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Perturbations of isometries between C(K)-spaces

by

Yves Dutrieux (Besançon) and Nigel J. Kalton (Columbia, MO)

Abstract. We study the Gromov–Hausdorff and Kadets distances between C(K)-
spaces and their quotients. We prove that if the Gromov–Hausdorff distance between
C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance
is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic.
For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the
Gromov–Hausdorff sense then K is homeomorphic to a clopen subset of L.

1. Introduction. The aim of this paper is to obtain a nonlinear ver-
sion of the Amir–Cambern theorem [1, 4, 5] which states that if K and L
are locally compact spaces such that the Banach–Mazur distance between
C0(K) and C0(L) is less than 2, then K and L are homeomorphic. For this,
we need a definition of nonlinear distances. Before giving it, let us recall
some notation.

In this paper, X, Y and E are Banach spaces. The closed unit ball
of X is denoted by BX and its unit sphere by SX . If K is a Hausdorff
compact set, the space of real continuous functions on K is denoted by
C(K). It is equipped with the supremum norm. For a Hausdorff locally
compact space K we also consider C0(K), the space of continuous functions
on K which vanish at infinity. It coincides with C(K) if K is compact. For
f ∈ C0(K) and U ⊂ K, we write ‖f‖U = supu∈U |f(u)|.

We define some nonlinear distances between Banach spaces related to
the Banach–Mazur distance dBM(·, ·). We recall a definition from [8]. Let A
and B be two bounded subsets of some pseudo-metric space M (we do not
assume that the “distance” d separates the points of M). The Hausdorff
distance between A and B is

max[sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)].

The Gromov–Hausdorff distance between Banach spaces X and Y is the
infimum of all Hausdorff distances between i(BX) and j(BY ), where i :
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BX → M and j : BY → M are isometric embeddings into a common
pseudo-metric space M . We denote this distance by dGH(X,Y ). The Kadets
distance dK(X,Y ) is the infimum of all Hausdorff distances between i(BX)
and j(BY ), where i : X → E and j : Y → E are linear isometric embeddings
into a common normed space E. These are pseudo-metrics, since two Banach
spaces can have Kadets distance 0 without being isomorphic (see [11]).

In Section 2, we study separable C(K)-spaces which are close in the
Gromov–Hausdorff sense. We prove in particular that if K and L are com-
pact sets with dGH(C(K), C(L)) < 1/16, then K and L are homeomorphic.
This result may be regarded as an extension of a theorem of Jarosz on
Lipschitz homeomorphisms between C(K)-spaces [7]. Then we prove that,
in the separable case, if dK(C(K), C(L)) < 1 then C(K) and C(L) are
isomorphic (this does not however imply that K and L are homeomor-
phic). In Section 4, we study similar questions on quotients and subspaces
of C(K)-spaces with K countable. In particular, we show that if K and L are
countable Hausdorff compact sets and if X is a subquotient (that is to say,
a subspace of an isometric quotient) of C(L) with dGH(C(K),X) < ε(L),
where ε(L) is some positive constant depending only on L, then K is hom-
eomorphic to a subset of L.

2. Remarks on nonlinear distances. Let us also define some alter-
native nonlinear distances between Banach spaces.

When f is a Lipschitz map between two metric spaces, we denote by
l(f) the Lipschitz constant of f . The Lipschitz distance between two metric
spaces X and Y is dL(X,Y ) = inf l(f) · l(f−1), where the infimum is taken
over all Lipschitz homeomorphisms between X and Y .

If X and Y are two Banach spaces and u : X → Y is uniformly contin-
uous, we call the number

l∞(u) = inf
η>0

sup
‖x−x′‖≥η

‖u(x)− u(x′)‖
‖x− x′‖

the Lipschitz constant of u at infinity. The uniform distance between X and
Y is dU(X,Y ) = inf l∞(u) · l∞(u−1), where the infimum is taken over all
uniform homeomorphisms between X and Y .

Following [2, Chapter 10], an (a, b)-net in a Banach space X is a subset
N of X such that, for any x, x′ ∈ N with x 6= x′, we have ‖x− x′‖ ≥ a and,
for any x ∈ X, there exists y ∈ N with ‖x− y‖ ≤ b. We say that two Banach
spaces are net-equivalent when they have Lipschitz homeomorphic nets. The
net distance between X and Y is the number dN(X,Y ) = inf dL(N ,M),
where the infimum is taken over all pairs (N ,M) of nets N ⊂ X and
M⊂ Y . The following inequalities are clear: for any couple (X,Y ) of Banach
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spaces, we have

dN(X,Y ) ≤ dU(X,Y ) ≤ dL(X,Y ) ≤ dBM(X,Y ).

The following fact shows that results on the Gromov–Hausdorff distance
automatically yield similar results for the other notions of distance.

Proposition 2.1. If X and Y are Banach spaces, we have

dGH(X,Y ) ≤ dK(X,Y ) ≤ log dBM(X,Y ),

dGH(X,Y ) ≤ dN(X,Y )− 1.

Proof. The inequality dK(X,Y ) ≤ log dBM(X,Y ) is due to Ostrovskii
[13]. We only show the last inequality.

Let C be a constant greater than dN(X,Y ) and η > 0 be arbitrary.
There exists a positive number ε, an (ε, η)-net M ⊂ X and a one-to-one
map f :M→ Y such that N = f(M) is an (ε′, η)-net in Y for some ε′ > 0
and, for any m,m′ ∈ M,

‖m−m′‖ ≤ ‖f(m)− f(m′)‖ ≤ C‖m−m′‖.(1)

We can suppose that 0 ∈ M and 0 = f(0). Let J = M ∩ (1 + η)BX ,
A = BX ∪J and B = BY ∪f(J). It is easy to check that J is an (ε, η)-net of
A and that f(J) is an (ε′, η)-net of B. On the disjoint union M of A and B,
we define a new metric which coincides with the norm metric on A and B
by defining, for every x ∈ A and y ∈ B,

d(x, y) = inf{‖x−m‖+ α+ ‖y − f(m)‖ ; m ∈ J},
where α is a positive number that we will choose in order that d is a metric.
There are several cases to check in the triangle inequality. We only check the
less easy one: for x ∈ A and y, y′ ∈ B, we have d(x, y) + d(x, y′) ≥ ‖y − y′‖.
It is sufficient to prove that, for any (m,m′) ∈ M, we have ∆ ≥ ‖y − y′‖,
where

∆ = ‖y − f(m)‖+ α+ ‖m− x‖+ ‖x−m′‖+ α+ ‖y′ − f(m′)‖.
Using (1), we have

∆ ≥ 2α+ ‖y − f(m)‖+ ‖y′ − f(m′)‖+
‖f(m)− f(m′)‖

C
≥ 2α+

‖y − y′‖
C

.

Since ‖y − y′‖ ≤ ‖y‖ + ‖y′‖ ≤ 2C(1 + η), we have ∆ ≥ ‖y − y′‖ provided
α ≥ (C − 1)(1 + η). Since η > 0 and C > dN(X,Y ) are arbitrary, we find
dGH(X,Y ) ≤ dN(X,Y )− 1.

We conclude this section by taking the opportunity to correct an un-
fortunate error in the statement and proof of Proposition 3.3 in [8]. We
are grateful to Tamara Kucherenko for bringing this error to our attention.
Fortunately, the only difference in the new statement is in the size of the
constants, and this does not change subsequent results in [8].
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Proposition 2.2 (Proposition 3.3 in [8] corrected). Let X and Y be Ba-
nach spaces and suppose Φ : X → Y is a homogeneous map satisfying
1
2‖x‖X ≤ ‖Φ(x)‖Y ≤ ‖x‖X such that for a constant 0 ≤ σ < 1 we have:

(1) Given y ∈ Y there exists x ∈ X with

‖x‖X ≤ ‖y‖Y and ‖y − Φ(x)‖Y ≤ σ‖y‖Y .
(2) If x1, x2, x3 ∈ X and

∑3
k=1 xk = 0 then

∥∥∥
3∑

k=1

Φ(xk)
∥∥∥
Y
≤ σ

3∑

k=1

‖xk‖X .

Then if Ψ : Y → X is a homogeneous map satisfying ‖Ψ(y)‖X ≤ ‖y‖Y and
‖y − Φ(Ψ(y))‖Y ≤ σ‖y‖Y (whose existence is guaranteed by (1)) we have

| ‖x− Ψ(y)‖X − ‖y − Φ(x)‖Y | ≤ 15σ(‖x‖X + ‖y‖Y ).

Furthermore for each 0 < r < 1 there is a universal constant C = C(r) such
that ∆r(Φ, Ψ) ≤ Cσ.

If further we have:

(3) If x1, . . . , xn ∈ X and
∑n

k=1 xk = 0 then
∥∥∥

n∑

k=1

Φ(xk)
∥∥∥
Y
≤ σ

n∑

k=1

‖xk‖X ,

then ∆(Φ, Ψ) ≤ 30σ.

Remark. In the statement we have replaced a constant 6 by 15 and 20
by 30. These constants have no essential importance in the remainder of the
paper.

Proof. The error occurs on the sixth line of page 27 of [8]. There it is
falsely assumed that ‖x− Ψ(y)‖X ≤ ‖Φ(x− Ψ(y))‖Y .

From the inequality on line 2 of page 27, by putting y = Φ(x), it follows
that

‖Φ(x− ΨΦ(x))‖Y ≤ 3σ(‖x‖X + ‖Φ(x)‖X) ≤ 6σ‖x‖X
and so

‖x− ΨΦ(x)‖X ≤ 12σ‖x‖X .
This gives

‖x‖X ≤ ‖Φ(x)‖Y + 12σ‖x‖X .
Replacing x by x− Ψ(y) gives

‖x− Ψ(y)‖X ≤ ‖Φ(x− Ψ(y))‖Y + 12σ(‖x‖X + ‖y‖Y ),

and this implies

‖x− Ψ(y)‖X ≤ ‖Φ(x)− y‖Y + 15σ(‖x‖X + ‖y‖Y ).
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This gives the first part of the proposition with constant 15. We leave it
to the reader to make the appropriate adjustments in the latter part of the
proof to obtain the constant 30.

3. Small nonlinear distances between C0(K)-spaces

Theorem 3.1. Let K and L be Hausdorff locally compact spaces. If the
Gromov–Hausdorff distance dGH(C0(K), C0(L)) is less than 1/16 then K
and L are homeomorphic.

Proof. Suppose dGH(C0(K), C0(L)) < η < 1/16. Then there is a pseudo-
metric d on BC0(K) ∪BC0(L) such that:

1. If f, g ∈ BC0(K) then d(f, g) = ‖f − g‖K .
2. If f, g ∈ BC0(L) then d(f, g) = ‖f − g‖L.
3. If f ∈ BC0(K) there exists g ∈ BC0(L) with d(f, g) < η.
4. If f ∈ BC0(L) there exists g ∈ BC0(K) with d(f, g) < η.

Now we claim:

Claim 1. Let f ∈ BC0(K) and g ∈ BC0(L) be such that d(f, g) < η. Then
| ‖f‖K − ‖g‖L| < 4η.

Proof of Claim 1. First suppose that the function h ∈ BC0(L) is so that
d(0C0(K), h) < η. Then there exists h′ ∈ BC0(L) with ‖h− h′‖L = 1 + ‖h‖L.
Pick ϕ ∈ BC0(K) so that d(ϕ, h′) < η. Then 1 ≥ ‖ϕ‖K > ‖h− h′‖L − 2η so
that ‖h‖L < 2η. It then follows that if f ∈ BC0(K) and g ∈ BC0(L) are such
that d(f, g) < η we have

‖g‖L ≤ ‖h‖L + ‖g − h‖L < 4η + ‖f‖K .
By symmetry we have

| ‖f‖K − ‖g‖L| < 4η.

Claim 2. Given s ∈ K there exists t ∈ L and a scalar γ = ±1 such
that if f ∈ BC0(K) with ‖f‖K < 1/2 and g ∈ BC0(L) with d(f, g) < η then
|f(s)− γg(t)| ≤ 4η.

Proof of Claim 2. Let U be an open neighborhood of s. Pick a function
h = hU ∈ BC0(K) with h(s) = 1, 0 ≤ h ≤ 1 with support contained in U .
Then pick ϕ1, ϕ2 ∈ BC0(L) so that d(h, ϕ1) < η and d(−h, ϕ2) < η. Since
d(h,−h) = 2 we conclude that ‖ϕ1−ϕ2‖L > 2−2η. Now pick a point tU ∈ L
such that

|ϕ1(tU )− ϕ2(tU )| > 2− 2η.

Let γU be the sign of ϕ1(tU ). It is then clear that γUϕ1(tU ) > 1 − 2η and
γUϕ2(tU ) < −1 + 2η.
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Suppose f ∈ BC0(K) and ‖f‖ < 1/2. Let δU = supu∈U |f(u)−f(s)|. Since
‖f − h‖K > 1/2 ≥ ‖f − h‖K\U , we have

‖f − h‖K ≤ sup
u∈U

(|f(u)− f(s)|+ |f(s)− h(u)|) ≤ δU + 1− f(s).

Similarly, we prove ‖f + h‖K ≤ δU + 1 + f(s).
Now suppose g ∈ BC0(L) and d(f, g) < η. Then

|g(tU)− ϕ1(tU )| ≤ d(g, ϕ1) < δU + 1− f(s) + 2η,

|g(tU)− ϕ2(tU )| ≤ d(g, ϕ2) < δU + 1 + f(s) + 2η.

Since the left-hand sides sum to at least 2− 2η, it follows that

|g(tU )− ϕ1(tU )| > 1− f(s)− δU − 4η,

|g(tU )− ϕ2(tU )| > 1 + f(s)− δU − 4η.

Since ‖g‖L < 1/2 + 4η < γUϕ1(tU ), we have

1 ≥ γUϕ1(tU ) > 1− f(s) + γUg(tU)− δU − 4η,

so γUg(tU ) − f(s) < δU + 4η. Working with ϕ2 instead of ϕ1 gives the
symmetric inequality. Finally, we have

|γUg(tU )− f(s)| < δU + 4η.

Now we claim that tU lies in some compact subset of L for sufficiently
small U . Indeed, for sufficiently small U , we have δU < η. Choose f in
C0(K) so that f(s) = ‖f‖K = 7η < 1/2. Let g ∈ C0(L) be such that
d(f, g) < η. There is a compact subset W of L such that ‖g‖L\W < 2η. We
have |γUg(tU ) − 7η| < 5η so |g(tU)| > 2η and tU ∈ W . Hence the net (tU )
has a limit point t as U runs through all open neighborhoods of s. Choosing
γ a limit point of the net (γU ) as well, we obtain the claim.

It follows from the second claim that we can define maps α : K → L,
β : L→ K and functions u : K → {±1}, v : L→ {±1} so that if f ∈ BC0(K)
and g ∈ BC0(L) with d(f, g) < η then

1. If ‖f‖K < 1/2 then for s ∈ K, |f(s)− u(s)g(α(s))| ≤ 4η,
2. If ‖g‖L < 1/2 then for t ∈ L, |g(t)− v(t)f(β(t))| ≤ 4η.

We conclude the proof by showing that α is invertible and β = α−1, and
that α, β are continuous.

Suppose s ∈ K and let s′ = β ◦ α(s). Assume s′ 6= s. Then we may find
f ∈ C0(K) with ‖f‖K = u(s)f(s) = 1/2− 4η and v(α(s))f(s′) = 4η − 1/2.
Pick g ∈ BC0(L) so that d(f, g) < η. Then, using Claim 1, we see that
‖g‖L < 1/2. Hence

|f(s)− u(s)g(α(s))| ≤ 4η, |v(α(s))f(s′)− g(α(s))| ≤ 4η.

Thus
|u(s)f(s)− v(α(s))f(s′)| ≤ 8η.
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Hence 1−8η ≤ 8η, which contradicts η < 1/16. Thus β ◦α(s) = s for s ∈ K
and similarly α ◦ β(t) = t for t ∈ L.

Let us next show that u is continuous. Fix s ∈ K. To prove that u is
continuous at s, we first prove that there is an open neighborhood V of s so
that α(V ) is relatively compact. If not, we can construct a net (sµ) tending
to s and such that α(sµ) tends to infinity. Then choose f ∈ C0(K) such that
f(s) = ‖f‖K = 1/4 and any g ∈ BC0(L) such that d(f, g) < η. We have

|f(sµ)− u(sµ)g(α(sµ))| ≤ 4η.

Since g(α(sµ)) tends to 0 and u(sµ) is bounded, we obtain 1/4 ≤ 4η, which
contradicts η < 1/16. Thus α(V ) is relatively compact.

Now choose g ∈ C0(L) such that g = 1/2 − 4η on α(V ) and ‖g‖L =
1/2 − 4η. We may then pick f ∈ C0(K) with ‖f‖K < 1/2 and d(f, g) < η.
Then |f(s′)−(1/2−4η)u(s′)| ≤ 4η for any s′ ∈ V . So the sets {u = 1}∩V =
{f > 0} ∩ V and {u = −1} ∩ V = {f < 0} ∩ V are both open. Hence u is
continuous on V and in particular at s. Similarly v is continuous.

It remains to show that α is continuous. Suppose E is a closed subset of L.
Suppose s′ 6∈ α−1(E). Then we may find g ∈ C0(L) with ‖g‖L = 1/2 − 4η
and g(t) = 4η − 1/2 for t ∈ E but g(α(s′)) = 1/2 − 4η. Pick f ∈ BC0(K)
with d(f, g) < η so that as in Claim 1, ‖f‖K < 1/2. Then

|u(s)f(s) + 1/2− 4η| ≤ 4η for s ∈ α−1(E)

but
|u(s′)f(s′)− 1/2 + 4η| ≤ 4η.

Set f ′ = uf ; this is a continuous function on K with f ′(s′) > 0 >
sups∈α−1(E) f

′(s) since η < 1/16. The point s′ is not in the closure of α−1(E);
it follows that α−1(E) is a closed set. This means that α and similarly β are
continuous.

We do not know whether the constant 1/16 can be improved. We notice
that almost the same proof gives the same result for the Kadets distance
with 1/10 instead of 1/16.

Before turning to subquotients of C(K)-spaces (for countable K), we
add a result on the Kadets distance. It is optimal since the Kadets distance
between two Banach spaces cannot exceed 1.

Theorem 3.2. Let K and L be two metrizable compact spaces. If the
Kadets distance dK(C(K), C(L)) is less than 1 then C(K) and C(L) are
isomorphic. If K and L are not supposed to be metrizable, then this condition
implies Sz(C(K)) = Sz(C(L)).

Let us recall that the Szlenk index of a Banach space X is defined as
follows: let ε > 0 and C be a weak∗-closed subset of X∗. The first Szlenk
derivative of C is the set C [1]

ε of all points x∗ ∈ C which are weak∗ limits of
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sequences (x∗n) in C such that ‖x∗n − x∗‖ ≥ ε for any n. We can iterate this
derivation transfinitely taking C [α+1]

ε = (C [α]
ε )[1]

ε and, if α is a limit ordinal,
C

[α]
ε =

⋂
β<αC

[β]
ε . The ε-index of C is the smallest ordinal α such that

C
[α]
ε = ∅ (the ε-index is ω1 when there is no such ordinal). The ε-Szlenk index

Sz(X; ε) of X is the ε-index of BX∗ ; the supremum of Sz(X; ε) for ε > 0 is
denoted by Sz(X). It is shown in [14] that two separable C(K)-spaces are
isomorphic if and only if they have the same Szlenk index.

Note that it is not true that dK(C(K), C(L)) < 1 implies that K and L
are homeomorphic. Indeed, Cohen [6] gave an example of two non-homeo-
morphic metrizable compact sets K,L with dBM(C(K), C(L)) = 2. By
Proposition 2.1 we have dK(C(K), C(L)) ≤ log 2 < 1.

Proof of Theorem 3.2. The proof requires the use of trees. Let us recall
some basic facts about them. Let s = (s1, . . . , sm) be a finite sequence of
integers. We define s+ = {(s1, . . . , sm, n) ; n ∈ N}. A tree is a nonempty set
T of finite sequences of integers such that if s+ ∩ T 6= ∅ then s ∈ T . The
leaves of the tree T are the elements s ∈ T such that s+∩T = ∅. The subtree
T ′ is made of the elements s ∈ T which are not leaves. We define a family
(Tα)α<ω1 of trees by taking T0 = {∅}, Tα+1 = {∅} ∪ ⋃∞n=0 n

_Tα, where
n_Tα = {(n, s1, . . . , sm) ; (s1, . . . , sm) ∈ Tα}. To complete the definition of
(Tα)α<ω1, we choose for any limit ordinal α a sequence (ξαn) which increases
to α and we put Tα = {∅} ∪⋃∞n=0 n

_Tξαn .
Let X be a separable Banach space, ε > 0 and α < ω1. An (ε, α)-Szlenk

tree map is a family (x∗s)s∈Tα in BX∗ such that:

1. For any s ∈ T ′α, x∗s is a weak∗-cluster point of {x∗t ; t ∈ s+}.
2. For any s ∈ T ′α and t ∈ s+, we have ‖x∗s − x∗t ‖ ≥ ε.

The point x∗∅ is called the root of the tree map. It is clear that x∗ is an

element of (BX∗)
[α]
ε if and only if x∗ is the root of some (ε, α)-Szlenk tree

map. We prove two simple claims about Szlenk tree maps from which it is
easy to deduce Theorem 3.2.

Claim 1. Let E be a separable Banach space and X a subspace of E. Any
(ε, α)-Szlenk tree map on X can be lifted to an (ε, α)-Szlenk tree map on E.

Proof of Claim 1. We argue by induction on α. The initial step is the
Hahn–Banach theorem. Let α ≥ 1 be an ordinal. If α = β + 1, let us write
ξαn = β for any n ∈ N. By our induction hypothesis, there exist families
(e∗s,n)s∈Tξαn in BE∗ extending the families (x∗s)s∈Tξαn . Since E is separable, by
passing to subsequences, we can suppose that (x∗n) weak∗-converges to x∗∅
and (e∗∅,n) weak∗-converges to some point that we denote by e∗∅. Then we
define e∗n_s = e∗s,n for any n ∈ N and s ∈ Tξαn . It suffices to consider the
family (e∗s)s∈Tα to establish the claim.



Isometries between C(K)-spaces 189

Claim 2. Let η > 0 and ε > 2η. If X and Y are separable Banach
spaces such that dK(X,Y ) < η, then Sz(Y ; ε− 2η) ≥ Sz(X; ε).

Proof of Claim 2. Let E be a separable Banach space containing iso-
metric copies of X and Y (that we denote by X and Y ) such that the
Hausdorff distance between BX and BY is less than η. Let α < Sz(X; ε)
and let (x∗s)s∈Tα be an (ε, α)-Szlenk tree map. Define (e∗s)s∈Tα as in Claim 1
and (y∗s)s∈Tα as the restriction of the family (e∗s)s∈Tα to Y . Let s be in T ′α
and t in s+. There exists x ∈ SX such that 〈x∗t − x∗s, x〉 > ε. Let y ∈ SY
be such that ‖x− y‖ < η. Then ‖y∗t − y∗s‖ ≥ 〈e∗t − e∗s, y〉 ≥ ε − 2η. Hence
(y∗s)s∈Tα is an (ε − 2η, α)-Szlenk tree map. Therefore, Sz(Y ; ε − 2η) > α.
Since α < Sz(X; ε) is arbitrary, we are done.

Let us return to the proof of the theorem. Let K and L be two metrizable
compact spaces such that dK(C(K), C(L)) < η < 1. If K and L are both
uncountable, the classical Milyutin theorem ensures that C(K) and C(L) are
isomorphic. Suppose thatK is countable. By Claim 2, we have Sz(C(L); 2) ≤
Sz(C(K); 2−2η) ≤ Sz(C(K)) < ω1. By Lemma 4.1 of [14], this implies that
L is countable and Sz(C(L)) ≤ Sz(C(K)). Symmetry gives us Sz(C(L)) =
Sz(C(K)), which shows that C(K) and C(L) are isomorphic.

Now, suppose that K and L are Hausdorff compact spaces such that
dK(C(K), C(L)) < η < 1. We use the following claims which prove that the
Kadets distance is separably determined.

Claim 3. Let X and Y be two subspaces of a Banach space E and let
A ⊆ X, B ⊆ Y be separable subspaces. For any ε greater than the Hausdorff
distance between BX and BY , there exist separable subspaces Aε and Bε such
that A ⊆ Aε ⊆ X, B ⊆ Bε ⊆ Y and the Hausdorff distance between BAε
and BBε is less than or equal to ε.

Proof of Claim 3. We put A0 = A, B0 = B and, by induction, let
(xn,p)p∈N be a sequence dense in SAn . For any integer p, we can find a vector
yn,p ∈ SY such that ‖xn,p − yn,p‖ < ε. We let Bn+1 be the closed linear span
of Bn∪{yn,p ; p ∈ N}. Since Bn+1 is separable, we can choose (zn,p)p∈N dense
in SBn+1 . For every p ∈ N, we get wn,p ∈ SX such that ‖wn,p − zn,p‖ < ε. We
define An+1 as the closed linear span of An ∪ {wn,p ; p ∈ N}. It is separable
and we can continue the construction. Finally, we define Aε =

⋃∞
n=0An and

Bε =
⋃∞
n=0Bn.

Claim 4. Let K and L be two Hausdorff compact spaces and ε greater
than dK(C(K), C(L)). Let A ⊆ C(K) and B ⊆ C(L) be separable subspaces.
There exist two continuous maps %K : K → K̃ and %L : L → L̃ such that
A ⊆ {f ◦ %K ; f ∈ C(K̃)}, B ⊆ {g ◦ %L ; g ∈ C(L̃)}, K̃ and L̃ are metrizable
and dK(C(K̃), C(L̃)) ≤ ε.
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Proof of Claim 4. We use a classical lemma: if A is a separable subspace
of C(K), then there exists a continuous map r : K → K1 such that K1 is
metrizable and A ⊆ {f ◦ r ; f ∈ C(K1)}.

Let X and Y be two isometric copies of C(K) and C(L) as in Claim 3.
We apply the classical lemma to C(K) (which defines r : K → K1) and
to C(L) (which gives us s : L → L1). Set A1 = {f ◦ r ; f ∈ C(K1)} and
B1 = {g ◦s ; g ∈ C(L1)}. Then we apply Claim 3 with A1 and B1 instead of
A and B. We denote by A2 and B2 the resulting subspaces. We can iterate
this construction inductively. Finally, we put

A′ =
⋃

n≥0

A2n+1 =
⋃

n≥0

A2n+2, B′ =
⋃

n≥0

B2n+1 =
⋃

n≥0

B2n+2.

The sets A′ and B′ are unital subalgebras of C(K) and C(L). On K, we
define the equivalence relation a ∼ b when f(a) = f(b) for any f ∈ A′. The
Stone–Weierstrass theorem proves that A′ = {f ◦ %K ; f ∈ C(K̃)}, where
K̃ is the quotient space defined by ∼ and %K : K → K̃ is the canonical sur-
jection. Similarly, we define L̃ and %L. It is easy to check that the Hausdorff
distance between BA′ and BB′ does not exceed ε.

Let us return to the proof of Theorem 3.2. By Claim 4, there exist
metrizable compact spaces K̃ and L̃ and subspaces A′ and B′ such that
A ⊆ A′ ⊆ C(K), B ⊆ B′ ⊆ C(L), A′ is isometric to C(K̃), B′ is isometric
to C(L̃) and dK(C(K̃), C(L̃)) ≤ η < 1. Using the metric case, we infer that
Sz (C(K̃)) = Sz (C(L̃)). This shows that Sz(A) ≤ Sz (C(L)) and Sz(B) ≤
Sz (C(K)). Then Proposition 4.12 of [10] ensures that C(K) and C(L) have
the same Szlenk index.

We conclude by remarking that for any ε > 0 there is a Banach space
X = Xε so that dK(X,C[0, 1]) < ε but X is not isomorphic to a C(K)-space.
This can be formally deduced from the following fact: if Y is a Banach
space and E is a closed subspace of Y and Z is isomorphic to Y/E ⊕ E
then there is a sequence of spaces Yn each isomorphic to Y but such that
limn→∞ dK(Yn, Z) = 0. This idea is used in [12, Lemma 5.9] and [8, Proposi-
tion 5.7]. We sketch the idea. Consider the direct sum Y ⊕Y/E with a norm
such that the subspace E ⊕ Y/E is isometric to Z. Let Yn be the subspace
{(n−1y,Qy) ; y ∈ Y }, where Q : Y → Y/E is the quotient map. Then Yn
converges in Kadets metric to E ⊕ Y/E which is an isometric copy of Z.

Thus it suffices to produce a space X which is not a C(K)-space but with
a subspace E such that X/E ⊕E is isomorphic to C[0, 1]. See [3, Corollary
2.4] for such an example.

4. Subquotients of C(K)-spaces. We begin this section with some
new linear results on C(K)-spaces when K is countable.
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Let us introduce some definition. Suppose K is a countable Hausdorff
compact set. The Cantor–Bendixson derivative of K is the set K(1) of
all cluster points of K. We can iterate transfinitely this derivation tak-
ing K(α+1) = (K(α))(1) and, if α is a limit ordinal, K(α) =

⋂
β<αK

(β). It
is obvious that there exists a countable ordinal α such that K (α) is finite.
The minimal ordinal with this property is denoted by σ(K); notice that
K(σ(K)+1) = ∅. We denote the cardinality of K(σ(K)) by ν(K). The couple
χ(K) = (σ(K), ν(K)) ∈ ω1 × ω is called the characteristic system of K. In
the Cantor normal form σ(K) = ωα1 + · · ·+ ωαp (with α1 ≥ · · · ≥ αp), we
write o(K) = α1 and p(K) = p. If L is another countable Hausdorff compact
set, we say that K is simpler than L when χ(K) ≤ χ(L) (with the usual
lexicographic order on ω1×ω). If χ(K) < χ(L), then K is said to be strictly
simpler than L.

It is a classical result (see [15, p. 155]) that two countable Hausdorff com-
pact sets are homeomorphic if and only if they have the same characteristic
system. Moreover, K is simpler than L if and only if K is homeomorphic
to a clopen subset of L, which is equivalent to saying that there exists a
continuous map from L onto K.

Next we introduce some technical terminology.
Let X and Y be two Banach spaces and T be a linear map from X

onto Y . We denote by γ(T ) the lower bound of the constants r > 0 such
that T (rBX) ⊃ BY . If r > γ(T ), then x ∈ X is an (r, T )-preimage if
‖x‖ ≤ r‖Tx‖.

For r > 1, we write %0(r) = 1 and, inductively on j, we define %j+1(r) =
2%j(r)− r. We obtain immediately

%j(r) > 0 ⇔ 1 < r <
2j

2j − 1
·

Let K, L and R be Hausdorff compact sets, let j ∈ N and r > 1. We
say that (K,L,R) satisfies the scheme H(j, r) if there exists a linear map T
from C(R) onto C(L) such that the following conditions hold:

H1: K is a clopen subset of R.
H2: ‖T‖ ≤ 1 and γ(T ) < r.
H3: Every (r, T )-preimage g ∈ C(R) satisfies ‖g‖K ≥ %j(r)‖Tg‖L.

Lemma 4.1. Let R and L be countable Hausdorff compact spaces, K a
finite subset of R, and j ≥ 0 and r > 1 such that (K,L,R) satisfies H(j, r).
If r < 2j(2j − 1)−1, then |L| ≤ |K|.

Proof. We use the following claim:

Claim. Let X be a Banach space, V a finite-codimensional subspace
of X, and U a subspace which has codimension greater than that of V . For
every t > 1, there exists a vector v ∈ V such that ‖v‖ = 1 and d(v, U) ≥ 1/t.
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Proof of Claim. Consider the two subspaces E = V ⊥ and F = U⊥ of X∗.
We have dimE <∞ and dimE < dimF . Applying Lemma 2.c.8 of [2], we
find f ∈ F such that ‖f‖ = 1 and d(f,E) = 1. For any t > 1, there exists
v ∈ V such that ‖v‖ = 1 and 〈f, v〉 ≥ 1/t. This implies d(v, U) ≥ 1/t and
proves the Claim.

Now, consider T : C(R) → C(L) as in the definition of H(j, r) with
r < 2j(2j − 1)−1. Let t > 1 be such that tγ(T ) < r. We suppose that
|L| > |K|. Define U = kerT and V = {g ∈ C(R) ; g = 0 on K}. The
codimension of V is finite and less than the codimension of U . Applying the
Claim, we find v ∈ V such that ‖v‖R = 1 and d(v, U) ≥ 1/t. We immediately
obtain

‖Tv‖L ≥
1

γ(T )
d(v, U) ≥ 1

tγ(T )
≥ 1
r
‖v‖R > 0.

Hence v is an (r, T )-preimage. Using H3, we have ‖v‖K ≥ %j(r)‖Tv‖L. Since
r < 2j(2j − 1)−1, we have %j(r) > 0, which contradicts v ∈ V . This shows
Lemma 4.1.

Lemma 4.2. Let K, L and R be countable Hausdorff compact sets, j ≥ 0
and r > 1. Set α = ωo(K). If (K,L,R) satisfies the scheme H(j, r) then
(K(α), L(α), R) satisfies the scheme H(j + 1, r).

Proof. Let T be a linear map from C(R) onto C(L) with properties
H1–H3. Let P : C(L)→ C(L(α)) be the restriction map and T ′ = P ◦T . We
have ‖T ′‖ ≤ 1 and γ(T ′) < r. It is enough to prove that T ′ has properties
H2 and H3. Let f1 ∈ C(L(α)) be a norm 1 vector and g ∈ C(R) be an
(r, T ′)-preimage of f1. We want to prove ‖g‖K(α) ≥ %j+1(r). We take ε > 0
and η > ‖g‖K(α) . It is sufficient to show that

η ≥ (2− 2ε)%j(r)− r.(2)

Define f = Tg and take s such that γ(T ) < s < r and r+ s ≤ (2− 2ε)r.
There exists a clopen neighborhood W of K(α) in K such that ‖g‖W ≤ η.
We put M = K\W . Then M (α) = ∅. Moreover, ‖f1‖L(α) = 1 and Pf = f1.
This implies that |f | attains the value 1 at some point u ∈ L(α). Of course,
we can suppose f(u) = 1. Let Λ be a clopen neighborhood of u in L such
that f(λ) ≥ 1 − ε for every λ ∈ Λ. Since Λ ∩ L(α) contains u, we have
σ(Λ) ≥ α. Hence, there exists a clopen subset Q of Λ such that σ(Q) = α
and ν(Q) = 1. Let P ′ : C(L) → C(Q) be the restriction map and S =
P ′ ◦ T : C(R)→ C(Q). We clearly have ‖S‖ ≤ 1 and γ(S) < s.

Claim. There exists h ∈ C(R) such that ‖h‖R ≤ s, ‖Sh‖Q ≥ 1− ε and
h = 0 on M .

Proof of Claim. Suppose there is no such h. Then for any h ∈ C(R) we
have

(‖h‖R ≤ s and h = 0 on M) ⇒ ‖Sh‖Q < 1− ε.
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Let f0 be any norm 1 vector in C(Q). Let h′1 ∈ C(R) be such that ‖h′1‖R ≤ s
and Th′1 = f0. We define h1 as the function which coincides with h′1 on M
and vanishes on R \ M . Since M is clopen, h1 is continuous. Moreover,
using the preceding implication, we deduce ‖f0 − Sh1‖Q < 1 − ε. We can
proceed in the standard way and define a sequence (hn) in C(R) such that
‖hn‖R ≤ rεn−1, ‖f0 − S(h1 + · · ·+ hn)‖Q < (1− ε)n and hn = 0 on R \M .
We then put h =

∑
hn. Since h = 0 on R \M and Sh = f0, we showed that

S induced a linear quotient map from C(M) onto C(Q). Since M is strictly
simpler than Q, since the index σ(Q) is a power of ω and since ν(Q) = 1, the
proposition of Section 3 in [14] shows that there is no such linear quotient
map. This contradiction proves the Claim.

Let h be the vector given by the Claim. Considering −h if necessary, we
can suppose that there exists t ∈ Q with Sh(t) ≥ 1− ε. Hence, we have

‖T (g + h)‖L ≥ f(t) + Sh(t) ≥ 2− 2ε.

Since ‖g + h‖R ≤ r + s, the choice of s ensures that g + h is an (r, T )-
preimage. By H3, we deduce that

‖g + h‖K ≥ (2− 2ε)%j(r).

Since also ‖g + h‖K = max(‖g + h‖W , ‖g + h‖M) ≤ r + η, we obtain in-
equality (2) and we are done.

Now, we can deduce our first result on linear quotients of C(K)-spaces.

Proposition 4.3. Let K and L be countable Hausdorff compact sets.
Suppose that there exists a linear map T from C(K) onto C(L) such that
‖T‖ · γ(T ) < 2p(K)(2p(K) − 1)−1. Then L is simpler than K.

Proof. Actually, we prove the following technical fact which immediately
implies the proposition (take R = K and j = 0).

Claim. Let K, L, R be countable Hausdorff compact sets, and let j ≥ 0
and r > 1 be such that (K,L,R) satisfies the scheme H(j, r). If r <
2m(2m − 1)−1 with m = j + p(K), then L is simpler than K.

We proceed by induction on p(K). If p(K) = 0, then K is finite. Hence
Lemma 4.1 starts our induction.

Write σ(K) = ωα1 +· · ·+ωαp(K) with α1 ≥ · · · ≥ αp(K) and α = ωα1 . It is
easy to check that σ(K(α)) = ωα2 + · · ·+ωαp(K) and p(K(α)) = p(K)−1. By
Lemma 4.2, (K(α), L(α), R) satisfiesH(j+1, r). By our induction hypothesis,
L(α) is simpler than K(α), which implies that L is simpler than K.

Now we prove that if C(K) is a subspace (with K countable) of some
separable space X, then C(K) is also a linear quotient of X. For that, we
need some lemmas.
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Lemma 4.4. Let X be a Banach space and K = {x∗n ; n ∈ N} a countable
weak∗-closed subset of BX∗. Suppose that the sequence (x∗n) is r-equivalent
to the canonical basis of `1. Then there exists a linear map T from X onto
C(K) such that ‖T‖ ≤ 1 and γ(T ) ≤ r.

Proof. For x ∈ X, define Tx as the restriction of x ∈ X∗∗ to K. It is easy
to check that T ∗ is an isomorphism onto its range and that ‖(T ∗)−1‖ ≤ r.
Hence γ(T ) ≤ r.

Lemma 4.5. Let E be a separable Banach space and X a subspace of E.
Endow BE∗ with a metric d∗ which defines the weak∗ topology on BE∗ . De-
note by P : E∗ → X∗ the canonical quotient map. Let K be a countable
weak∗-closed subset of BX∗ . Write α = σ(K) and suppose that K(α) = {r}.
For any ε > 0, there exists a subset K̃ of K and a subset L of BE∗ such
that :

(K1) K̃ is homeomorphic to K.
(K2) The d∗-diameter of K̃ is less than ε.
(K3) r ∈ K̃.
(L1) L is weak∗-closed.
(L2) The d∗-diameter of L is less than ε.
(L3) L(α) = {s} and Ps = r.
(KL) The map P induces a homeomorphism from L onto K̃.

Proof. First we can notice that condition (K2) is obvious: the d∗-closed
ball of center r and radius ε/3 in K is homeomorphic to K. We prove the
result by transfinite induction on α. If α = 0, then K = {r}, the result
comes simply from the Hahn–Banach theorem.

Now, suppose that α ≥ 1. The compact set K is homeomorphic to the
ordinal ωα + 1. If α = β + 1, we put αn = β for every n. If α is a limit
ordinal, we consider an increasing sequence of ordinals (αn) which tends
to α. In both cases, we have

ωα + 1 =
( ∞∑

n=0

(ωαn + 1)
)

+ 1.

Let ϕ : ωα + 1→ K be a homeomorphism. For every n, we define

rn = ϕ
( n∑

k=0

(ωαk + 1)
)
, Kn = {ϕ(t) ; rn−1 < t ≤ rn}.

The Kn’s are clopen subsets of K homeomorphic to ωαn+1 and (rn) tends to
r. By our induction hypothesis, there exist subsets K̃n of Kn and Ln of BE∗
satisfying conditions (K1) to (KL) with ε/2n+2 instead of ε. Writing {sn} =
L

(σ(Ln))
n , we can find a subsequence (snk)k≥0 such that d∗(snk , snk+1) <
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ε/3k+1. Its limit s belongs to BE∗ . We define

K̃ = {r} ∪
⋃

k≥0

K̃nk , L = {s} ∪
⋃

k≥0

Lnk .

Conditions (K2), (K3), (L3) and (KL) are obvious. To check (L1), we prove
that L is compact: this follows directly from the fact that the d∗-diameters
of the Lnk ’s tend to 0. Similarly, we establish the compactness of K̃. Since
K̃ ⊂ K and r ∈ K̃(α), we have χ(K) = χ(K̃), which gives (K1). To prove
condition (L2), it is enough to notice that the d∗-diameter of L is upper
bounded by supp,q(ε/2

np+2 + ε/2nq+2 + d∗(snp , snq)) < ε.

The assumption ν(K) = 1 is unnecessary, as the following lemma shows:

Lemma 4.6. Let E be a separable Banach space and X a subspace of E.
Let K be a countable weak∗-closed subset of BX∗ . There exists a closed subset
K̃ of K, homeomorphic to K, and a weak∗-closed subset L of BE∗ such that
the restriction map induces a homeomorphism from L onto K̃.

Proof. Define n = ν(K). There is a partition of K into n clopen subsets
K1, . . . ,Kn such that ν(Ki) = 1. We can apply Lemma 4.5 to the Ki’s and
find K̃1, . . . , K̃n, L1, . . . , Ln. The sets K̃ = K̃1∪· · ·∪K̃n and L = L1∪· · ·∪Ln
give the result.

These lemmas allow us to prove the second result of this section:

Proposition 4.7. Let K be a countable Hausdorff compact set and E
be a separable Banach space. If R is an isomorphism from C(K) onto a
subspace X of E, then there exists a linear map S from E onto C(K) such
that ‖S‖ · γ(S) ≤ ‖R‖ · ‖R−1‖.

Proof. The map δ : K → C(K)∗ defined by the formula δ(k)(f) = f(k)
for any k ∈ K and f ∈ C(K) is a homeomorphism onto its range. Suppose
‖R−1‖ = 1 and put r = ‖R‖. The set (R−1)∗(δ(K)) is r-equivalent to
the canonical basis of `1. Applying Lemma 4.6, we construct L ⊂ BE∗ ,
weak∗-closed and homeomorphic to K and r-equivalent to the canonical
basis of `1. Then Lemma 4.4 proves that there exists a linear quotient map
S : E → C(K) such that ‖S‖ · γ(S) ≤ r.

As a direct consequence of Propositions 4.3 and 4.7, we obtain the fol-
lowing corollary:

Corollary 4.8. Let K and L be countable Hausdorff compact spaces. If
there is a subquotient X of C(K) with dBM(X,C(L)) < 2p(K)(2p(K) − 1)−1,
then L is simpler than K.

These linear preliminaries enable us to prove our result on subspaces of
quotients of C(K)-spaces (with K countable).



196 Y. Dutrieux and N. J. Kalton

Theorem 4.9. Suppose that K and L are countable Hausdorff compact
sets. If there exists a subquotient X of C(L) such that dK(X,C(K)) <
2−p(L)−1, then K is simpler than L.

The similar question for uncountable compact sets is irrelevant since
C(L) is universal for separable Banach spaces provided L is metrizable and
uncountable.

Proof. We have dK(X,C(K)) < η0 = 2−p(L)−1. Up to isometries, we can
suppose that C(K) and X are subspaces of a common separable Banach
space E such that the Hausdorff distance between BC(K) and BX is less
than η0. Applying Lemma 4.6 to δ(K) ⊂ BC(K)∗ , we can find weak∗-compact
sets K̃ ⊂ δ(K), homeomorphic to K, and L0 ⊂ BE∗ such that the restriction
map P : E∗ → C(K)∗ induces a homeomorphism from L0 onto K̃. Let
Q : E∗ → X∗ be the restriction map and L̃ = Q(L0). We make the following
two claims:

Claim 1. The map Q induces a homeomorphism from L0 onto L̃. In
particular , the compact spaces K, K̃ and L̃ are homeomorphic.

Proof of Claim 1. It suffices to prove that Q is one-to-one on L0. Let
e∗1 and e∗2 be two distinct elements of L0. Define y∗i = P (e∗i ) and x∗i =
Q(e∗i ) for i = 1, 2. Since P is one-to-one on L0, we have y∗1 6= y∗2, which
implies ‖y∗1 − y∗2‖ = 2. For an arbitrary ε, taking y ∈ SC(K) such that
〈y∗1 − y∗2, y〉 > 2 − ε, we can find x ∈ SX such that ‖x− y‖ < η0. Then
〈x∗1 − x∗2, x〉 > 2− ε− 2η0 > 0 for sufficiently small ε.

Claim 2. The set L̃ is r-equivalent to the canonical basis of `1 for some
r < 2p(L)(2p(L) − 1)−1.

Proof of Claim 2. We put L0 = {e∗n} and y∗n = P (e∗n), x∗n = Q(e∗n).
Let ε > 0 and let η < η0 be greater than the Hausdorff distance between
BX and BC(K). Let (λn) be a finitely nonzero sequence of scalars such that∑ |λn| = 1. Since (y∗n) is 1-equivalent to the canonical basis of `1, we can
find y ∈ SC(K) such that

∑〈λny∗n, y〉 ≥ 1 − ε. Choosing x ∈ SX such that
‖x− y‖ ≤ η, we find ‖∑λnx

∗
n‖ ≥

∑〈λnx∗n, x〉 ≥ 1 − ε − 2η. Finally, we
conclude that (x∗n) is (1− 2η)−1-equivalent to the canonical basis of `1.

Using Proposition 4.7, we see that X is a quotient of C(L). By Proposi-
tion 4.3, it is enough to prove that there exists a linear map T : X → C(K)
such that ‖T‖ · γ(T ) < 2p(L)(2p(L) − 1)−1. Using Claim 1, we just have to
prove that there is such a quotient map from C(L) onto C(L̃), which is
direct from Claim 2 and Lemma 4.4.

Corollary 4.10. There exists a universal function µ : N →]0, 1] such
that , for any countable Hausdorff compact sets K and L, if there exists
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a subquotient X of C(L) such that dGH(X,C(K)) < µ(p(L)), then K is
simpler than L.

Proof. By Theorem 6.3 of [9] and Theorem 3.7 of [8], for any j ∈ N,
there exists a number µ(j) such that for any Banach space X, we have
dK(X,C(K)) < 2−j−1 provided dGH(X,C(K)) < µ(j).

We would like to thank Gilles Lancien for having suggested the problem
and Gilles Godefroy who initiated our collaboration.
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