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On boundary behaviour of the Bergman projection
on pseudoconvex domains

by

M. Jasiczak (Poznań)

Abstract. It is shown that on strongly pseudoconvex domains the Bergman projec-
tion maps a space Lvk of functions growing near the boundary like some power of the
Bergman distance from a fixed point into a space of functions which can be estimated by
the consecutive power of the Bergman distance. This property has a local character.

Let Ω be a bounded, pseudoconvex set with C3 boundary. We show that if the
Bergman projection is continuous on a space E ⊃ L∞(Ω) defined by weighted-sup semi-
norms and equipped with the topology given by these seminorms, then E must contain
the spaces Lvk for each natural k. As a result, in the case of strongly pseudoconvex do-
mains the inductive limit of this sequence of spaces is the smallest extension of L∞ in
the class of spaces defined by weighted-sup seminorms on which the Bergman projection
is continuous. This is a generalization of the results of J. Taskinen in the case of the unit
disc as well as of the previous research of the author concerning the unit ball.

1. Introduction. Let Ω be a bounded domain in Cn. The Bergman
projection B: L2(Ω) → L2(Ω) is the orthogonal projection onto the closed
subspace H2(Ω) of square integrable holomorphic functions on Ω. The pro-
jection B can be represented as an integral operator

Bf(z) =
�

Ω

f(ζ)KΩ(z, ζ) dV (ζ).

The function KΩ(z, ζ), the Bergman kernel , belongs to L2 for each fixed
z ∈ Ω so that the integral is well defined.

It is an immediate consequence of the definition that the Bergman pro-
jection is bounded on L2. However, the situation on other Lp, Lipschitz or
Sobolev spaces is more subtle. As might be expected, this subject has been
widely investigated. An archetypical result here is the Forelli–Rudin theo-
rem in the unit ball B in Cn, according to which B is bounded on Lp(B)
provided 1 < p <∞. In fact, [16] also investigated the problem of continuity
of other Bergman type projections, but this subject will not be dealt with
here.
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It is known that in the case of strongly pseudoconvex domains the
Bergman projection is bounded on Lipschitz spaces [2]. Significantly, conti-
nuity on Sobolev spaces on strongly pseudoconvex domains (generally, do-
mains satisfying condition (R)) proved crucial to understanding the bound-
ary behaviour of biholomorphic mappings [9]. On the other hand, it is known
that some other classes of functions such as Ck and Lipk are not preserved
by B.

Investigation of Lp and Hölder boundedness of B as well as continuity
on Sobolev spaces requires an exact knowledge of the singularities of the
Bergman kernel. The case of strongly pseudoconvex domains is now well
understood due to profound theorems of Fefferman, Boutet de Monvel and
Sjöstrand describing the asymptotic behaviour of the Bergman kernel. It is
worth mentioning that the situation of weakly pseudoconvex domains is still
elusive. The aforementioned theorem of Fefferman, Boutet de Monvel and
Sjöstrand is also crucial to our study.

We concentrate on the behaviour of the Bergman projection on the space
of bounded measurable functions, or equivalently, by duality, on L1. From
the Forelli–Rudin theorem it follows that B does not map L∞(B) into itself.
It is a conclusion of our study that to maintain continuity of B one has to
change a way of thinking what boundedness of a function means.

We will show that on strongly pseudoconvex bounded domains with
smooth boundary the Bergman projection preserves the space of functions
growing near the boundary like some power of the Bergman distance b(z0, ·)
from a fixed point (equivalently, like the Carathéodory, or the Kobayashi
distance or, as will be shown, like the logarithm of the distance to the
boundary). In fact, we will prove a result which in brief can be summed up
as a shift in log growth of the image of the Bergman projection on strongly
pseudoconvex domains.

In view of [11] and Grothendieck’s factorization theorem (see [29]), this
is tantamount to proving continuity of B on this space equipped with the
inductive topology of a sequence of Banach spaces Lvn. The space Lvn
consists of measurable functions which can be estimated by the Bergman
distance from a fixed point.

Equivalently, the result can be summarized as finding the smallest
weighted-sup extension of the space of bounded measurable functions
equipped with the topology given by the weighted-sup seminorms, on which
the Bergman projection is continuous. This was the starting point for [30] in
the unit disc D as well as in [22] in the case of the unit ball, where we have
formulated the problem of extending the result to strongly pseudoconvex
domains.

Interestingly, the problem of global and local regularity does not have to
be equivalent for B. This is a consequence of a striking result in [3], where it
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was shown that failure of regularity of B at any finite level of differentiability
must stem from global considerations.

We will also prove a local version of the aforementioned results. We
show that if ω ∈ ∂Ω is strictly Levi pseudoconvex, then there exists an open
set Uω 3 ω such that for each measurable function f ∈ L2(Ω) satisfying
|f(z)| ≤ Cb(z0, z)m for some m ∈ N on Uω ∩Ω, we have

|Bf(z)| ≤ C ′b(z0, z)m+1, z ∈ Ũω ∩Ω,
where C,C ′ are positive constants, Ũω ⊂⊂ Uω and z0 is a fixed point in Ω.
We assume that the domain is pseudoconvex of finite type with a smooth
boundary. This result can again be translated into continuity on some sub-
spaces of L2.

Making use of Henkin’s construction of peak functions and Bell’s oper-
ator Φ, we will show that if ω is a strongly pseudoconvex point of ∂Ω then
there always exists a function fm belonging to H2 which grows exactly like
|log distΩ(z)|m as z → ω, where m is a natural number. The function fm is
the image under B of a function (namely Φfm) which can be estimated by
|log distΩ(z)|m−1. As a result, the description of the asymptotic behaviour
of B near a strongly pseudoconvex piece of the boundary in the above the-
orem is the best possible. Correspondingly, we also prove that the inductive
limit of a sequence of spaces consisting of functions growing like consecutive
powers of the Bergman distance is the smallest weighted-sup extension of
L∞ equipped with the topology given by the weighted-sup seminorms, on
which B is continuous.

Recall that a smooth bounded domain Ω satisfies condition (R) if B pre-
serves C∞(Ω) or equivalently for each positive integer s there is an integer
Ms such that B is bounded from W s+Ms

0 to Hs (for definitions and proofs
see [8]). By [7] condition (R) is tantamount to preserving the space of func-
tions growing like some power of distΩ(z). A more than formal similarity
of our results to this condition is worth noticing. Thus, it seems to be of
interest to understand the relation between the two observations.

As stated before, the following theorem ([15], [12]) is crucial to our study.

Theorem 1 (Fefferman, Boutet de Monvel, Sjöstrand). Let Ω be a
bounded strongly pseudoconvex domain in Cn with smooth, non-degenerate
real-valued defining function %. There exist functions F,G ∈ C∞(Ω × Ω)
and ψ ∈ C∞(Cn × Cn) such that

KΩ = F (−iψ)−n−1 +G log(−iψ).(1)

The function ψ satisfies the following conditions:

(i) ψ(z, z) = i−1%(z),
(ii) ψ(z, ζ) = −ψ(ζ, z),
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(iii) Imψ(z, ζ) ≥ C(δΩ(z)+δΩ(ζ)+|z−ζ|2) for some positive constant C.
(iv) ψ is almost analytic in z, w in the sense that ∂zψ(z, w) and

∂wψ(z, w) vanish to infinite order at z = w.

We denote most constants by C; their values may change from line to
line.

Remark. Some results from this paper (Corollaries 6 and 12) were an-
nounced during the Conference on Smooth and Analytic Spaces, Będlewo,
April 2003. At that time the author was informed by J. Taskinen that he
and M. Englǐs were working on similar problems. During a visit in Prague
(May 2003) the author received a preprint of their results [14].

2. Preliminaries. Let Ω be a bounded domain in Cn given by a smooth
defining function %. We tacitly assume that d% 6= 0 on ∂Ω. Consequently,
the boundary of Ω is a smooth manifold in Cn. Although the next lemma
is obvious we include it for completeness.

Lemma 2. Assume that ∂Ω = {%= 0}, where % is C2 and d% 6= 0 on ∂Ω.
There is an open cover U1, . . . , Ul of ∂Ω and positive numbers ε, γ such that
for each k, 1 ≤ k ≤ l, there exists an index j, 1 ≤ j ≤ n, such that

∣∣∣∣
∂%

∂ζj

∣∣∣∣ ≥ γ

on the ε-neighbourhood (Uk)ε of Uk.

Recall also that, since the boundary is Ck, k ≥ 2, the function defined by

%(z) =
{−dist(z, ∂Ω), z ∈ Ω,

dist(z, ∂Ω), z 6∈ Ω,

is a Ck defining function of Ω. If no confusion occurs, we write simply δΩ
to denote the distance dist(z, ∂Ω) of z to the boundary of Ω.

From the fact that ∂Ω is Ck, k ≥ 2, it follows that there exists an open
set U ⊃ ∂Ω and a function π: U → ∂Ω such that π(ω) = ω for ω ∈ ∂Ω and
π−1(ω) is a curve in U which intersects the boundary transversally at ω.
The function π is called a projection. Recall that

c|%(z)| ≤ |π(z)− z| ≤ C|%(z)|
for some positive constants c, C and z ∈ U .

Now we turn to the functional-analytic background.

Definition 1. A continuous function v: (0, 1) → R+ is said to be a
weight if for each k ∈ N,

sup
r∈(0,1)

v(r)|log r|k <∞.
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The set of all weights will be denoted by W . We define vk: R+ → R by

vk(r) =
{
|log r|−k if r < e−1,

1 if r ≥ e−1.
It should be emphasized that by a weight we sometimes mean the com-

position v ◦ |%(·)|, where % is a defining function.
Without loss of generality we may assume that supz∈Ω |%(z)| < 1. Let

v: (0, 1) → R+ be a continuous function. By a weighted-sup seminorm we
mean a seminorm of the form

‖f‖v = sup
z∈Ω
|f(z)|v(|%(z)|).

Thus we restrict our attention to the radial case.
The symbol U will stand for any fixed, open set such that U ∩ ∂Ω 6= ∅.

We will assume in the next section that U ∩ ∂Ω is contained in a strongly
Levi pseudoconvex piece of the boundary of Ω.

Definition 2. LWU(Ω) is the space of measurable functions f : Ω → C
such that for each v ∈W ,

‖f‖U,v = ‖f‖L2(Ω) + sup
z∈U∩Ω

|f(z)|v(|%(z)|) <∞.(2)

We simply write LW if U ⊃ Ω. Let Lvk,U(Ω) denote the space of functions
satisfying

‖f‖k,U = ‖f‖L2(Ω) + sup
z∈U∩Ω

|f(z)|vk(|%(z)|) <∞.(3)

If U ⊃ Ω and no confusion occurs, we simply write Lvk.
The symbols HWU(Ω),Hvk,U(Ω),HW,Hvk will stand for the corre-

sponding spaces of functions holomorphic in Ω.

Basically, the space LWU(Ω) consists of functions which are square in-
tegrable on the whole Ω and bounded a.e. on U after multiplying by each
weight. Observe that Lvk,U is a Banach space. Indeed, let (fn) be a Cauchy
sequence in Lvk,U. Since (fn) is a Cauchy sequence in L2(Ω) there exists
f ∈ L2(Ω) such that fn tends to f in L2(Ω). On the other hand, fn|U is a
Cauchy sequence in

{f : sup
U∩Ω
|f |vk <∞},

which is a Banach space. Consequently, there exists a measurable function
g on U which is the limit of fn on U. Now, it suffices to show that f |U = g;
but this follows from the estimate

‖f |U − g‖L2(U) ≤ ‖f − fn‖L2(Ω) + C sup
U

|fn|U − g|vk.

Similarly, one shows that the corresponding spaces of holomorphic func-
tions are Banach spaces. From the projective description of weighted in-
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ductive limits ([11]) it follows that HW (Ω) is the inductive limit of the
compact sequence (Hvn). Thus HW (Ω) is a Silva space (in the literature,
Silva spaces are also called (DFS)-spaces). Therefore, HW is a complete
reflexive Schwartz space and hence Montel. Furthermore, HW carries the
finest topology which makes all injections ιk: Hvk ↪→ HW continuous (not
only the finest locally convex topology).

The dual projective sequence (Hvn)′b is compact and its limit is a reflex-
ive Fréchet space (an excellent reference book is [29]; see also the survey [10]
and [22]).

Recall that the classical Forelli–Rudin theorem ([16]) says that

|B(|%(·)|−α)| ≤ C|%(·)|−α

for 0 < α < 1, where %(z) = |z|2 − 1 is a defining function for the unit
ball. This statement is just continuity with respect to a weight of the form
v(t) = tα. The next lemma, with an easy proof in [22], allows us to reduce
the case of each weight to this particular one.

Lemma 3. Let v ∈W and α > 0.

(i) The function w(r) = sups≤r v(s) belongs to W .
(ii) Define

vβ(r) =
{
v(r) if r ≥ β,

v(β)β−αrα if r < β.

Then the function w(r) = max{sup0<β<1/2 vβ(r), v(r)} is a weight.
(iii) For each α > 0, the function vα is an element of W .

As stated in the introduction, we intend to localize our results. Namely,
we prove that the log shift is typical for the Bergman projection near each
point such that the Levi form is positive definite on the complex tangent
space. The most important tool is the following proposition.

Proposition 4 ([13]). Let Ω1 ⊂ Ω be two pseudoconvex domains with
C∞ boundaries and U a neighbourhood of a point z0 ∈ ∂Ω such that
U ∩ ∂Ω1 = U ∩ ∂Ω and the piece of the common boundary is strongly pseu-
doconvex. Then the difference KΩ1(z, ζ)−KΩ(z, ζ) is C∞ on (U ∩Ω1)×Ω1.

Observe that from the description of the asymptotic behaviour of the
Bergman kernel given by Fefferman, Boutet de Monvel and Sjöstrand it fol-
lows that the Bergman kernel of a strongly pseudoconvex domain is bounded
off the set

∆ε = {(z, ζ) ∈ Ω ×Ω: δΩ(z) ≥ ε, δΩ(ζ) ≥ ε, |z − ζ| ≥ ε}(4)

by a constant independent of z, ζ. It is worth mentioning that for C∞ do-
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mains in C this fact is a consequence of the equality

K(z, ζ) = − 2
π

∂2G(z, ζ)

∂z∂ζ
,

where G is the Green function.
It was shown by N. Kerzman in [23] that for a bounded strongly pseu-

doconvex domain Ω with smooth boundary the Bergman kernel K(·, ·) is
smooth in (Ω × Ω) \ ∆, where ∆ is the diagonal in ∂Ω × ∂Ω. The same
proof works for domains of finite type [25], [26] (for definition see [25], [28]).
We will repeatedly refer to this result in the proof of our theorem on the
regularity of the Bergman projection.

We also use local versions of well-known results on the asymptotic be-
haviour of the Carathéodory, Kobayashi and Bergman distances. This might
be a proper language to generalize the properties of the Bergman projection
to a broader class of domains.

We refer the reader to [24] and [21] for the definitions and properties of
invariant metrics and distances. The symbols cΩ(z0, z), bΩ(z0, z), kΩ(z0, z)
stand for the Carathéodory, Bergman and Kobayashi distances of z0 and z,
respectively.

3. Results. Let Ω be a bounded domain of finite type in Cn. Assume
that Ω is given by a C∞ defining function % which is plurisubharmonic in a
neighbourhood O of ∂Ω. By Os we denote the set of points z in which % is
strictly plurisubharmonic, i.e.

n∑

j,k=1

∂2%

∂zj∂zk
(z)ζjζk > 0

for each ζ ∈ Cn, ζ 6= 0. The symbol U will stand for any fixed bounded
open set which is a relatively compact subset of Os. From the assumptions it
follows that Ω is pseudoconvex and ∂Ω∩Os is a strongly Levi pseudoconvex
piece of its boundary. This set is denoted by (∂Ω)s. An obvious example of
a domain satisfying these conditions which is not strongly pseudoconvex is
the set of points (z1, z2) in C2 such that

|z1|2 + |z2|4 < 1.

Theorem 5. Assume that Ω satisfies the above conditions. Then the
Bergman projection is a continuous operator from LWU(Ω) to HW

Ũ
(Ω),

where Ũ ⊂⊂ U.

An immediate consequence of this theorem is the following

Corollary 6. Assume that Ω is a bounded , strongly pseudoconvex do-
main in Cn with a smooth boundary. Then the Bergman projection is con-
tinuous on LW (Ω).
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As mentioned before, we will reduce the general case to the case of
weights of the form t1/2. Thus the following generalization of the Forelli–
Rudin theorem is of interest.

Lemma 7. For Ω satisfying the assumptions of Theorem 5 there exists
ε such that for z ∈ Ω with δΩ(z) < ε we have

(i)
�

U∩Ω

|K(z, ζ)|
|%α(ζ)| dV (ζ) ≤ C|%(z)|−α, 0 < α < 1,

(ii)
�

U∩Ω
|K(z, ζ)| dV (ζ) ≤ C|log |%(z)| |.

Proof. Since by assumption U ⊂⊂ Os, there exists ε > 0 such that
for each ω ∈ ∂Ω ∩ U the ball B(ω, 2ε) is contained with its closure in Os. If
z ∈ Ω and δΩ(z) < ε, then obviously B(z, δΩ(z)) ⊂ B(π(z), 2ε) and
B(z, δΩ(z)) is contained in Os. Denote by Bc a ball satisfyingB(π(z), 2ε) ⊂⊂
Bc = B(π(z), c) ⊂ Os. Choose an increasing C∞ function χ: [0, c)→ R such
that χ ≡ 0 on [0, 4ε2], χ′′ ≥ 0 on [4ε2, c) and limt→c− χ(t) =∞. Define

Ω1 = {ζ ∈ Cn: %1(ζ) = %(ζ) + χ(|ζ − π(z)|2) < 0}.
Straightforward calculations show that Ω1 ⊂ Ω is a strongly pseudoconvex
domain such that B(π(z), 2ε) ∩ ∂Ω1 = B(π(z), 2ε) ∩ ∂Ω.

Take ε > 0 such that a ball Bε = B(z, ε) ⊂ B(π(z), 2ε) is tangent to
B(π(z), 2ε). It is important to notice that ε is bounded below by ε for each
z ∈ U. From Proposition 4 it follows that the difference KΩ−KΩ1 is smooth
in (B(π(z), 2ε) ∩Ω1)×Ω1. Consequently,

�

U∩Ω

|KΩ(z, ζ)|
|%(ζ)|α dV (ζ) =

{ �

U∩Bε∩Ω
+

�

U∩Ω\Bε

} |KΩ(z, ζ)|
|%(ζ)|α dV (ζ)

≤ Cε
�

Ω

dV (ζ)
|%(ζ)|α +

�

U∩Bε∩Ω

|KΩ1(z, ζ)|
|%(ζ)|α dV (ζ)

+
�

U∩Bε∩Ω

|KΩ(z, ζ)−KΩ1(z, ζ)|
|%(ζ)|α dV (ζ)

≤ Cε +
�

U∩Bε∩Ω

|KΩ1(z, ζ)|
|%1(ζ)|α dV (ζ).

In the last line we have used the fact that %(ζ)=%1(ζ) for ζ∈Ω∩B(π(z), 2ε).
Therefore, it is enough to estimate the integral

�

Ω1

|KΩ1(z, ζ)|
|%1(ζ)|α dV (ζ),

where nowΩ1 is a strongly pseudoconvex domain with a defining function %1,
which will again be denoted by %.
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Part (i) of the lemma is proved in [2, Lemma 2.2]. We concentrate on (ii)
using the same method going back to Henkin ([18], [19]).

From Lemma 2 it follows that we may assume that ∂%
∂z1

(z) 6= 0. Define
new coordinates

t1 + it2 = η1 = %(ζ)− %(z) + i ImΨ(z, ζ),

t2j−1 + it2j = ηj = ζj − zj , j 6= 1,

where Ψ = 2iψ and ψ is the function from Theorem 1 describing the singu-
larities of the Bergman kernel. The Jacobian of this change of coordinates is

∂%

∂x1

∂

∂y1
ImΨ(z, ζ)− ∂%

∂y1

∂

∂x1
ImΨ(z, ζ),

where ζj = xj + iyj , j = 1, . . . , n. When z = ζ this expression is equal to
(
∂%

∂x1

)2

+
(
∂%

∂y1

)2

,

which is not zero by assumption. Consequently, the change of coordinates is
valid in some ball B(z, ε′). We can assume that ε′ > 0 is independent of z.
Thus, using Theorem 1 and Lemma 2.1 of [2] we estimate (with I := (−1, 1))

�

U∩Ω

|K(z, ζ)|
|%(ζ)|α dV (ζ) =

{ �

B(z,ε′)∩Ω
+

�

U∩Ω\B(z,ε′)

} |K(z, ζ)|
|%(ζ)|α dV (ζ)

≤ Cε′ +
�

B(z,ε′)∩Ω

dV (ζ)
|%(ζ)|α[[|%(z)|+ |%(ζ)|+ |ζ − z|2]2 + [ImΨ(z, ζ)]2](n+1)/2

≤ Cε′ + C
�

I2n

dt1 · · · dt2n
|%(z)+ t1|α[[|%(z)+ t1|+ |%(z)|+ t21 + · · ·+ t22n]2 + t22](n+1)/2

≤ Cε′ + C
�

I

dt

|%(z) + t|α[|%(z)|+ |t+ %(z)|+ t2]
≤ C|%(z)|−α.

Proof of Theorem 5. We have to show that for each weight v there exists
w ∈W and a constant C such that

‖Bf‖v,Ũ ≤ C‖f‖w,U.

The inequality for the L2 part of the norm is obvious. Consequently, it is
enough to construct for a given v a weight w such that

|Bf(z)|v(|%(z)|) ≤ C( sup
z∈U∩Ω

|f(z)|w(|%(z)|) + ‖f‖L2(Ω))

for z ∈ Ũ ∩ Ω. By Lemma 3(i) we may assume that v is increasing. Let w
be defined for v1/2 as in Lemma 3(ii) with α = 1/2. Let z ∈ Ũ. Then from
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Lemma 7 it follows that

|Bf(z)| ≤
{ �

Ω\U
+

�

U∩{|%(ζ)|≥|%(z)|}
+

�

U∩{|%(ζ)|<|%(z)|}

}
|f(ζ)K(z, ζ)| dV (ζ)

≤ Cε
�

Ω

|f(ζ)| dV (ζ) +
‖f‖w,U

v1/2(|%(z)|)
�

U

|K(z, ζ)| dV (ζ)

+
‖f‖w,U|%(z)|1/2
v1/2(|%(z)|)

�

U

|K(z, ζ)|
|%(ζ)|1/2 dV (ζ)

≤ C
(
‖f‖L2(Ω) +

|log |%(z)| |
v1/2(|%(z)|) ‖f‖w,U +

1
v1/2(|%(z)|) ‖f‖w,U

)
.

Multiplying both sides by v(|%(z)|) yields the desired conclusion.

Observe that

HWU =
∞⋃

n=1

Hvn,U.

This can be shown by using the method of proving the algebraic equality
of an inductive limit and its projective hull (see [11, direct proof of The-
orem 1.3(d)]). Indeed, let Kn be compact sets such that Kn ⊂ intKn+1 and⋃∞
n=1Kn = (0, 1). Since the inclusion HWU ⊃

⋃∞
n=1Hvn,U is obvious, it

is enough to show that for each f ∈ HWU there exists n ∈ N such that
‖f‖n,U <∞. If this is not the case, then one can find a function f ∈ HWU,
a strictly increasing sequence of positive integers an and points zn with
|%(zn)| ∈ intKa(n+1) \Ka(n−1) satisfying

vn(|%(zn)|)|f(zn)| > n.

Let (ϕk) be a continuous partition of unity subordinate to the covering
(intKa(n+1)\Ka(n−1)). Define a weight, as in [11], taking va =

∑∞
k=1 vk−1ϕk.

Then va is a continuous function belonging to the weight family W and

sup
z∈U∩Ω

|f(z)|va(|%(z)|) ≥ |f(zn)|va(|%(zn)|) ≥ vn(|%(zn)|)|f(zn)| > n.

This obviously contradicts the assumption that f ∈ HWU.
From the continuity of B and definitions of the spaces involved it follows

that the mapping
Lvn,U → LWU → HW

Ũ

is continuous. Similarly, each inclusion Hvn,U ↪→ HWU is continuous.
Consequently, the Grothendieck factorization theorem (see [29]) implies

that there exists mn ∈ N such that

B(Lvn,U) ⊂ Hvm,Ũ.
We will show that m = n + 1. The proof consists of two parts. First, we
show that the sequence mn is strictly increasing, and then that m ≤ n+ 1.
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The first part amounts to finding a sequence of functions fn ∈ Lvn,U such
that Bfn 6∈ Hvn,U.

It is a classic fact that if Ω is a Ck+2 (k ∈ N) strongly pseudoconvex
domain then each point of the boundary is a peak point for the algebra A(Ω)
([18], [24]). In other words, there exists a function P: Ω×∂Ω → C such that
for each ω ∈ ∂Ω the function P(·, ω) is holomorphic in Ω, continuous in Ω
and satisfies

P(ω, ω) = 1, |P(z, ω)| < 1, z ∈ Ω \ {ω}.
Furthermore, P(z, ·) can be constructed to be of class Ck for each fixed
z ∈ Ω.

We will comment on Henkin’s construction of peak functions (see for
details [18] and [27]) to draw a somewhat stronger conclusion.

Assume that Ω is a pseudoconvex domain with Ck boundary, k > 2, and
% is a smooth, non-degenerate defining function. Denote by Lω(z) the Levi
polynomial of % at ω,

Lω(z) = %(ω) +
n∑

j=1

∂%

∂zj
(ω)(zj − ωj) +

1
2

n∑

j,k=1

∂2%

∂zj∂zk
(ω)(zj − ωj)(zk − ωk).

Assume that ω ∈ Os ∩ ∂Ω. Then there exists λ > 0 such that if |z− ω| < λ,
then

2 Re Lω(z) ≤ %(z)− γ/2|z − ω|2,(5)

where γ is a non-negative number. Consequently, there exists ε > 0 such
that Lω(z) < 0 provided z ∈ Ωε = {z ∈ Cn: %(z) < ε} and |z − ω| ≥ λ/3.
Take a smooth function χ: R → [0, 1] such that χ ≡ 0 for x ≥ 2λ/3 and
χ ≡ 1 on [0, λ/3].

Observe that the differential form fω defined by

fω(z) =
{−∂z(χ(|z − ω|)) log Lω(z), |z − ω| < λ, z ∈ Ωε,

0, |z − ω| ≥ λ, z ∈ Ωε,
is C∞ and satisfies ∂fω = 0 in Ωε. Since Ωε is pseudoconvex, there exists a
smooth differential form uω such that ∂uω = fω ([20]). The peak function P

is of the form P(z, ω) = exp(−Ψ(z, ω)), where

Ψ(z, ω) = exp(muω(z) +mχ(|z − ω|) log Lω(z)).

Here m is a positive number chosen in such a way that

m(|Imuω + χ(|z − ω|)|Im log Lω(z)|) < π/2,

which is possible because both uω and χ(|z − ω|) log Lω(z) have bounded
imaginary parts. Indeed, since Ωε is pseudoconvex and Ω is its compact
subset, we have

‖uω‖L∞(Ω) ≤ C‖fω‖L∞(0,1)(Ωε)

for some non-negative C.
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Importantly, the only point where strong pseudoconvexity is required in
the above construction, is the existence of a neighbourhood Uω of ω such
that (5) holds true. This is a local property of ∂Ω. We can now formulate
the conclusion. We use the previously introduced notation.

Proposition 8. Assume that Ω is a bounded pseudoconvex domain with
C3 boundary. There exists a function P: Ω × (∂Ω)s → C such that P(·, ω)
is a peak function for A(Ω) for each ω ∈ (∂Ω)s.

Observe that if ω belongs to a strongly pseudoconvex piece of ∂Ω, then
%(z)/Lω(z) is bounded for z in some neighbourhood of ω in Ω. This can be
deduced for example from the Narasimhan lemma (see [27]) or the method
of its proof. Indeed, we may assume without loss of generality that ω = 0.
Consequently, as % can be chosen to be strictly plurisubharmonic in ω we
infer that

∣∣∣∣
%(z)

Lω(z)

∣∣∣∣ =

∣∣∣∣
2 Re Lω(z) +

∑n
j,k=1

∂2%
∂zjzk

(ω)zjzk + rω(z)

Lω(z)

∣∣∣∣ ≤ C

for z ∈ Ω sufficiently close to ω. Here rω stands for the remainder of order 3.
Proposition 8 allows us to localize the description of the boundary be-

haviour of Carathéodory and Kobayashi distances with only slight changes
in the original proof (see [1], [24, Theorem (4.5.4)]).

Proposition 9 (Abate [1]). If Ω is a strongly pseudoconvex domain
with C2 boundary and z0 ∈ Ω, then

lim
z→∂Ω

cΩ(z0, z)
− log δΩ(z)

= lim
z→∂Ω

dΩ(z0, z)
− log δΩ(z)

<∞.(6)

Furthermore, the statement remains valid for a pseudoconvex domain Ω and
z → ∂Ω ∩ U.

Proof. Recall ([24, Theorem (4.5.8)]) that on bounded domains in Cn
with C2 boundary we have

dΩ(z0, z) ≤ c− log δΩ(z),

where c depends only on z0 and Ω. On the other hand, cΩ(z0, z) ≤ dΩ(z0, z).
Thus, to conclude the proof, it is enough to estimate the Carathéodory
distance c(z0, z) from below by log δΩ(z). Take z ∈ U and find a point
ω ∈ ∂Ω such that δΩ(z) = |z − ω|. Composing the function P(·, ω) with the
automorphism of D of the form

1− P(z0, ω)
1− P(z0, ω)

· ζ − P(z0, ω)

1− P(z0, ω) ζ
,

we can assume that P(z0, ω) = 0.
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Thus from the definition of the Carathéodory distance and properties of
the Poincaré distance p in the unit disc it follows that

cΩ(z0, z) ≥ p(P(z, ω),P(z0, ω)) ≥ |log 1− |P(z, ω)| |.
Since uω is bounded in Ω, we have

1− |P(z, ω)|
|z − ω|m ≤ C |1− P(z, ω)|

|z − ω|m ≤ C |Ψ(z, ω)|
|z − ω|m

= C|expuω|
|expm log Lω(z)|
|z − ω|m ≤ C |Lω(z)|m

|z − ω|m ≤ C,

provided |z − ω| ≤ λ/3. Consequently,

cΩ(z0, z) ≥ |logC|z − ω|m| = |logCδΩ(z)m|.
Let ω ∈ Os. As in Lemma 7 we can find a strongly pseudoconvex domain

Ω1 such that Ω1 ⊂ Ω and B(ω, ε) ∩ ∂Ω = B(ω, ε) ∩ ∂Ω1. Now to obtain
a local version of the estimate for the distance bΩ , it suffices to use the
theorem of Diederich–Fornæss–Herbort (see [24, Theorem (4.10.25)]). The
symbol ds2

Ω stands for the Bergman pseudo-metric.

Theorem 10 (Diederich–Fornæss–Herbort). Let Ω be a bounded do-
main of holomorphy in Cn, and z0 ∈ ∂Ω. Let U ⊂⊂ V be small neigh-
bourhoods of z0. Then there are positive constants C,C ′ such that

Cds2
Ω∩V ≤ ds2

Ω ≤ C ′ds2
Ω∩V

on Ω ∩ U .

This allows us to conclude (cf. [17, Prop. VII.4.9]) that

lim
z→ω∈U∩∂Ω

bΩ(z0, z)
|log δΩ(z)| <∞.

Let (φi) be a smooth partition of unity subordinate to the covering (Ui)
from Lemma 2. In [22] we have shown that if Ω is C1 then the Bell opera-
tor ([6])

Φh = h−
n∑

j=1

∂j

(
φj
∂j%

h%

)

can be extended to an operator Φ: H2
1,%(Ω) ∩ C0,% → L2 satisfying BΦ = id

on its domain (we refer the reader to [22] for the notation).

Proposition 11. Assume that Ω is a bounded pseudoconvex domain
with C3 boundary. Let ω ∈ ∂Ω be a strongly Levi pseudoconvex point and U

an open set containing ω. There exists a sequence of functions fk ∈ Hvk,U \
Hvk−1,U such that Φfk ∈ Lvk−1,U.

Proof. Define fk,ω(z) = fk(z) = (log(1−P(z, ω)))k for k ∈ N. First of all
observe that by the definition of the peak function P(·, ·), fk is a properly
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defined holomorphic function in Ω. For the same reason, we may also restrict
our attention to some neighbourhood of ω.

Take z sufficiently close to ω. From the remarks after Proposition 8 and
the fact the uω is smooth in a neighbourhood of Ω it follows that

|%(z)|m
|Ψ(z, ω)|m ≤ C

|%(z)|m
|Lω(z)|m ≤ C.

As a result, |log(1− P(z, ω))| ≤ C|log |Ψ(z, ω)| | ≤ C|log |%(z)| |, and conse-
quently fk ∈ Hvk,U. The fact that fk does not belong to a space of lower
index is obvious. Since near the boundary we have

Φh =
n∑

j=1

∂j

(
φj
∂j%

)
h%+

φj
∂j%

%∂jh,

it is enough to show that fk% is bounded and %∂jfk belongs to Lvk−1,U. The
first fact follows from the estimate |fk(z)| |%(z)| ≤ C|log |%(z)| |k|%(z)|. To
prove the second observe that

|∂jfk(z)%(z)| ≤ C
∣∣∣∣%(z)

fk−1(z)
1− P (z, ω)

P(z, ω)Ψ(z, ω)

∣∣∣∣
(
|∂juω(z)|+

∣∣∣∣
C

Lω(z)

∣∣∣∣
)

≤ |fk−1(z)|
(
C + C

∣∣∣∣
%(z)Ψ(z, ω)

(1− P(z, ω))Lω(z)

∣∣∣∣
)
,

since uω is smooth in some neighbourhood of Ω.

Corollary 12. Assume that Ω is a bounded strongly pseudoconvex do-
main in Cn with C3 boundary. Then LW is the smallest space containing
L∞ defined by weighted-sup seminorms and equipped with the topology given
by these seminorms on which B is continuous.

Proof. In view of Theorem 5, it suffices to show that if the Bergman pro-
jection is continuous on a space E, then the functions defining its seminorms
must belong to the weight family W .

From the continuity of B we infer that for each v ∈ W there exists a
weight w such that

|fk(z)|v(|%(z)|) = |BΦ(fk)(z)|v(|%(z)|) ≤ C sup
zΩ
|Φ(fk)(z)|w(|%(z)|)

for a positive constant C. Consequently, if supz∈Ω |log |%(z)| |k−1v(|%(z)|)
<∞ for each v ∈W , then also |log |%(z)| |kv(|%(z)|) must be bounded in Ω
for v ∈W .

Remark. Observe that the inequality |log |%(z)| | ≤ C|log(1− P(z, ω))|
holds on a set

X(ω, r) = {z ∈ Cn: |Lω(z)| ≤ r|%(z)|}.
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In other words, on this set the function fk,ω behaves asymptotically exactly
like |log |%(z)| |k.

Proposition 13. Let Ω be a bounded , pseudoconvex set with C3 bound-
ary. Assume that E ⊃ L∞ is a space defined by weighted-sup seminorms and
equipped with the topology given by these seminorms. If B is continuous
on E, then LW ⊂ E.

Proof. From the assumptions it follows that the set of strongly pseudo-
convex points in ∂Ω is non-empty. One way to prove this is to recall that
by the result in [4] the Shilov boundary of the algebra A(Ω) is contained
in the closure of the strictly pseudoconvex boundary points of Ω, when Ω
is bounded and has C2 boundary. On the other hand, the Shilov bound-
ary of a uniform algebra is always non-empty. Thus, the proof follows from
Proposition 11 and the method of the proof of Corollary 12.

Taking into account Corollary 12, it remains to show that mn ≤ n+ 1.

Proposition 14. Let Ω be a bounded , pseudoconvex domain of finite
type with smooth boundary. Assume that z ∈ U, where U is an open set
contained with its closure in Os. Then

�

U∩Ω
|log |%(ζ)| |m|K(z, ζ)| dV (ζ) ≤ C|log(|%(z)|)|m+1 + C ′

for positive constants C,C ′.

Proof. Using the method of Lemma 7 we conclude that it is enough to
estimate the integral

�

I

|log(|t+ %(z)|)|m
|%(z)|+ |%(z) + t|+ t2

dt

≤
�

[−1,|%(z)|]

|log(|%(z)| − t)|m
2|%(z)| − t dt+

�

[|%(z)|,1]

|log(t− |%(z)|)|m
t

dt.

Let δ > |%(z)| and observe that
�

[δ,1]

(− log(t− |%(z)|))m
t

dt

=
�

[δ,1]

(− log t)m

t
dt+

�

[δ,1]

(− log(t− |%(z)|))m − (− log t)m

t
dt

=
1

m+ 1
(− log δ)m+1 +

�

[δ,1]

(− log(t− |%(z)|))m − (− log t)m

t
dt.

It remains to show that the last integral is O(|log |%(·)| |m). First observe
that
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(log(t− |%(z)|)m =
[

log t−
∞∑

k=1

|%(z)|k
ktk

]m

= (log t)m +
m−1∑

l=0

(
m

l

)
(−1)l(log t)l

∞∑

n=1

( ∑

j1+···+jl=n

1
j1 . . . jl

) |%(z)|n
tn

.

Therefore∣∣∣∣
�

[δ,1]

(− log(t− |%(z)|))m − (− log t)m

t
dt

∣∣∣∣

≤ |log δ|m+
m−1∑

l=0

(
m

l

)
|log |%(z)| |l

∞∑

n=1

|%(z)|n
( ∑

j1+···+jl=n

1
j1 · · · jl

) �

[δ,1]

dt

tn+1

≤ |log δ|m +
m−1∑

l=0

2
(
m

l

)
|log |%(z)| |l

∞∑

n=1

|%(z)|n
δn

1
n

( ∑

j1+···+jl=n

1
j1 · · · jl

)
.

Now, since |%(z)|/δ < 1 it is enough to notice that
∞∑

n

1
n

( ∑

j1+···+jl=n

1
j1 · · · jl

)
≤

�

[1,∞)l

dx1 · · · dxl
(
∑l

j=1 xj)x1 · · ·xl
<∞.

The integral �

[−1,|%(z)|]

(− log(|%(z)| − t))m
2|%(z)| − t dt

can be dealt with in the same manner.

Corollary 15. Let Ω be a bounded strongly pseudoconvex domain. The
Bergman projection is continuous from Lvk(Ω) into Lvk+1(Ω).

Observe that by Proposition 9 and remarks after Theorem 10 it follows
that we can define the spaces Lvk using the Carathéodory, Kobayashi or
Bergman distance from a fixed point rather than |log |%(·)| |. This might be
a proper language for a possible generalization to a broader class of domains.
Now we establish a local version of this result. We keep the notation from
the preliminaries.

Theorem 16. Let Ω be a bounded pseudoconvex domain of finite type
with a smooth boundary. Assume that ω1, . . . , ωk ∈ (∂Ω)s. Then there exist
neighbourhoods Uj of ωj , j = 1, . . . , k, such that for each f ∈ L2(Ω) satisfy-
ing

|f(z)| ≤ CbΩ(z, z0)mj , z ∈ Uj ∩Ω,
where mj ∈ N0, we have

|Bf(z)| ≤ C ′bΩ(z, z0)mj+1, z ∈ Ũj ∩Ω,
where Ũj ⊂⊂ Uj.
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Proof. It is enough to notice that if ω is a strongly pseudoconvex point
in ∂Ω, then there exists a defining function % which is strictly plurisubhar-
monic in some neighbourhood of ω (cf. the proof of the Narasimhan lemma
in [27]). The assertion now follows from Proposition 14 and Theorem 10.

To complete the picture of the boundary behaviour of the Bergman pro-
jection define

H1
vn(Ω) =

{
f ∈ H(Ω):

�

Ω

|f(ζ)|v−1
n (|%(ζ)|) dV (ζ) <∞

}
,

and let H1
v denote the projective limit of the sequence

· · · → H1
vn → · · · → H1.

The symbols L1
vn and L1

v will denote the corresponding spaces of measurable
functions.

The proof of the next proposition is exactly the same as in the case of
the unit ball (see [22]).

Proposition 17. The space HW is isomorphic to the strong dual of H1
v .

The space H1
v is a Fréchet–Schwartz space.

By duality, we obtain

Proposition 18. The Bergman projection is continuous on L1
v.

Open problem. The results of this paper suggest the question whether
Theorem 16 as well as its global analog hold true for any bounded pseu-
doconvex domain in Cn, or at least a pseudoconvex domain of finite type
near any boundary point. This is closely connected with understanding the
singularities of the Bergman kernel. It is not clear whether one can expect to
obtain estimates with |log distΩ(z)|. As already pointed out, this is closely
connected with the problem of finding a suitable extension of L∞ on which
B is bounded.
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crucial suggestions.
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Math. 30 (2004), 171–190.

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Umultowska 87
61-614 Poznań, Poland
E-mail: mjk@amu.edu.pl

Received July 17, 2003
Revised version June 12, 2004 (5242)


