H(D) satisfying
condition (b) of the last theorem then also He(D) ∩ X is residual in X.
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Indeed, using (A) and (E) we can construct a function f ∈ X with lacunary
Taylor expansion and radius of convergence 1, so f ∈ He(D)∩X. Then (D)
is satisfied and Theorem 3.1 applies.

5. Noncontinuability on more general domains. The conclusion
of Theorem 4.2 holds for any domain G ⊂ C when X is the full space H(G),
but the proof will be rather different.

Theorem 5.1. Let G ⊂ C be a domain. Then there is a dense linear
manifold M in H(G) such that M \ {0} ⊂ He(G).

Proof. The case G = C is trivial, so we may assume G 6= C. Denote
by G∗ the one-point compactification of G. Fix an increasing sequence
{Kn : n ∈ N} of compact subsets of G such that each compact subset of
G is contained in some Kn and each connected component of the comple-
ment of every Kn contains some connected component of the complement
of G (see [4, Chapter 7]). Choose a countable dense subset {gn : n ∈ N} of
the (separable) space H(G).

Choose also a sequence {an : n ∈ N} of distinct points of G such that
it has no accumulation point in G and each prime end (see [3, Chapter 9])
of ∂G is an accumulation point of the sequence. More precisely, the se-
quence {an} should have the following property: For every a ∈ G and every
r > dist(a, ∂G), the intersection of {an} with the connected component of
D(a, r) ∩ G containing a is infinite. An example of the required sequence
may be defined as follows. Let A = {αk} be a dense countable subset of G.
For each k ∈ N choose bk ∈ ∂G such that |bk−αk| = dist(αk, ∂G). For every
k ∈ N let {akl : l ∈ N} be a sequence of points of the line interval joining αk
with the corresponding point bk such that |akl − bk| < 1/(k + l) (k, l ∈ N).
Each one-fold sequence {an} (without repetitions) consisting of all distinct
points of the set {akl : k, l ∈ N} has the required property.

Now consider for each N ∈ N the set AN := KN ∪ {an : n ∈ N}. Then:

• The set AN is closed in G because the set {an : n ∈ N} does not cluster
in G.
• The set G∗ \AN is connected due to the shape of KN (recall that in G∗

the whole boundary ∂G collapses to a unique point, say ω) and to the
denumerability of {an : n ∈ N}.
• The setG∗\AN is locally connected at ω, again by the denumerability of
{an : n ∈ N} and by the fact that one can suppose that neighborhoods
of ω do not intersect KN .

On the other hand, the function hn : AN → C defined as

hN (z) =
{
gN (z) if z ∈ KN ,

nN if z = an and an 6∈ KN
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is continuous on AN and holomorphic on A0
N (= K0

N ). Hence the Arakelian
approximation theorem (see [8, pages 136–144]) guarantees the existence of
a function fN ∈ H(G) such that

(5) |fN (z)− hN (z)| < 1/N for all z ∈ AN .
We define

M := span{fN : N ∈ N}.
Then M is a linear manifold contained in H(G). It is dense because
{fN : N ∈ N} is dense, which in turn is true from (5) (recall that hN = gN
on KN ), from the denseness of {gN : N ∈ N} and from the property that for
a given compact set K ⊂ G we have K ⊂ KN whenever N is large enough.

Now, fix a function f ∈M \{0}, so f =
∑N

j=1 cjfj for some N and some
complex constants cj (j = 1, . . . , N) with cN 6= 0. By (5) we get

|fj(an)− nj | < 1 for all n ≥ n0 (j = 1, . . . , N)

for some n0 ∈ N since each Kj may contain only finitely many points an.
Therefore

∣∣∣f(an)−
N∑

j=1

cjn
j
∣∣∣ < α (n ≥ n0),

where α :=
∑N

j=1 |cj | <∞. Then f(an)→∞ (n→∞). Given an arbitrary
point a ∈ G the radius of convergence %(f, a) is equal to dist(a, ∂G). Indeed,
if this were not the case, we could choose r with dist(a, ∂G) < r < %(f, a)
and, by the construction of {an : n ∈ N}, there would exist a sequence
{n1 < n2 < · · ·} ⊂ N for which ank ∈ G ∩ D(a, r) (k ∈ N). On the other
hand, the sum S(z) of the Taylor series of f with center a is bounded on
D(a, r). But S = f on G ∩ D(a, r), so S(ank) = f(ank) → ∞ (k → ∞),
which is absurd. Consequently, f has no analytic continuation across any
boundary point of G. This finishes the proof.

An elementary modification of the last proof reveals that a slight im-
provement of Theorem 5.1 can be obtained: For a given function ϕ :
G → (0,∞) there exists a dense linear manifold Mϕ in H(G) such that
every f ∈Mϕ \ {0} satisfies

lim sup
z→t

|f(z)|
ϕ(z)

= +∞ for all prime ends t of ∂G.

We conclude this paper with a number of comments and questions.

Remarks 5.2. 1. The Kierst–Szpilrajn theorem—that is, the conclu-
sion of Theorem 1.1 or 3.1—remains true for a wide class of “natural”
Fréchet spaces (see e.g. [11, Proposition 1.7.6]). A specially interesting case
is that of noncontinuable holomorphic functions which are very regular on
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the boundary, for which a positive answer is known even in several dimen-
sions (see [17]). Namely, let G be a bounded open subset of Cp such that
G = G0 and the compact set G is polynomially convex. Then G is a domain
of holomorphy of a function f ∈ A0(G). If, moreover, G has the Markov
property then G is a domain of holomorphy of a function f ∈ A∞(G). Let
us recall that for p = 1, A ⊂ C has the Markov property if there exists a
positive constant c such that diam(S) ≥ c for each connected component S
of A.

2. From the last remark we deduce in particular that if G is a Jordan
domain then AN (G) ∩ He(G) 6= ∅ for all N ∈ N0 ∪ {∞} (a nice, fairly
constructive proof for the case N = 0 can be found in [14, Theorem 2]).
According to Remark 3.2.3 the space X = AN (G) satisfies (C), and by
Remark 3.2.4 it also enjoys (D). Hence Theorem 3.1 applies, entailing that
the set AN (G) ∩ He(G) is residual in AN (G). Note that as observed in
[14, Section 3], if no assumption is imposed on G then even in the case
of a bounded simply connected domain G the set A0(G) ∩He(G) (so each
AN (G) ∩He(G)) may well be empty; consider for instance G = D \ [0, 1].

3. In view of Theorem 3.1, it would be interesting to know whether there
exists a nonmetrizable Baire topological vector space X ⊂ H(G) satisfying
condition (C).

4. Finally, we want to pose here the following question: Are there ana-
logues of Theorem 5.1 for subspaces X ⊂ H(G), e.g. for X = A∞(G), where
G is bounded?
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